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Abstract

Purpose: To evaluate robustness and repeatability of magnetic resonance imaging (MRI) texture features in water
and tissue phantom test-retest study.

Materials and methods: Separate water and tissue phantoms were imaged twice with the same protocol in a test-
retest experiment using a 1.5-T scanner. Protocols were acquired to favour signal-to-noise ratio and resolution. Forty-six
features including first order statistics and second-order texture features were extracted, and repeatability was assessed
by calculating the concordance correlation coefficient. Separately, base image noise and resolution were manipulated
in an in silico experiment, and robustness of features was calculated by assessing percentage coefficient of variation
and linear correlation of features with noise and resolution. These simulation data were compared with the acquired
data. Features were classified by their degree (high, intermediate, or low) of robustness and repeatability.

Results: Eighty percent of the MRI features were repeatable (concordance correlation coefficient > 0.9) in the phantom
test-retest experiment. The majority (approximately 90%) demonstrated a strong or intermediate correlation with
image acquisition parameter, and 19/46 (41%) and 13/46 (28%) of features were highly robust to noise and resolution,
respectively (coefficient of variation < 5%). Agreement between the acquired and simulation data varied, with the
range of agreement within feature classes between 11 and 92%.

Conclusion: Most MRI features were repeatable in a phantom test-retest study. This phantom data may serve as a
lower limit of feature MRI repeatability. Robustness of features varies with acquisition parameter, and appropriate
features can be selected for clinical validation studies.
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Key points

� Magnetic resonance imaging (MRI) texture analysis
is being increasingly utilised.

� Most MRI features are repeatable in a phantom test-
retest experiment.

� Most MRI features are sensitive to image noise and
resolution.

Background
Radiomics refers to the extraction of quantitative im-
aging features from anatomical and functional imaging
data [1, 2]. Within radiomics, texture analysis is typically
combined with data mining and machine learning with
the goal of delivering precision medicine. In oncology,
radiomics has shown the potential to describe tumour
pathology and predict tumour behaviour such as response
to therapy and overall survival [3]. These analyses are
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driven by the hypothesis that variations in texture correl-
ate with tumour phenotype or its biological expression
[3]. For example, radiomics has been investigated in most
tumour types, such as breast cancer [4], lung cancer [5],
and gliomas where it has shown utility in tumour grading
and survival prediction [6].
It is recognised that challenges to radiomics include

standardisation of image acquisition, feature extraction, and
segmentation [1]. The use of robust quantitative data is par-
ticularly necessary in larger multi-centre studies which
might include variations in operator, location, measurement
systems, and techniques. To better understand the robust-
ness and generalizability of any radiomic discoveries, ana-
lyses should therefore include an objective assessment of
the reproducibility and repeatability of radiomics features.
Initially applied to photomicrographs and satellite data

[7], and within medical imaging to computed tomography
(CT) and positron emission tomography (PET) data, tex-
ture analysis has been more recently applied to magnetic
resonance imaging (MRI), which has brought its own
unique challenges and opportunities. Unlike CT, in which
tissue contrast is determined by atomic number, physical
density, and photon energy, MRI tissue contrast arises from
the interactions of tissue properties, such as proton density
and longitudinal and transverse relaxation times, with
image acquisition parameters, such as the echo and repeti-
tion times [8]. The cellular microenvironment influences
the MRI signal by the way it modifies the motion of water
molecules [8]. The increased possibilities for contrast in
MRI lead to the potential for increased variability in the de-
rived radiomics features, together with the possibility that
correlations discovered may reflect differences in acquisi-
tion protocol rather than clinically useful findings. Thus,
with MRI, the need for standardisation is crucial [9].
Typically, a radiomic signature is validated by apply-

ing it prospectively to a larger independent dataset,
better when across multiple sites. Estimates of the re-
peatability and stability of radiomic features are essen-
tial both to aid interpretation of cohort findings and
to enable application of texture features to monitoring
of changes in individual patients. Little data exists re-
garding repeatability of MRI features in a test-retest
scenario, and there is a paucity of data addressing
sensitivity of those features to acquisition parameter
[10].
The aim of this study was two-fold. Firstly, we

aimed to quantify MRI feature robustness with acqui-
sition parameters that influence image noise and reso-
lution using simulations and experimental data.
Secondly, we aimed to derive a lower limit on MRI
radiomic feature repeatability by performing a test-
retest experiment. The relationship between signal-to-
noise ratio (SNR), image resolution, and radiomic fea-
ture repeatability was assessed.

Methods
MRI phantom and acquisition protocol
A test-retest study was performed on a commercial
water MRI phantom (Siemens Healthcare 5,300 mL
nickel sulphate serial number 2147, Erlangen, Germany)
and a tissue phantom (leg of lamb, New Zealand)
using a clinical 1.5-T Siemens Magnetom Aera scan-
ner (Siemens Healthcare, Erlangen, Germany). Re-
search ethics board approval was not required.
The water phantom and tissue phantom were posi-

tioned in the magnet socentre at room temperature. The
long axis of the cylindrical phantom and the long bone
of the tissue phantom were aligned with the z-axis of the
magnet. Oil-filled fiducial markers were included to aid
repositioning.
Sequence parameters typical of clinical T1- and T2-

weighted sequences were used to acquire images, and
the number of excitations (NEX) and image matrix size
varied to acquire images with reduced SNR and reso-
lution (Table 1).
Following the low-SNR and low-resolution scans, the

water and the tissue phantoms were removed from the
MRI scanner and then immediately repositioned in the
magnet socentre. The time interval between test and re-
test was less than 5 min.
For each arm of the test-retest study, five non-

contiguous axial slices were obtained.

Texture feature extraction
Radiomic feature calculation was performed using a
custom-built script in Matlab (2017a, The MathWorks
Inc., Natick, MA, USA). Second-order texture features
were calculated from the grey-level co-occurrence matrix
(GLCM) and grey-level run-length matrix (GLRLM)
matrices, as described by Haralick et al. [7] and Galloway
[11], using the method described in the paper by Aerts
et al. [3].
Fourteen first-order statistics and 32 second-order tex-

ture features were calculated giving 46 radiomic features
in total, and these are outlined in Table 2. The GLCM
and GLRLM matrices describe respectively the fre-
quency of grey-level combinations occurring in immedi-
ately adjacent pixels, and the frequency of the lengths of
consecutive runs of pixels having the same grey level, re-
spectively. The features were calculated in each direction
separately and the two-dimensional GLCM and two-
dimensional GLRLM were then averaged over all direc-
tions and normalised using the method described in
Aerts et al. [3].
Features were calculated from fixed regions of interest

(ROI) for the tissue and water phantoms. The ROI coor-
dinates and size were identical for each acquisition and
for each arm of the test-retest. Any variations in object
sampling between the test and retest are therefore due
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to deviations in phantom positioning, which sets a lower
bound on repeatability since accurate repositioning of
patients is more challenging than for phantoms.
Circular ROIs were chosen within the centre of the

water phantom and within a uniform muscle group of
the tissue phantom to ensure the image texture was
similar across the ROI (Fig. 1a, b). The ROI size was ad-
justed with matrix size so that the object region included
in the ROI was kept constant.
Prior to calculating the GLCM, the data from each

ROI was normalised by subtracting the mean and divid-
ing by the standard deviation (SD) of pixel values in each
ROI. This ensures that any differences in feature values
are not due to variations in pixel value mean or SD. The
data were then quantised into 16 discrete, uniformly
spaced grey-level bins before GLCM calculation. The
number of bins was chosen as it is within the 99.9% con-
fidence interval for the z scores.

Simulations of image noise and matrix size
Simulations were used to assess feature robustness
across a wider range of noise and resolution than was
feasible on the phantom measurements. The image data
acquired with NEX equal to 32 were used as the base
image from which to simulate images with different
noise levels and resolution by adding synthetic noise and
interpolating the voxel size.
The image noise and SNR were measured using the

image difference method of Dietrich et al. [12] by
using two independent images acquired using proto-
cols B (for T2-weighted imaging) and E (for T1-
weighted imaging) described in Table 1. The SNR
values were 3.75 and 4.69 for the T2-weighted and
T1-weighted sequences, respectively, which are

sufficiently above 3 implying that the Rician noise es-
sentially has a Gaussian distribution [13].
Images simulating the effect of different numbers of

excitations were therefore generated by adding Gaussian
noise to the base images acquired using protocols A and
D described in Table 1, which we considered as being
noise-free. The added noise standard deviations were the
noise values estimated using the difference method,
scaled by 1/square root (NEX) for NEX = 1, 7, 13, 19,
25, or 31.
Using the high SNR data for T2-weighted images, the

image resolution was reduced with bicubic interpolation
and antialiasing using the “imresize” function in Matlab,
which is a recognised method of adjusting image reso-
lution [14, 15]. Using a base image resolution of 256
pixels, output resolution was 256/r where r = 1 to 6, for
6 discrete output resolution levels in total. Features were
then extracted for each of the 6 simulated noise and
resolution levels.
A quantitative measure of feature robustness with re-

spect to noise and resolution was calculated from the T2
data, the percentage coefficient of variation (%COV), as
described by the QIBA (Quantitative Imaging Bio-
markers Alliance), and its Terminology Working Group
[16]. This is a measure of the spread of feature values,
normalised to the mean value when noise or resolution
is varied:

%COV ¼ SD=mean ð1Þ

where SD and mean are the standard deviation and
mean value of the texture features over repeated mea-
surements. The %COV describes how much a given fea-
ture will vary as noise or resolution is perturbed, under

Table 1 Parameters for water and tissue phantom image acquisition in the test-retest study

A B C D E F

Weighting T2 T2 T2 T1 T1 T1

Repetition time (ms) 3,000 3,000 3,000 323 323 323

Echo time (ms) 82 82 82 4.76 4.76 4.76

Number of excitations 32 1 1 32 1 1

Matrix 256 × 256 256 × 256 128 × 128 256 × 256 256 × 256 128 × 128

Slice thickness (mm) 5 5 5 5 5 5

Pixel spacing (mm) 1.18 1.18 2.34 1.17 1.17 2.34

Echo train length 24 24 24 2 2 2

Bandwidth (kHz) 300 300 300 455 455 455

Flip angle (°) 150 150 150 70 70 70

Field of view (mm) 243 × 300 243 × 300 243 × 300 225 × 300 225 × 300 225 × 300

Slice spacing (mm) 5.5 5.5 5.5 5.5 5.5 5.5

Sequences A and D provided high signal-to-noise ratio and high spatial resolution, while sequences B and E provided reduced signal-to-noise ratio, and C and F
also reduce the resolution
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the ranges defined in these experiments and is an esti-
mate of the magnitude of variation. It is commonly re-
ported at the 95% precision limit, or conversely with a
cutoff of 5% [16].
Assuming a linear relationship, a separate measure of

the strength of dependence of feature values on noise
and resolution was obtained using Pearson’s correlation
coefficient between individual features and noise (via
NEX) and resolution (matrix size).

Test-retest
A measure of feature robustness with test-retest was de-
fined by the concordance correlation coefficient (CCC)
[17], which is commonly used to assess agreement in a
test-retest scenario within medical imaging and therefore
was chosen as a suitable metric:

CCC ¼ 2ρσxσy

σx2 þ σy2 þ μx − μy
� �2 ð2Þ

where μ, ρ, and σ are the means, correlation coefficient,
and standard deviations of the two variables, respectively.
Agreement was defined as poor, moderate, substantial,
and near-perfect for a CCC of < 0.90, 0.9 ≤ CCC < 0.95,
0.95 ≤ CCC < 0.99, and > 0.99, respectively [18].

Results
Table 3 summarises robustness of features with noise
and resolution. Table 4 summarises linear correlation of
the 46 individual features with noise and resolution.
Table 5 summarises feature repeatability in the test-
retest experiment.
Percentage COV as a function of image noise and

resolution for the 46 features are shown in Figs. 2 and 3,
sorted in ascending order. With a %COV cutoff at 5%,
19/46 (41%) and 13/46 (28%) of features were found to
have high robustness with noise and resolution, respect-
ively. With a %COV < 5 cutoff, 11/46 (24%) of features
were highly robust to both noise and resolution (S.Mean,
S.Med, S.RMS, T.Aut, T.HGLRU, T.IDMN, T.IDN,
T.RP, T.SRE, T.SRHGLE, T.SA).
The results in terms of CCC of the test-retest ex-

periment are demonstrated in Fig. 4 for T1-weighted
imaging and Fig. 5 for T2-weighted imaging, sorted in
ascending order. A CCC of 1 represents perfect
agreement while a 0 value implies no agreement be-
tween test and retest results. Using a cutoff of CCC >
0.9, the majority of features demonstrate either mod-
erate, substantial, or almost perfect repeatability: 38/
46 (83%) for T1-weighted imaging and 36/46 (78%)
for T2-weighted imaging, respectively. Three texture
features demonstrated low repeatability for both T1-
and T2-weighted imaging (T.Cls, TLRHGLE, and
T.RLGLE).

Table 2 List of computed statistic (S) and texture (T) features
Number Feature Abbreviation

1. Energy S.En

2. Entropy S.Ent

3. Kurtosis S.Kur

4. Maximum S.Max

5. Mean S.Mean

6. Mean absolute deviation S.MAD

7. Median S.Med

8. Minimum S.Min

9. RMS S.RMS

10. Range S.Ran

11. Skewness S.Sk

12. Standard deviation S.Std

13. Uniformity S.Un

14. Variance S.Var

15. Autocorrelation T.Aut

16. Cluster prominence T.Clp

17. Cluster shade T.Cls

18. Cluster tendency T.Clt

19. Contrast T.Con

20. Correlation T.Cor

21. Difference entropy T.Den

22. Dissimilarity T.Dis

23. Energy T.En

24. Entropy T.Ent

25. Grey-level non uniformity T.GLNU

26. High grey-level run emphasis T.HGLRU

27. Homogeneity 1 T.Hom1

28. Homogeneity 2 T.Hom2

29. Informational measure correlation 1 T.IMC1

30. Informational measure correlation 2 T.IMC2

31. Inverse difference moment normalised T.IDMN

32. Inverse difference normalised T.IDN

33. Inverse variance T.IV

34. Long run emphasis T.LRE

35. Long run high grey-level emphasis T.LRHGLE

36. Long run low grey-level emphasis T.LRLGLE

37. Low grey-level run emphasis T.LoGLRU

38. Maximum probability T.MP

39. Run length non uniformity T.RLNU

40. Run percentage T.RP

41. Short run emphasis T.SRE

42. Short run high grey-level emphasis T.SRHGLE

43. Short run low grey-level emphasis T.SRLGLE

44. Sum average T.SA

45. Sum entropy T.SE

46. Sum variance T.SV
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Fig. 1 a, b Example of regions of interest (ROIs) used to calculate texture features for the water phantom (a) and tissue phantom (b). Identical
circular ROIs were placed in the centre of the water phantom and in a homogenous muscle group of the tissue phantom

Table 3 Robustness of texture features as a function of noise and resolution

Robustness High Mid Low

Noise 1, 2, 4, 5, 7, 9, 15, 20, 24–26, 31, 32, 37,
40–42, 44, 45

3, 6, 8, 10, 12, 13, 16, 18, 21–23, 27–30, 33–36, 38, 39, 43, 46 11, 14, 17, 19

Resolution 5, 7, 9, 15, 21, 26, 30–32, 40, 41, 42, 44, 2–4, 6, 8, 12, 14, 18, 20, 22, 24, 27, 28, 33–37, 43, 45, 46 1, 10, 11, 13, 16, 17, 19,
23, 25, 29, 38, 39

For the number identifying features, see Table 2. High robustness was defined with %COV < 5, mid robustness with 5 < %COV < 30, and low robustness with
%COV > 30
%COV Percentage coefficient of variation
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Feature noise correlation data are found in Supple-
mentary Figure S1 for both the tissue phantom (red dot)
and water phantom (blue cross) for 5 adjacent image
slices for 46 features. Supplementary Figure S2 demon-
strates the same data but for features as a function of
resolution, varying over n = 2 to 7 (1/2 to 1/7th base
resolution).
The acquired resolution data and simulation data were

in agreement in many cases, for example, the commonly
used texture feature energy (texture features 23) and en-
tropy (texture features 24); however, others demonstrated
less agreement or even non-agreement (for example, tex-
ture features 19, contrast). Better agreement was observed
for the resolution data than for the noise data. Agreement
between the acquired and simulation data in general
tended not to be dependent on feature class. This was
demonstrated by a spread of features between the different
classes: 1st order statistics (1–14), GCLM-derived features
(15–33), and GLRLM features (34–46) demonstrating
agreement between the acquired and simulation data. The
lowest agreement was found in 11% of GLCM features for
the water phantom noise experiment, and the highest
agreement was found in 92% of GLRLM features for the
tissue phantom resolution experiment.
As is seen in Table 4, the majority of features demon-

strate a strong or intermediate linear correlation with noise
or resolution. Other features demonstrated no correlation
with a correlation coefficient, r < 0.2. Features that did not
correlate with noise or resolution and have a low %COV
may be considered highly robust, but also highly insensitive
to texture. These features include S.Mean, S.Med, and
S.Min.

Discussion
The aim of this study was to evaluate MRI texture fea-
ture repeatability by performing a test-retest study using

water and tissue phantoms and evaluate feature robust-
ness by varying the NEX and matrix size. These acquired
data were compared with a simulation replicating the
impact of the NEX and matrix size on SNR and reso-
lution. The use of phantom data allowed full control of
the imaging chain, favouring a better understanding of
the relationship between acquisition parameter and fea-
ture value.
We found that approximately 80% of MRI texture fea-

tures are repeatable with a CCC > 0.9 in an immediate
test-retest scenario. This result is comparable but less
than a recent test-retest CT phantom study, which dem-
onstrated 93.2% of features being repeatable with a CCC
> 0.9 [19]. In an MRI phantom study [20], repeatability
ranged from 46 to 81% for T1-weighted, T2-weighted,
and fluid-attenuated inversion-recovery images, with the
highest repeatability found for high-resolution images.
Non-phantom, i.e, in vivo, CT test-retest studies yield
worse results, for example, a CT test-retest study of lung
tumours after a 15-min interval [21] yielded only 66/219
features (30.1%) as repeatable using the same CCC cutoff
(> 0.9). CT test-retest data in a cohort of patients with
rectal cancer [22] yielded only 9/542 features (1.7%) with
a CCC > 0.85. In a cohort of patients with lung cancer
however, 446/542 features were repeatable. Similarly,
data from positron emission tomography of oesophageal
tumours [23] demonstrated that only half (12/24) of fea-
tures demonstrated an intraclass correlation coefficient
> 0.9 between test and retest with a time interval of 2
days. The ICC and CCC are commonly applied measures
of agreement for continuous data. Both measures deter-
mine agreement between 2 or more measurements of
the same quantity and are useful when assessing test-
retest reliability. Values approach 1 when there is near
perfect agreement and 0 if no agreement [24]. Like the
Pearson correlation coefficient, the ICC assumes a linear

Table 4 Texture features linear correlation with noise and resolution

Correlation High (r > 0.8) Mid (0.8 > r > 0.2) Low (r < 0.2)

Noise 21, 22, 28–30, 32, 33, 35, 36 2, 3, 6, 8, 10, 11–20, 23–27, 31, 34, 37-46 1, 4, 5, 7, 9

Resolution 2, 13, 15, 16, 19, 22–24, 27–35, 38–41, 44, 45 1, 3, 4, 6, 8, 10–12, 14, 18, 21, 25, 26, 36, 42, 43, 46 5, 7, 9, 17, 20, 37

Low correlation implies texture features have no linear dependence and were therefore invariant to noise or resolution
r Correlation coefficient

Table 5 Texture features repeatability in the test-retest experiment

Repeatability Poor (CCC < 0.9) Moderate (0.9 ≤ CCC
< 0.95)

Substantial (0.95 ≤ CCC
< 0.99)

Near perfect (CCC > 0.99)

Test-retest for
T1-weighted imaging

8, 16, 17, 20, 25, 34, 35, 36 18, 23, 33, 38, 43, 46 14, 19, 21, 22, 24, 29, 40, 41, 45 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13,
15, 26, 27, 28, 29, 30, 31, 32, 37,
39, 42, 44

Test-retest for
T2-weighted imaging

3, 11, 15, 26, 35, 36, 37,
42, 43

10, 16, 18, 38, 44, 46 4, 14, 17, 19, 23, 29 1, 2, 5, 6, 7, 8, 9, 12, 13, 20, 21, 22,
24, 25, 27, 28, 30, 31, 32, 33, 34,
39, 40, 41, 45

CCC Concoradance correlation coefficient
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relationship between variables; however, the ICC also
accounts for the agreement between measurements
and is defined as a ratio of subject to total variance
using one-way analysis of variance (ANOVA). The
CCC assesses both precision and accuracy and evalu-
ates the extent to which pairs of observations fall
across the 45° line through the origin [25]. In prac-
tice, the values yielded are often similar when using
versions of either measure [26].
There is a paucity of MRI texture feature test-retest

data, although one study did assess intra-individual re-
peatability in patients with glioma [27] and found that
only 37.0% (386/1043) MRI texture feature were repro-
ducible. In a recent study evaluating repeatability in
prostate MRI [28], the authors found that feature repeat-
ability varies greatly and is highly influenced by the pre-
processing configuration.
We used a short test-retest interval (less than 5 min)

and employed a static phantom. Both of these are likely
to improve repeatability compared with patient data, in
which motion and more importantly repositioning ef-
fects are encountered. For example, PET acquisitions
typically last tens of minutes [21] and are therefore
highly susceptible to motion, so that image averaging

results in motion blurring. Furthermore, we used a fixed
ROI and did not segment the data prior to deriving tex-
ture features, reducing the effect of motion and position-
ing on texture feature repeatability.
We recognise that in clinical practice and prospective

validation trials, scanner hardware and software vari-
ation, changes in acquisition parameters, target lesion
motion, segmentation, and ROI placement will degrade
feature repeatability. Although it was not the aim of this
study to address the impact of scanner and site variabil-
ity on radiomic data, these data may serve as a bench-
mark for future radiomic MRI studies investigating these
factors. An approach using feature re-alignment and
harmonisation, as shown in the recent paper by Orlhac
et al. [29] may also help overcome the challenge of
multi-centre variability in MRI radiomic data.
In the future, we aim to extend this preliminary study

by imaging human volunteers and assessing texture fea-
ture repeatability for common tissue types. We expect
that texture feature repeatability will be worse in this
context compared to the current study and would serve
as a limit for repeatability in the clinical setting.
We estimated texture feature robustness by evaluating

the linear correlation of texture features with acquisition

Fig. 2 Percentage coefficient of variation (%COV) as a function of spatial resolution (matrix size) for 46 features, (14 statistics and 32 texture
features) sorted in ascending order. Of 46 features, 12 demonstrated a low robustness (%COV > 30)
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parameters, and separately the %COV. We found that
approximately one-third of features demonstrated low
robustness (%COV greater than 30%) and were insensi-
tive to noise or resolution (see Table 3), and three fea-
tures (skewness, cluster shade, and contrast) were
insensitive to both noise and resolution. With regards to
correlation with feature value, 5/46 features (10.9%) were
poorly correlated (r < 0.2) with either noise or resolution
(energy, maximum, clustershade, correlation, and low
grey-level run emphasis), while three features were
poorly correlated (r < 0.2) with both noise and reso-
lution (mean, median, and root mean squared).
In a CT phantom experiment, from 43 to 89% of fea-

tures were found to be reproducible when pitch factor
and reconstruction kernel were varied [19]. With regard
to MRI texture features, Mayerhoefer et al. [30] looked at
sensitivity of texture features with different acquisition pa-
rameters in a phantom model and found that NEX, repeti-
tion time, echo time, and sampling bandwidth influenced
texture features, although this effect was lower at higher
spatial resolutions. Becker et al. [31] looked at nonlinear
correlations of 19 GLCM- and GLRLM-derived texture
features computed from clinical diffusion-weighted se-
quences of the abdomen with 16 b values and found that

most texture features were significantly correlated with b
value. Brynolfsson et al. [32] reported that 19 GLCM-
derived texture features from apparent diffusion coeffi-
cient maps of glioma and prostate cancer data sets are
sensitive to noise, resolution, apparent diffusion coefficient
map reconstruction, grey-level quantisation method, and
number of grey levels.
The “imresize” function was chosen to reduce spatial

resolution in the simulation data. In this study, bicubic
interpolation was used, although the function allows for
specifying other interpolation methods including
nearest-neighbour and bilinear. Bicubic interpolation
may retain tissue contrast better; however, it is possible
that out-of-range pixel values will be computed due to
overshoot as it uses a third-order polynomial [33]. It is
likely that feature values would change, should a differ-
ent function have been utilised. For example, there is
existing data that voxel resampling method impacts fea-
ture values with linear interpolation resulting in the nar-
rowest feature range, followed by cubic interpolation,
whereas nearest neighbour interpolation had the widest
range [34].
In this study, there were mixed agreement between

the acquired and simulated data, with better agreement

Fig. 3 Percentage coefficient of variation (%COV) as a function of noise for 46 features (14 statistics and 32 texture features), sorted in ascending
order. Of 46 features, 4 demonstrated a low robustness (%COV > 30)
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for the resolution comparisons than the noise simula-
tion. Discordance in the noise data may be explained by
the method used to apply noise in the simulation. This
required that additional noise be applied to the base-
acquired high SNR image (NEX = 32). Therefore, the
noise present in the simulation was not equal to the ac-
quired noise, even though NEX was equal to 32 in both
cases.
We recognise a number of limitations of this

study. For brevity, some analyses were not per-
formed, for example assessing repeatability of texture
features with different contrast weighting or b value
or the effect of GLCM bin-level. A useful study
would be to assess the robustness of texture features
to scanner type, vendor, motion, and clinically uti-
lised sequences. To our knowledge this has not been
performed. Further, as we have imaged only two
phantoms, the variability of underlying textures re-
sulted to be small, and may not be representative of
what may be encountered in a clinical setting. As a
final limitation of this study, inconclusive results
were found between the acquired and simulation
data. It has not been possible to entirely account for
the source of disagreement between the acquired

and simulation data or to gain a full understanding
of the relationship between feature class and the
relative influence of noise or resolution, for example,
why certain features are robust whereas others are
not. Of note, the utilisation of simulation data is an
original feature of this work and allowed assessment
of feature robustness over a range of noise levels
and resolutions which may not be easily achievable
with data acquired from clinical studies. Finally, we
recognise that our results of texture feature robust-
ness cannot be directly translatable to the clinical
domain. However, these data should contribute to
providing a greater understanding of how texture
features behave with MRI acquisition parameters,
and in particular multiple acquisitions at different
time-points, and should also start to address the
broader question of MRI texture feature repeatabil-
ity, for which currently evidence is lacking.
In conclusion, we have set a limit of repeatability

for GLCM- and GLRM-derived MRI texture features,
which may serve as a benchmark for further MR
studies. Our data demonstrates that robust texture
features can be selected for use in clinical radiomic
analyses.

Fig. 4 T1-weighted imaging. Concordance correlation coefficient (CCC) for 46 features (14 statistics and 32 texture features) in the test-retest
experiment, sorted in ascending order
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