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Abstract

The sophistication of cyberattacks penetrating into enterprise networks has called for predictive defense beyond
intrusion detection, where different attack strategies can be analyzed and used to anticipate next malicious actions,
especially the unusual ones. Unfortunately, traditional predictive analytics or machine learning techniques that require
training data of known attack strategies are not practical, given the scarcity of representative data and the evolving
nature of cyberattacks. This paper describes the design and evaluation of a novel automated system, ASSERT, which
continuously synthesizes and separates cyberattack behavior models to enable better prediction of future actions. It
takes streaming malicious event evidences as inputs, abstracts them to edge-based behavior aggregates, and
associates the edges to attack models, where each represents a unique and collective attack behavior. It follows a
dynamic Bayesian-based model generation approach to determine when a new attack behavior is present, and
creates new attack models by maximizing a cluster validity index. ASSERT generates empirical attack models by
separating evidences and use the generated models to predict unseen future incidents. It continuously evaluates the
quality of the model separation and triggers a re-clustering process when needed. Through the use of 2017 National
Collegiate Penetration Testing Competition data, this work demonstrates the effectiveness of ASSERT in terms of the
quality of the generated empirical models and the predictability of future actions using the models.
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Introduction
As new system vulnerabilities are discovered and attack
tools become even more prevalent, cyber attackers may
employ a variety of evolving strategies with a plethora of
exploits. Symantec’s 2017 Internet Security Threat Report
(Symantec 2017) suggested that attacking tactics contin-
ued to change and many attackers used whatever tools
on hand rather than focused on sophisticated techniques.
This means how attackers penetrate into a network may
be situational and diverse, depending on what they dis-
cover and what is available. The diverse and changing
tactics pose challenges for security analysts to recog-
nize and comprehend the ongoing malicious activities
and emerging threats. Imagine a system that can pro-
cess a significant volume of observables produced by
intrusion detection systems, and continuously synthesize
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and update a manageable set of ‘empirical attack models’
that reflect the different ‘how’, ‘where’, and ‘what’ attack
activities are present in the network. Such a system will
assist security analysts to prioritize and anticipate critical
attacks, hence offering a robust predictive cyber defense
even in the presence of evolving and diverse cyberattack
tactics.
Traditional intrusion detection systems (Zhang et al.

2008; Li et al. 2012) differentiate malicious events from
benign ones to alert security analysts for potentially mali-
cious activities. It is not uncommon for analysts to be
overwhelmed by the potentially significant volumes of
false positives or less critical alerts due to scanning activ-
ities. Alert correlation systems (Valeur et al. 2004; Ning
et al. 2004; Yang et al. 2009) attempt to match the intru-
sion alerts with a priori known models based on expert
knowledge from previously observed incidents. An attack
episode, however, may be composed of multiple stages
where the scanning techniques, exploits, and targets are
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likely to change depending on the attackers’ knowledge,
preference, or just situational. The notion of training with
ground truth or sole reliance on expert knowledge will not
be sufficient to provide timely and robust attack models
that can be used to predict future attacks. Complementing
existing intrusion detection and alert correlation works,
this paper aims at separating intrusion alerts to generate
emerging attack behavior models, somemore critical than
others, for better analyses and predictability. This paper
presents ASSERT – a novel, automated and configurable
system that separates unlabeled observables of malicious
cyber activities, and generates and refines attack models
as they emerge. ASSERT analyzes the aggregates of alert
attributes as non-parameterized histograms, a general
form to represent categorical features that are prevalent
in cyber observables. Information theoretical techniques
are used to process the non-parameterized histograms to
determine the likelihood and, thus, the posterior match
between the behavior aggregates and the attack models.
Each empirically generated attack model then represents
the collective behavior exhibited by a subset of intru-
sion alerts. This allows the analysts to focus on models
that contain more critical activities even if the entirety of
intrusion alerts is overwhelming.
Onemay question the possibility to create attackmodels

without ground truth of how cyberattacks progress, espe-
cially with the evolving and situational nature of attack
behaviors. ASSERT addresses these challenges by intro-
ducing a semi-supervised Bayesian learning framework
where the max-posteriors are converted to distances to
the model centroid so as to assess and maximize the
separation of models. More specifically, each aggregate
of evidences (malicious activities occurring on the same
source-target IP pair over a reasonable period of time)
is either associated with the max-posterior attack model
or used to generate a new model depending on which
of the two gives a higher cluster validity index calcu-
lated using the max-posterior distance. Attack models
created will be continuously re-assessed as new evidences
emerge. The aggregates of evidences may change over
time and ASSERT ‘shuffles’ these aggregates through re-
clustering when the cluster validity index is low. The
occasional shuffling allows ASSERT to recover from early
mis-association of evidences to models, while allowing
continuous and computationally efficient Bayesian-based
separation of evidences and synthesis of attack models.
Figure 1 shows an overview of ASSERT architecture, along
with its connection to experimental data and external
assessment modules, in terms of both Jensen-Shannon
Divergence (JSD) (Lin 1991) and potential predictability
using the generated attack models.
The rest of the paper is organized as follows. “Back-

ground and related work” section summarizes the pre-
vious works on extracting the intrinsic spatiotempo-

ral patterns in cyberattacks and classifying unlabeled
and streaming network attack data. “Methodology:
ASSERT” section gives the details of the ASSERT sys-
tem including the use of dynamic Bayesian classi-
fier with Kullback-Leibler divergence (KLD) (Kullback
and Leibler 1951), model generation and assessment
with Wemmert-Gancarski Index (WGI) (Wemmert et al.
2000), and shuffling with Density Based Spatial Clus-
tering of Applications with Noise (DBSCAN) (Ester
et al. 1996). “Design of experiments” section presents the
design of experiments, and “Results” section discusses the
results to demonstrate ASSERT’s effectiveness in gener-
ating quality attack models over time and its potential
to improve prediction of future attack actions. Finally,
“Conclusion” section presents concluding remarks as well
as opportunities for future works.

Background and related work
The need to recognize different types of cyberattacks
is not new. Early works created taxonomies of cyberat-
tacks based on known attack strategies and compiled a
list of categories that an attack can be associated with
(Hansman and Hunt 2005). Different taxonomies catego-
rize cyberattacks based on various criteria e.g. the vul-
nerability behind an attack or its observed consequences.
These taxonomies serve the purpose to provide a founda-
tional understanding of different types of attacks, allowing
technical solutions to focus on detecting or differentiating
specific attacks.
ASSERT aims at processing streaming intrusion alerts

and separate observables of malicious events into empiri-
cally generated attack models that can better differentiate
attack behaviors and thus help predict future actions.
Using a dynamic Bayesian approach, it focuses on group-
ing intrusion alerts to create a collective behavior, not
necessarily a similar one. This is different from many
previous studies where similar observables are ‘clustered’
together to identify similar behaving end hosts (Xu et al.
2011) or traffic flows (McGregor et al. 2004; Shadi et al.
2017; Song and Chen 2007).
Much research in the past two decades on cyberattack

modeling aims at enhancing the ability to detect intru-
sion i.e. differentiating between malicious and benign
activities from packet captures or traffic flows (Subba
et al. 2016; Haddadi et al. 2010; Zhang et al. 2008; Li
et al. 2012). Intrusion detection ideally enables reactive
measures, such as stopping the detected attacks if pos-
sible or blocking intrusion from the same entry point
again. Current practices on using intrusion detection sys-
tems rely much upon security analysts to determine the
proper course of action, which can be time consuming
and ineffective. One way to alleviate this challenge is to
automatically classify intrusion alerts to different attack
models defined in a way that can help assist predict
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Fig. 1 The ASSERT architecture and its connection to external modules

future actions. Past research works (Luo et al. 2016) and
(Bolzoni et al. 2009) have suggested a similar concept and
the need to integrate intrusion detection systems with
attack classifiers.
There are several ways to model cyberattacks. Al-

Mohannadi et al. provided an overview of some
of the popular methods to model network attacks
(Al-Mohannadi et al. 2016) , and Yang et al. summarized
a number of modeling approaches used for predicting
future attacks (Yang et al. 2014). One common approach
used bymany was using attack graphs tomodel the system
vulnerabilities in a network and the inter-dependencies
between these vulnerabilities. Also commonly referred to
by the community has been the kill chain model that
describes how an attack might progress as a chain of
actions from reconnaissance, exploitation, lateral move-
ments, evasions, etc. The Capability-Opportunity-Intent
(COI) model characterizes cyberattacks based on the
motif and capability of the attacker, the infrastructure of
the network being attacked, and the defendability of the
attacker (Salerno et al. 2010). These modeling approaches
(attack graphs, kill chain, and COI) have been used by
many researchers to develop algorithms to correlate intru-
sion alerts or to predict future attack actions. For example,
Wang et al. proposed to use probabilistic attack graphs to
correlate isolated alerts into attack scenarios, so as to effi-
ciently identify the vulnerabilities that could be exploited
in a network (Wang et al. 2006; Wang et al. 2010). Homer
et al. discussed several methods to determine parts of an
attack graph that would not help identify critical secu-
rity threats and group similar attack steps as virtual nodes
to increase the understandability of the data flow in a

network (Homer et al. 68). Noel et al. introduced CyGraph
as a tool for cyber warfare analytics which builds an attack
graph model that maps the potential attack paths through
a network (Noel et al. 2016). Aguessy et al. presented a
Bayesian Attack Model (BAM) for dynamic risk assess-
ment (Legany et al. 2006). They combined the ideas of a
topological attack graph and a Bayesian network in order
to represent all possible attacks in an information sys-
tem. The BAM approach aimed at associating possible
attacks on a network with probabilities so that an analyst
could identify the major vulnerabilities in the network.
Shandilya et al. presented an overview of the state-of-
the-art technologies in attack graph generation (Shandilya
et al. 2014).
The above attack-graph based approaches primarily

focused on leveraging, and thus depended on the knowl-
edge of the system vulnerabilities and network config-
urations. Other works have focused on analyzing the
attackers’ behaviors by examining data reflecting mali-
cious activities. For example, Chen et al. show that spa-
tiotemporal statistics of malicious traffic can be indicative
of major attacker fingerprints and their target selection
schemes (Chen et al. 2015). Fava et al. build Variable
Length Markov Models based on sequences of intrusion
alerts to predict future attack actions (Fava et al. 2008).
Du and Yang suggest to map intrusion alerts to an Attack
Social Graph (ASG) that can be used to reveal attack
patterns (Du and Yang 2011). Strapp and Yang expand
the work by Du and Yang and use a dynamic Bayesian
analysis to find the best fit of a new malicious activity
to a subgraph of ASG given the graph compactness as
defined by the posterior (Strapp and Yang 2014). These
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studies shed lights on the spatial and temporal model-
ing approaches that could capture cyberattack patterns
from the attacker’s perspective. This research builds upon
these foundations and develops a computationally effi-
cient dynamic Bayesian approach with Kullback-Leibler
divergence and entropy redistribution to process intru-
sion alerts and create attack models in an online manner
without a priori knowledge on either network topology or
attack behaviors.
Traditional predictive analytics approaches require

training data of known attacks which may not be easy
to gather, due to the scarcity of the predictive indica-
tors and the ground truth. Although some prior works
use the observables of malicious activities reported
by known global anti-virus programs as indicators
(Yen et al. 2014; Bilge et al. 2017), most of the time it
is difficult to gather the ground truth for a target. And
without a priori or ground truth on the attack data, it is
challenging to assess the quality of the generated empir-
ical attack models. Are they similar? Will there be too
many? Yen et al. state that they do not have ground truth
for many aspects of their investigation, and use indi-
rect indicators instead (Yen et al. 2014). A prior study
(Liu et al. 2015) states that reported cybersecurity inci-
dents that could serve as ground-truth are vastly under
reported and uses the reported public incidents from
the VERIS Community Database (VCDB) (VERIS 2018),
Hackmageddon (Hackmageddon 2018 and Web Hack-
ing Incidents Database (WASC 2018). Bilge et al. state
that obtaining labeled data that is sufficiently compre-
hensive to capture all clean and risky host profiles in
the wild is nearly impossible, because no malware detec-
tion solution can attain perfection due to the known
arms-race with the cyber attackers (Bilge et al. 2017).
When there is no labeled data, clustering could be used
as an alternative unsupervised learning approach where
similar instances are grouped together based on their
attributes. Instances within the same cluster are expected
to have a high similarity, whereas the instances of differ-
ent clusters are expected to be dissimilar. A cluster validity
index takes into account the separation between clus-
ters along with the coherence of the data points within
each cluster. Previous studies (Wang et al. 2009; Kovács
et al. 2005) have suggested the use of several cluster valid-
ity indices to measure the quality of a clustering process.
The concept of the cluster validity index coincides with
the needs to assess the quality of the generated mod-
els. This work, thus, adopts Wemmert-Gancarski Index
(WGI) to complement the dynamic Bayesian approach to
assess the quality of the generated and updated models
regularly.
Classification of streaming data is a relatively new but

growing problem. Streaming data is defined as data that
enters the system one observable at a time. One common

method for the classification of streaming data is to use
ensemble algorithms such as those described by Street
and Kim (Street and Kim 2001) and Kuncheva (Kuncheva
2008). These ensemble algorithms combine the results
of multiple types of classifiers on a subset of the data
stream. Another common practice for classifying stream-
ing data is to store data points in memory until a large
enough subset is gathered and then perform the clas-
sification on these data chunks. The classification can
either be done using an ensemble algorithm or by cluster-
ing (O’Callaghan et al. 2002). Unlike the previous works,
ASSERT is based on a novel Bayesian based model gen-
eration approach which enables the classification of the
streaming observables efficiently. The quality of the gen-
erated attack models is regularly assessed with WGI and
a systematic density based clustering approach is used to
optimize earlier attack models.

Methodology: ASSERT
Intrusion alerts are commonly assessed by security ana-
lysts with their statistics and statistical distributions.
ASSERT uses a set of non-parameterized histograms that
represent the statistically aggregated behavior as exhib-
ited by the intrusion alerts. The non-parameterized his-
tograms generalize the modeling approach for specific
attack attributes, instead of assuming the attack behaviors
are known a priori. Each set of histograms, for example,
target IPs, target ports, alert categories, and alert signa-
tures, is used to represent an attack behavior model that
represents a set of potentially related malicious activi-
ties. Intrusion alerts are first aggregated into ‘edges’ based
on common source and target IP addresses. These edge-
based aggregates will then be classified into an attack
model that maximizes the posterior probability under the
Bayesian framework, or used to create a new model. This
work assumes that each edge-based aggregate in the same
time proximity reflects an attack behavior. This assump-
tion is reasonable since it is unlikely multiple attackers will
use, or spoof, the same source IP to attack the same target
IP in the same time frame without coordination. If there
is coordination, the collective behavior is what ASSERT
meant to capture. The aggregation enables the compari-
son of non-parameterized histograms and thus generation
of empirical models.

The overall process flow
ASSERT uses a graph G to represent the observed mali-
cious activities as exhibited by intrusion alerts. A directed
edge e connecting two nodes in G reflects at least one evi-
dence v showing a malicious action from the source node
to the target node, where the nodes are naturally indexed
with the corresponding IP addresses given by the intru-
sion alerts. In reality, an edge typically contains a number
of evidences accumulated over a period of time to reflect a
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collective attack behavior exhibited by a specific combina-
tion of intrusion signatures, port numbers, etc.. Each edge
is represented by the non-parameterized histograms, and
either matched to max-posterior attack model or used to
create a new model if the histograms deviate too much
from the existing models. As a subset of G, an attack
model is a collection of edges and is represented by the
histograms generated from the aggregated statistics of all
edges within the model. Note that the empirically gener-
ated models evolve over time since the edges added into
a model contribute to the histograms associated with that
model. This iterative process, as shown in Fig. 2, allows the
generation of empirical models without a priori knowl-
edge of any specific attacks or network configuration.
When a new alert or evidence v is received, it is added

to an existing edge e on the overall graph G between the
source and target IP addresses of the processed observ-
able. Note that this graph G is not the same as the attack
graph used in the literature; it is merely a representation of
the collection of the edges. If no such edge exists, then it is
created and added to the graph. The process of analyzing
a new evidence is described in Algorithm 1.

Algorithm 1 Add evidence v to a new or existing edge
e in an attack graph G where a dynamic attack model is
represented by �.
1: function ADDEVIDENCE(v, G)
2: if an e for v does not exist in G then
3: e = G.createEdge(v.sourceIP, v.targetIP)

4: formodel � in G do
5: e.updatePosterior(�)

6: classify(e,G)

7: else
8: e = G.getEdge(v.sourceIP, v.targetIP)

9: e.add(v)
10: G.updatePriors()
11: for edge e in G do
12: formodel � in G do
13: e.updatePosterior(�)

An edge e (an aggregate of evidences) may be classi-
fied into an existing model or used to generate a new
model. ASSERT adopts the use of Wemmert-Gancarski
Index (WGI) to decide whether to create a new model.
The inverse of the maximum posterior probability is con-
sidered as the distance between each aggregate and the
model centroid, and used to calculateWGI and determine
the separation of the attack models. The WGI associ-
ated with classifying a new edge to an existing model is
compared to that associated with using the new edge to

generate a new model, and the decision goes to the one
with the higher WGI. The process of deciding whether to
create a new model or not is summarized in Algorithm 2.

Algorithm 2 Classify an edge e to a new model �n or an
existing model �e with maximum posterior for e in an
attack graph G where �[ ] represents the list of models.
1: function CLASSIFY(e, G)
2: if |�[ ] | = 0 then
3: �0 = G.createModel(e)
4: e.updatePosterior(�0)
5: else
6: �n = G.createModel(e)
7: WGI�n = G.calculateWGI()
8: G.removeModel(�n)
9: Find �e for e

10: e.setModel(�e)
11: G.updatePriors()
12: for edge e in G do
13: formodel � in G do
14: e.updatePosterior(�)

15: WGI�e = G.calculateWGI()
16: ifWGI�n > WGI�e then
17: �e.remove(e)
18: G.createModel(e)

Dynamic Bayesian Classification
One of the key novelties of ASSERT is the calculation of
P(X|�)f that is the likelihood of a model � generating
an evidence aggregate X for a given feature f. Note that
explicitly calculating P(X|�)f by assessing a large num-
ber of combinatorial possible occurrences could lead to
an extremely small likelihood, be computationally chal-
lenging and cause precision errors in standard comput-
ers. However, the use of a non-parametric histogram is
needed, because there is no evidence in the community
suggesting the target IP, port or exploit selections follow a
certain distribution.
Given two probability distributions � and X, the

Kullback-Leibler divergence (KLD) (Kullback and Leibler
1951) is a non-symmetric measure of the difference
between � and X. It represents the amount of informa-
tion lost when a model � is used to approximate an edge
X. Therefore, instead of explicitly calculating P(X|�)f ,
ASSERT uses KLD to estimate how well a model explains
the observed evidences on an edge. Using pi as the prob-
ability of a feature instance i in � and qi as its probability
in X, the KLD from � to X for a feature f is defined as

KLDf (X‖�) =
∑

i
qi log

qi
pi

(1)
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Fig. 2 The execution flow in the ASSERT system

ASSERT uses the inverse of KLD to calculate the likeli-
hood for each edge distribution X. Then, the likelihoods
for all features are multiplied to find the overall likelihood
between a model � and edge X:

P(X|�) =
∏

f

1
KLDf (X‖�)) + 1

(2)

In addition, we recognize that it is not uncommon to
have certain feature instances not show up in the model
during the dynamic classification process. This can lead to
zero probability when using KLD (which causes problem if
any pi = 0 in (1)). In the context of cyberattack modeling,
not yet observing a feature instance (e.g. a specific exploit
being used or a port being targeted) does not necessar-
ily mean that such feature will not occur in the future. In
fact, an attacker is likely to target different exploits, ports,
and IPs over time. Therefore, ASSERT uses the Shannon’s
entropy to estimate the stochastic nature of a feature his-
togram and distribute the entropy to the unseen feature
values in the model (�), so as to reflect the possibility of
having an unobserved feature instance.
More specifically, if a certain feature value i is observed

on an edge but is not seen in a model (pi = 0), the Shan-
non entropy of the feature model is used to calculate the
probability of unseen feature observations in the model.
The entropy of a feature f within a model � i.e. Ef is
calculated by

Ef = −
n∑

i
pi log (pi) (3)

where n is the total number of observations within the fea-
ture histogram. ASSERT evenly distributes the entropy to
all feature values, by defining p′

i as

p′
i = pi

(
1 − Ef

) + Ef
|f | (4)

where 0 ≤ Ef ≤ 1 and |f | is the total number of feature
values present in the model.
With this entropy re-distribution, ASSERT updates (1)

by using p′
i instead of pi. This gives the final likelihood

for ASSERT, which is used in conjunction with a uniform
prior and, in turn, determines the posterior between each
pair of model and edge. The maximum posterior is then
found and used to calculate WGI to determine whether to
associate the edge to the max-posterior model or to use
the edge to create a new model.

Dynamic model generation
ASSERT assigns a uniform prior probability to eachmodel
and uses it and the edge likelihood to calculate the poste-
rior probability for an edge. Note that there is no a priori
model for ASSERT, and thus empirical models need to
be generated. In other words, the max-posterior classifi-
cation must be accomplished by a method allowing the
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creation of a new model. The choice between associating
with an existing empirical model versus creating a new
model is accomplished by treating the models as clus-
ters, and the max-posterior as the inverse of the distance
between an edge and its model.
If the posterior probability of an edge Xi for a model �

is represented by P(�|Xi), the inverse of this posterior is
defined as

di = 1
P(�|Xi)

(5)

and is used as a distance metric to determineWGI cluster
validity index. WGI is then used to assess the quality of
the model separation, decide when a new model needs to
be created, and trigger a new edge shuffling process. WGI
defines a coherence and separation metric R for each edge
Xi as

R(Xi) = di
min

(
d′
i
) (6)

where di represents the distance between an edge Xi and
its max posterior model centroid and d′

i shows the dis-
tance betweenXi and its second bestmodel centroid.WGI
takes the mean of R(Xi) for each model and defines a
coherence and separation metric Jk for each model as

Jk = max
{
0, 1 − 1

nk

nk∑

i
R(Xi)

}
(7)

Jk takes the complement of the mean of R(Xi) for model
k to 1 (or ignore it when it is > 1) where nk shows the
number of edges in model k. Based on Eqs. 6 and 7, WGI
is defined as

WGI = 1
N

N∑

k=1
nkJk (8)

where N represents the total number of models in the
system. ASSERT uses nk = 1 in (8) in order to treat
very large and relatively smaller models in the same way.
This is needed particularly in the context of cyberattack
modeling, because often times significant amount of the
received alerts are scanning, and attack model generation
should not be biased against non-scanning alerts.

Model shuffling via DBSCAN
ASSERT monitors the quality of the classification contin-
uously by referencing the WGI. When WGI falls below
a configurable threshold, a shuffling process is triggered
to ensure that each edge is assigned to a model with
the highest posterior and redundant models are removed.
The shuffling process might be triggered several times
throughout the execution flow based on the two trigger
conditions:

1. Index Threshold (IT ): If the WGI value falls below a
configured threshold.

2. Number of Evidences (ET ): If the number of
evidences received after the last shuffle has reached a
certain configured threshold.

To trigger a shuffling process, both IT and ET conditions
must be satisfied. That means, ASSERT waits for a cer-
tain number of evidences to trigger the shuffling, even if
the index falls below the configured boundary to avoid a
shuffling overhead.
ASSERT uses a density-based clustering algorithm i.e.

DBSCAN that groups closely packed edges together.
ASSERT uses DBSCAN, because unlike traditional clus-
tering algorithms such as k-Means, it does not need to
know the number of clusters, and can identify outliers if
any. DBSCAN uses two parameters i.e. the epsilon (ε) and
the minimum number of points (mp) to define a dense
region. The algorithm iterates through the edges that have
not been visited and retrieves their ε-neighborhood. If the
neighborhood contains enough number of edges a cluster
is created, otherwise the edge is labeled as noise (outlier).
Note that DBSCAN requires pair-wise distances

between edges. The pair-wise Jensen-Shannon divergence
(JSD) is used as an estimate of the distance between
edges, since there may not be sufficient evidences on
the edges to determine the divergence. ASSERT uses the
JSD, a symmetrized and smoothed version of the KLD,
to calculate a distance matrix for the behavior aggregates
(edges). Given two edges i.e. X1 and X2, and a feature f,
the JS divergence between X1 and X2 is calculated by

JSDf (X1‖X2) = π1KLDf (X1‖M) + π2KLDf (M‖X2)

(9)

where π1 and π2 weights are calculated considering the
number of evidences in X1 and X2 andM = π1X1 + π2X2.
Then the distance between two edges is found by

JSD(X1,X2) = 1
|f |

∑

f
JSDf (X1‖X2) (10)

where |f | denotes the number of features.
ASSERT follows a systematic approach to set the param-

eters of the DBSCAN algorithm. First, it uses the natural
logarithm of the total number of edges to set the value
of the mp parameter. Second, it computes the average
distance of each edge to its k nearest neighbors, where
k = mp. Then, these average distances are plotted in an
ascending order and the elbow (knee) point on the plot is
used to set the value of ε.
Once DBSCAN is triggered by the aforementioned con-

ditions, the edges are re-clustered to a set of attack mod-
els. At the end of the re-clustering (shuffling) process,
DBSCAN may create noisy clusters and mark the edges
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within these clusters as outliers. These outliers are not
considered by DBSCAN as valid clusters, and thus not
associated with any attack model. Note that an edge con-
sidered an outlier by DBSCAN could contain the first
observables of a unique and emerging attack behavior.
Therefore, each of these edges should be given a chance
to create a new model, or associated with the closest valid
model. ASSERT reclassifies each of these outliers by either
associating them to an existing regular cluster or creating
a new model depending on the value of the WGI, which is
the same process described in Algorithm 2.

Design of experiments
This paper demonstrates ASSERT’s capability using the
intrusion alerts collected from the 2017 National Col-
legiate Penetration Testing Competition (CPTC) (CPTC
Organizing Committee 2017), where approximately 60
people from 10 teams attempting to penetrate into the
same computing infrastructure to find as many vulnera-
bilities as possible. Suricata was installed to capture mali-
cious activities over approximately a 9-h period, and the
Suricata alerts were used as inputs for the experiments
shown in this paper (Suricata 2019). ASSERT processes
the Suricata alerts one by one to generate and update
empirical models without any a priori knowledge on either
the attackers or the infrastructure. The source and target
IPs are used to define the edges. In this set of experiments,
alert category, alert signature, target IP, and target port
are used as features to generate and refine dynamic attack
models.

WGI and Jensen-Shannon divergence
ASSERT assesses the empirically generated models regu-
larly using a cluster validity index. Clustering indexes are
similar in nature, as they provide a measure for the intra
and inter cluster quality. However, there might be differ-
ences about what they need to calculate the index value. A
key point for ASSERT is that there is no natural meaning
of a behavior aggregate (edge) in a feature space. Because,
an edge as characterized by multiple probability distribu-
tion functions, it may not have an easy interpretation of
its distance to other edges. One key novelty of ASSERT is
to interpret the model as the centroid and the posterior as
the inverse of distance to the centroid during the Bayesian
learning phase. Therefore, ASSERT uses the Wemmert-
Gancarski Index (WGI) which treats the inverse of the
calculated posterior as the distance to the model cen-
troid, so as to reflect the intra-cluster compactness with
the maximum a posterior and the inter-cluster separation
with the second best posterior.
To provide an independent assessment of the quality

of models generated, this work considers an alternative
metric - the general Jensen-Shannon divergence (JSD).
The general JSD is an extension of the pair-wise JSD

discussed in “Dynamic model generation” section, and
aims at measuring the overall ‘divergence’ or coherence
of multiple models. More specifically, the JSD of multiple
models (�1,�2, ..�n) based on a feature f is defined by
the entropy of the combined model (ETf ) and the weighted
average of individual model entropies (EIf ).

JSDf (�1,�2, ..�n) = ETf − EIf (11)

ETf = Ef (
N∑

i=1
πi�i) (12)

EIf =
N∑

i=1
πiEf (�i) (13)

where πi represents the weight of a model �i and N is
the number of models. We use a uniform weight value of
πi = 1

N for each model while calculating ETf and EIf . It is
desirable to have lower individual entropies (EIf ) for bet-
ter coherence within each model, and higher entropy for
the combined model (ETf ) for larger separation among the
models. JSDf generates a value between 0 and log2N . For
easy comparison over time where N varies, this work nor-
malizes the general JSD of each feature by log2N and then
finds the average JSD over the multiple features by

JSD(�1,�2, ..�n) = 1
|f |

∑

f
JSDf . (14)

Predictability indices
ASSERT aims at generating and updating attack models,
each reflecting a collective and unique behavior that could
be used to enhance cyberattack prediction. If ASSERT is
not used, the overall statistics from the cumulative intru-
sion alerts i.e. all evidences from all edges in the entire
graph G could potentially be used by security profession-
als to derive what might happen next. We will consider
the statistical model from the entire graph G as the base-
line. ASSERT focuses on how to best separate evidences
of malicious activities in an online and robust manner.
While there could be advanced cyberattack prediction
algorithms (Fava et al. 2008; Yang et al. 2014), this work
considers basic use of statistics to estimate the potential
to predict which future actions might be observed. When
a new evidence is received, ASSERT calculates the prob-
ability of each feature value in the evidence, based on the
model � (that its edge is associated) versus that based
on all the evidences in the graph G. This work considers
this probability as an estimate of the potential ‘predictabil-
ity’ that can be achieved for a given model or the overall
statistics.
Let pni (�) be the probability of a feature value i given

a model � just before the nth evidence arrives. Likewise,
define pni (G) for the baseline case that considers the entire
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graph G. For the ease of presentation, we shall refer these
probability values as the ‘predictability’ for the remain-
der of this paper. The average predictability over a moving
window is calculated and plotted to assess whether the
generated model finds a better/higher probability of the
imminent feature value compared to the baseline. More
formally, the average predictabilities are calculated as

p̃n(�) = 1
|w|

n∑

k=n−|w|+1
pki (�) (15)

p̃n(G) = 1
|w|

n∑

k=n−|w|+1
pki (G) (16)

where |w| represents the size of the moving window and n
shows the alert number.
Traditional cyber defense relies much on past obser-

vations or statistics. The predictability metric presented
above shows the potential value of ASSERT for all immi-
nent feature values. What if a feature value never occurs
on a given edge? This means predicting an ‘unseen’ fea-
ture for a given source-target pair. If the generated model
is effective, it should help to predict these unseen features
better than using the overall graph. Note that the over-
all graph has a larger sample size and potentially more
likely to see a feature that are previously unseen on an
edge. A model needs to be unique and useful for the edges
associated with the model so as to have a higher pre-
dictability for unseen features. This paper also compares
the smoothed ‘unseen predictabilities’ (q̃n(�) and q̃n(G))
to assess whether ASSERT generates quality models that
can help to predict the unseen features better.

Results
Before presenting the specific results, we summarize the
parameters used for the set of experiments shown in this
paper. ASSERT uses DBSCAN during shuffling with an
ε = 1.9 which reflects the elbow (or knee) point in
the k-distance chart as explained in “Model shuffling via
DBSCAN” section. A shuffling process is triggered each
time when IT = 0.70 and ET = 1000. Moreover, a
moving window size of 20 is used while calculating all pre-
dictabilities i.e. p̃n(�), p̃ni (G), q̃n(�) and q̃n(G). The IT
and ET parameters reflect user preference to tolerate over-
all model quality (in WGI) versus processing time. They
are used by ASSERT to decide when to trigger a shuffling
process, which takes a longer time than a single Bayesian
classification step but can re-assess the cumulative evi-
dences at once. Selecting a higher IT or a lower ET will
potentially lead to more shuffling processes and increase
the total processing time for ASSERT but may give bet-
ter WGI while evidences arrive, and vice versa. IT = 0.7
is chosen to ensure a relatively high quality of clustering
throughout the execution process. A lower IT could also

be chosen depending on the tolerance that the user has
for the quality of the model separation or cohesion. Simi-
larly, a higher ET could be chosen, but that could mean a
lower quality inWGI for a longer period of time. Depend-
ing on the tolerance of the user for clustering quality, a
higher ET value might be selected. ET = 1000 is chosen
as a threshold value for the CPTC’17 data set, to avoid fre-
quent shufflings and wait for 1000 intrusion alerts before
triggering a shuffling process when WGI is < 0.7. In our
experiment, we observe that except the very first shuf-
fling process, ET is not the dominating factor to trigger the
shuffling processes. The iterative Bayesian classification
performs reasonably well and thus IT goes below 0.7 after
more than 1000 alerts are observed since last shuffling.
Processing 32,265 intrusion alerts in the CPTC17 data,

ASSERT generates 2,392 edges and 47 attack models.
Table 1 shows details of each shuffling process throughout
the execution. ASSERT triggers a total of 8 re-clustering
processes where NA and NE show the cumulative num-
ber of alerts and edges prior to each shuffling process.
NAB represents the number of alerts processed after the
last shuffling and NM shows the number of models cre-
ated at the end of each shuffling. NOE shows the number
of edges in the outlier cluster generated by DBSCAN, and
NOM represents the number of new models created from
these edges. For example, 28628 alerts have been pro-
cessed (5636 of which received after the 7th shuffling) and
2341 edges have been created prior to the 8th shuffling
process. At the end of the 8th shuffling, a total of 16models
and 39 edge outliers were generated. 28 of these 39 outliers
were associated to the 5 models generated by DBSCAN
and the remaining 11 were used to create new models.
The CPTC17 data set includes a total of 20, 166, 68,

and 495 distinct values for the alert category, alert signa-
ture, target IP, and target port features, respectively. As
the alerts come into the system, each of these features
may see new values over time. Since an important chal-
lenge for ASSERT is to associate edges with models even
if some feature values exist in the model are not present
on the edge, it is important to review the ‘entropy’ of the

Table 1 Re-clustering processes for the CPTC17 data set

NA NE NAB NM NOE NOM

1 1010 161 1010 14 17 11

2 3300 273 2290 7 14 4

3 5257 509 1957 8 10 6

4 8676 798 3419 12 22 9

5 14726 1214 6050 15 30 11

6 18871 1772 4145 20 38 15

7 22992 2136 4121 24 39 20

8 28628 2341 5636 16 39 11
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features as the alerts come into the system. Figure 3 shows
the average entropy of four features as more and more
alerts come into the system. All four feature entropies fol-
low similar trends, and thus not shown here. We observe
that the average feature entropy fluctuates and has a gen-
eral upward trend until it saturates after approximately
10,000 alerts are received. This observation coincides with
the results in Table 1, where more frequent shufflings are
needed prior to the 10,000 alert mark.

The cluster validity index
As more edges are classified into a model, the collec-
tive behavior of the model changes over time and it
might not reflect the behavior of the edges classified into
the model initially. Therefore, the overall separation and
coherence of the generated models need to be moni-
tored continuously. ASSERT assesses the quality of the
empirically generated models regularly, using the WGI
cluster validity index. The novel use of the inverse of the
maximum posterior as a distance measure to the model
centroids allows representing the intra-cluster compact-
ness and the calculation of WGI in the absence of actual
feature space (due to the complexity of non-parametric
feature histograms). A decrease in WGI is possible, due
to the divergence between the feature histograms of the
edges and the model they are classified when additional
evidences are observed on the edges. Therefore, a shuf-
fling process using DBSCAN is used to re-cluster edges
with the attack models. Figure 4 shows the change in
the WGI as alerts come into the system. The number of
steep rises in WGI, reflects the re-clustering processes
triggered. While the re-clustering improves WGI, it takes
on average 6.86 s to complete as opposed to only 0.11
milliseconds for each Bayesian classification. The com-
bination of dynamic Bayesian classification and shuffling
enables a good balance between computational efficiency
to process streaming alerts and robustness to maintain
qualitymodels in terms of cohesiveness within eachmodel
and separations among them.

As shown in Table 1, NAB represents the number of
alerts processed between two successive shuffling pro-
cesses. This along with Fig. 4, shows more frequent
shufflings occur prior to the 10,000 alert mark and
less so later on. In fact, after the 8th shuffling, WGI
did not come down and there was no need to shuf-
fle. This trend somewhat coincides with the entropy
shown in Fig. 3, where upward trend was observed
until the 10,000 alert mark, and slight decline towards
the end.

Jensen-Shannon divergence
Note that WGI shows the quality of the model in terms
of the separation between the models and the cohesion
within each model in the feature space. As an alternative
and external measure to assess the quality of the gener-
ated attack models, we calculate the general JSD among
models as defined in “WGI and Jensen-Shannon diver-
gence” section. Figure 5 shows the general JSD (JSDf in
(11) with the middle red line), the entropy of the com-
bined model (ETf in (12) with the top blue line), and the
average individual model entropy (EIf in (13) with the bot-
tom green line). Note that the entropy of the combined
model reflects the overall uncertainty (separation) across
the individual models, and, thus, the higher the better. At
the same time, the lower individual model entropy reflects
better cohesion within each model. Overall, Fig. 5 shows
that ASSERT performs well and have high ETf and low EIf .
When ETf become low, the shuffling triggered by WGI re-
associates the edges with models and recovers ETf without
increasing too much on EIf (or have it go down quickly
afterward with the dynamic Bayesian classifier).

Predictability
ASSERT associates an aggregated edge histogram to an
attack model, expecting that the future behavior on the
edge would be similar to its maximum posterior model.
Therefore, if the classification of the attack behaviors

Fig. 3 The overall entropy of G over time
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Fig. 4WGI over iterations with shuffling

is good, then the model statistics should be indicative
of the feature values observed on an edge whether or
not such features have occurred before on the edge.
This section shows p̃n(�) and p̃ni (G) as defined in
“Predictability indices” section and the next section dis-
cusses the unseen predictabilities.
Recall that this paper defines ‘predictability’ as the like-

lihood of a feature value as given by the attack model
it is associated with, just before the feature value was
observed. Note that advanced prediction algorithms e.g.
(Fava et al. 2008) may take past transitions and other
factors into account and likely achieve better prediction
accuracy. The definition of predictability presented in this

paper is meant to assess the value of the attack models
generated by ASSERT when used to predict next actions
based on zero-order statistics. ASSERT is compared to the
baseline where the cumulative statistical model is used to
determine the likelihood.
Figures 6, 7, 8 and 9 show p̃n(�) and p̃ni (G) as alerts

come into the system for the target IP, target port, alert
signature and alert category features, respectively. Over-
all, p̃n(�) clearly outperforms p̃ni (G) consistently over
the entire dataset, showing the attack models created
by ASSERT provide outstanding value for predicting
future attack action features. To quantify this performance
improvement, we define a predictability ratio �(fn) =

Fig. 5 The JSDf (JSD), E
T
f (total), and EIf (individual) as the alerts come into the system
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Fig. 6 The p̃n(�) and p̃n(G) for target IP as the alerts come into the system

pni (�)/pni (G) for each feature f. It is observed that the
average �(fn) for the target IP, target port, alert signature,
and alert category features are 12.80, 3.64, 2.39, and 4.39,
respectively.
To compare the predictability measures in more detail,

we calculate the percentage of times the pni (�) and pni (G)

predictabilities are larger than a certain threshold T, rang-
ing between 0.05 and 0.5. Table 2 shows these percentages
for all four features. Note that these are based on the indi-
vidual probabilities while the lines plotted in the Figs. 6,

7, 8 and 9 are based on the moving window average.
Except the only case where the threshold is 0.05 for the
target port feature, pni (�) exceeds the threshold signifi-
cantly more often than pni (G). This gap tends to increase
as the threshold increases as well. This is interesting in
that, it shows ASSERT is able to produce attack models
that are capable of predicting specific feature values with
much higher probabilities. For instance, the attack mod-
els give a probability value of 0.35 or above for target IP
40.34% of the time while the cumulative statistics is at

Fig. 7 The p̃n(�) and p̃n(G) for target port as the alerts come into the system



Okutan and Yang Cybersecurity            (2019) 2:15 Page 13 of 18

Fig. 8 The p̃n(�) and p̃n(G) for alert signature as the alerts come into the system

0.01%. Similar performance gaps are observed for target
port and alert signature at the same threshold level. There
are much fewer number of unique alert categories, so it is
relatively easier to predict, but similar performance gap is
also observed at the threshold level of 0.5.

Unseen predictability
Similar to the analysis for the overall predictability, the
probabilities q̃n(�) and q̃n(G), are calculated for each fea-
ture instance that has never been seen on an edge. It

should be noted that these probabilities are calculated
only if a feature instance i has not been seen on its edge,
but was seen in the associated model. Understandably,
there are much fewer (but still significant) instances of
unseens than the cases tracked in the previous section. For
this section, we focus on the target port and alert signa-
ture features because these two features have a significant
number of distinct values (495 and 166, respectively) than
the target IP (68) and alert category (20). Havingmore dis-
tinct values means that there are more cases of unseens

Fig. 9 The p̃n(�) and p̃n(G) for alert category as the alerts come into the system
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Table 2 The percentage of times pni (�) > T and pni (G) > T for different features

Target IP Target port Signature Category

T pni (�) pni (G) pni (�) pni (G) pni (�) pni (G) pni (�) pni (G)

0.05 60.25 29.38 71.71 72.13 63.15 58.03 81.08 80.31

0.10 55.62 21.66 59.13 42.46 48.23 28.51 76.08 72.79

0.15 48.71 9.03 44.51 19.68 42.14 19.03 71.68 59.31

0.20 44.18 2.17 41.61 10.08 39.85 9.98 63.56 43.02

0.25 41.35 1.33 32.38 1.83 30.72 1.79 57.77 34.32

0.30 41.03 0.14 30.33 0.21 28.81 0.21 57.3 33.15

0.35 40.34 0.01 29.65 0 28.29 0 56.44 30.71

0.40 39.81 0.01 29.12 0 27.9 0 53.32 20.75

0.45 39.47 0 28.74 0 27.66 0 41.66 1.95

0.50 38.34 0 27.35 0 26.91 0 35.16 0

and it is harder to predict these values. Moreover, there is
no ‘unseen’ instances of target IP based on our definition,
since all target IPs seen in amodel must already exist on an
edge in the model. Note that predicting a potentially new
target IP is an interesting research question, but is beyond
the scope of this paper.
In order to have a set of previously observed evidences

to check against, sufficient number of evidences must
be processed by the system beforehand. Therefore, this
paper reports the predictabilities for the unseen feature
instances after the first 200 alerts come into the system.
Figures 10 and 11 show q̃n(�) and q̃n(G) for the target
port and alert signature features, respectively, as the alerts
come into the system. Except very few cases, most of the
time q̃n(�) is higher than q̃n(G). Note that the range (y-

axis) of unseen predictabilities is at around or below 0.1,
much smaller than the cases presented in Figs. 6, 7, 8 and
9. This is expected, but also means that a more complex
and careful design of prediction algorithms will be needed
to leverage these lower zero-order probabilities.
We again use a set of probability thresholds (T) between

0.05 and 0.50 and count the percentage of times the
unseen predictabilitymeasures qni (�) and qni (G) are above
these thresholds. Table 3 shows these percentages for
the target port and alert signature features. As expected,
ASSERT performs better than using the cumulative statis-
tics to predict the unseens. In fact, using the cumulative
statistics cannot produce any probabilities above 0.20 for
unseen target port or alert signature features, while it
is still feasible using ASSERT even at 0.50 level. Recall

Fig. 10 q̃n(�) and q̃n(G) over iterations for the target port
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Fig. 11 q̃n(�) and q̃n(G) over iterations for the signature

again that the results shown in Table 3 are based on the
individual probabilities while the plotted lines shown in
Figs. 10 and 11 are based on the moving average, hence
appears lower. Certainly, the benefits seem to be smaller
than the overall cases presented in Table 2. In fact, the
average of the predictability ratio �(fn) = qni (�)/qni (G)

for the unseen target port and signature features are 1.17
and 1.22, respectively, which are much smaller than those
reported for the overall predictability cases. This smaller
performance gain is expected, since predicting unseens is
fundamentally a daunting task. The fact that the attack
models created by ASSERT can continuously produce
sufficiently large probabilities for the unseens through-
out the approximately 9-h CPTC event is promising. A
careful design of a prediction algorithm that leverages
these zero-order probabilities could potentially lead to an
unprecedented capability where unseen attack actions can
be actually predicted.

Attack models: a closer look
The core value of ASSERT lies in the creation of attack
models that could assist the analysts to focus on critical
activities and use such more targeted analysis to predict
likely attack actions. In addition to the overall predictabil-
ity analysis discussed in the previous sections, this section
shows two attack models extracted from the same data set
and describes how an analyst might be able to use them
for insightful and targeted analysis. Specifically, we will
show that each of these two attackmodels contains related
attack actions from different teams and suggests attack
actions that could possibly be executed by some teams,
because another team or two in the same model has done
them.

Figure 12 shows the feature histograms of two attack
models,Model A (left), which contains a total of 223 intru-
sion alerts and a smaller Model B (right), which contains
65 alerts. As a reference, recall there are a total of 32,265
alerts in our data set. For each model, the feature his-
tograms for the alert category, alert signature, target IP,
and target port are provided. As stated earlier, the CPTC
2017 data set is composed of intrusion alerts from ten dif-
ferent teams which are trying to penetrate into the same
computing infrastructure. Therefore, each attack model
includes intrusion alerts from various teams, and in each
histogram alerts from different teams are represented
with different colors.
Attack Model A aggregates potentially related intru-

sion alerts from nine different teams and indicates a

Table 3 The percentage of times qni (�) > T and qni (G) > T for
the target port and alert signature features

Target port Signature

T qni (�) qni (G) qni (�) qni (G)

0.05 26.51 25.17 22.05 18.88

0.10 12.97 9.8 6.08 3.22

0.15 4.88 3.44 3.61 2.77

0.20 3.46 1.49 2.59 1.23

0.25 1.29 0 0.86 0

0.30 0.7 0 0.41 0

0.35 0.53 0 0.3 0

0.40 0.38 0 0.14 0

0.45 0.34 0 0.12 0

0.50 0.13 0 0.05 0
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Fig. 12 Alert category, alert signature, target IP and target port feature histograms for Models A (left) and B (right) generated by ASSERT. The x and y
axis of each histogram show the individual feature values or categories and the number (volume) of alerts, respectively. Different colors in each bar
represent alerts coming from the different teams

serious network trojan injection. Its alert category his-
togram includes miscellaneous activity, unsuccessful user
privilege gain, trojan detection, and potentially bad traf-
fic categories. Its alert signature histogram indicates
Remote Desktop Protocol (RDP) connection confirma-
tions, potential FTP brute force attempts, repeated logon
failures and executable script downloads. Similarly, its
target port histogram includes alerts with categorized
destination ports that are used by the Remote Desktop
Management interfaces and its target IP histogram shows
the victim IP numbers for the aforementioned exploits.
The intrusion alerts of Model B are from five different
teams, representing a collective attack behavior where the
alert category histogram includes alerts for information
leak attempts and potential bad traffic. The alert signature
histogram shows executions of a critical command (curl)
and the gain of critical ‘root’ privileges. The target port
histogram shows related categorized ports through which
the exploit was carried out and the target IP histogram
shows the victim hosts.
We observe that each attack model aggregates poten-

tially related exploits carried out by different attack teams.
In Model A, all nine teams have RDP connection con-
firmation alerts for a variety of target hosts. Team 6 has

RDP connection confirmation alerts for six different tar-
get hosts, one of which is followed by a set of repeated
logon failures. Similarly, Team 10 carries out a set of
potential FTP brute-force attempts on a specific target,
after a set of RDP connection confirmation alerts. There-
fore, one might anticipate to see logon or FTP brute-force
attempts executed by the remaining seven teams towards
the target hosts for which an RDP connection confirma-
tion alert is already observed. In Model B, five teams have
used the command ‘curl’ to execute a data transfer. For
one of these teams, intrusion alerts are observed showing
that critical root privileges were gained. Therefore, one
may anticipate a similar behavior from the remaining four
teams towards the target hosts for which a ‘curl’ command
is already executed.
Each attack model represents a collective attack behav-

ior and includes a set of potentially related malicious
activities whose relationships are not trivial to be discov-
ered via simple statistical query or clustering approaches.
When multiple teams in a model have a common behav-
ior and one of the teams exhibits an additional behavior
later on, one could anticipate the additional behavior from
the remaining teams. Recognizing that these are from stu-
dent penetration testing competition, the examples here
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merely show a potential use of ASSERTwhere the analysts
can focus on a small number of critical alerts from vari-
ous attack sources (different teams) and make prediction
without being overwhelmed by the tens of thousands of
alerts. The emerging threats exhibited through the empir-
ical models do not require a priori knowledge and are
adaptive as more evidences are collected.

Conclusion
In the absence of a priori knowledge on specific attacks
and network configuration, ASSERT processes aggregated
non-parametric feature histograms from streaming intru-
sion alerts to generate attack models using a dynamic
Bayesian approach with a novel likelihood calculation,
regularly assessed with WGI, and complemented with
DBSCAN. The key novelties of the ASSERT system are:

• The use of posterior as the inverse of distance to
cluster centroid enables the integrated use of
Bayesian classifier and WGI in a dynamic manner, as
a foundation for the semi-supervised online learning
framework that synthesizes cyberattack models.

• The use of KLD with entropy redistribution over
non-parametric feature histograms enables the
association of observable aggregates with empirical
models even if there are emerging features that are
previously unseen.

• The use of pair-wise JSD between observable
aggregates allows re-clustering with DBSCAN, which
enables improvement and recovery from imperfect
decisions made earlier by the dynamic Bayesian
classifier with insufficient evidences.

Using the intrusion alerts from the 2017 CPTC data
set, this paper demonstrates the capability of ASSERT
in generating and updating distinct attack models over
time without a priori knowledge. Using WGI and gen-
eral multi-model JSD, we show that both the cohesive-
ness within individual models and the separation between
models remain sound as new alerts are received. These
models are also shown to be promising in predicting
future attack actions. In particular, we assess the ‘pre-
dictability’ against the baseline using total cumulative
statistics, a reasonable practice in reading intrusion alert
data. ASSERT is able to produce probabilities that are
12.80, 3.64, 2.39, and 4.39 times higher than the baseline
on average for the target IP, target port, alert signature,
and alert category respectively. Furthermore, it is able to
predict unseen target port and alert signature with prob-
ability values over 0.25 or even 0.5 while the baseline
cannot produce any over 0.20. These results demonstrate
the value of the attack models synthesized by ASSERT in
predicting the ‘where’, ‘how’, and ‘what’ of future attack
actions. Certainly, a careful design of how to use these
models and feature predictions for an actual cyberattack

prediction is needed and underway. This work demon-
strates a clear and consistent advantage of using ASSERT
to develop such a predictor.
The overall ASSERT framework and the experiment

methodology presented in this paper are also generaliz-
able for using additional features and assessing empiri-
cal models. In addition to the novelties of ASSERT, the
introduction of the general multi-model JSD and the com-
prehensive evaluation using ‘predictability’ and ‘unseen
predictability’ is important for the community as we move
towards predictive cyber defense and in need of a way
to assess empirical attack models without a priori knowl-
edge.
ASSERT separates intrusion alerts into empirical attack

models where the analysts may focus on critical activi-
ties and use the aggregated statistics from selected models
to potentially predict future attack actions. While the
assumption of edge aggregates within a reasonable dura-
tion is sound, there is a risk of adversaries intentionally
embedding one or two critical exploits into very large
number of common scanning activities in some edges. In
such cases, ASSERT could still reveal the critical exploits
as part of the attack model, but they will be statisti-
cally insignificant to derive a high predictability or the
improvement in predictability would be limited. Another
limitation of the current implementation of ASSERT is
the inclusion of historical alerts, where the system needs
to define how and when the alerts will be treated as part
of historical instead of emerging attack behaviors. Finally,
additional experiments with more engineered features as
well as human subject study will be beneficial to maximize
the value provided by the ASSERT framework.
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Wemmert C, Ganċarski P, Korczak JJ (2000) A collaborative approach to
combine multiple learning methods. Int J Artif Intell Tools 9(01):59–78

Xu K, Wang F, Gu L (2011) Network-aware behavior clustering of internet end
hosts. In: 2011 Proceedings of the IEEE INFOCOM. pp 2078–2086. https://
doi.org/10.1109/INFCOM.2011.5935017

Yang SJ, Stotz A, Holsopple J, Sudit M, Kuhl M (2009) High level information
fusion for tracking and projection of multistage cyber attacks. Inf Fusion
10(1):107–121. https://doi.org/10.1016/j.inffus.2007.06.002

Yang SJ, Du H, Holsopple J, Sudit M (2014) Attack projection. In: Kott A, Wang
C, Erbacher RF (eds). Cyber Defense and Situational Awareness. Springer
International Publishing, New York City, chap Attack Projection. pp 239–261

Yen TF, Heorhiadi V, Oprea A, Reiter MK, Juels A (2014) An epidemiological
study of malware encounters in a large enterprise. In: Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, New York, CCS ’14. pp 1117–1130. https://doi.org/10.
1145/2660267.2660330

Zhang J, Zulkernine M, Haque A (2008) Random-forests-based network
intrusion detection systems. IEEE Transactions on Systems, Man, and
Cybernetics, Part C 38(5):649–659. https://doi.org/10.1109/TSMCC.2008.
923876

https://doi.org/10.1145/3133956.3134022
https://doi.org/10.1371/journal.pone.0131501
https://doi.org/10.1371/journal.pone.0131501
https://nationalcptc.org/
http://dl.acm.org/citation.cfm?id=3001460.3001507
http://dl.acm.org/citation.cfm?id=3001460.3001507
https://doi.org/10.1109/TIFS.2008.924605
http://www.hackmageddon.com/
https://doi.org/10.1109/ICCNT.2010.28
https://doi.org/10.1109/ICCNT.2010.28
https://doi.org/10.1007/978-3-540-85933-8_7
https://doi.org/10.1214/aoms/1177729694
http://doi.org/10.1016/j.eswa.2011.07.032
http://doi.org/10.1016/j.eswa.2011.07.032
https://doi.org/10.1016/bs.host.2016.07.001
https://doi.org/10.1109/ICDE.2002.994785
https://doi.org/10.1109/ICIF.2010.5711862
http://doi.acm.org/10.1145/3098593.3098598
http://doi.org/10.1155/2014/818957
https://doi.org/10.1109/ICNSC.2007.372846
https://doi.org/10.1145/502512.502568
http://doi.acm.org/10.1145/502512.502568
http://doi.acm.org/10.1145/502512.502568
https://doi.org/10.1109/NCC.2016.7561088
https://doi.org/10.1109/NCC.2016.7561088
https://suricata-ids.org/
https://suricata-ids.org/
https://www.symantec.com/security-center/threat-report
https://www.symantec.com/security-center/threat-report
http://veriscommunity.net/index.html
http://veriscommunity.net/index.html
https://doi.org/10.1016/j.comcom.2006.04.001
http://projects.webappsec.org/w/ page/13246995/Web-Hacking-Incident-Database
http://projects.webappsec.org/w/ page/13246995/Web-Hacking-Incident-Database
https://doi.org/10.1109/INFCOM.2011.5935017
https://doi.org/10.1109/INFCOM.2011.5935017
https://doi.org/10.1016/j.inffus.2007.06.002
https://doi.org/10.1145/2660267.2660330
https://doi.org/10.1145/2660267.2660330
https://doi.org/10.1109/TSMCC.2008.923876
https://doi.org/10.1109/TSMCC.2008.923876

	Abstract
	Keywords

	Introduction
	Background and related work
	Methodology: ASSERT
	The overall process flow
	Dynamic Bayesian Classification
	Dynamic model generation
	Model shuffling via DBSCAN

	Design of experiments
	WGI and Jensen-Shannon divergence
	Predictability indices

	Results
	The cluster validity index
	Jensen-Shannon divergence
	Predictability
	Unseen predictability
	Attack models: a closer look

	Conclusion
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	References

