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Abstract

We aimed to investigate whether different transmission settings of the dual-transmit technology may influence
the amount of heat induction around an implant material dependent on its location within the magnetic field.
Metallic hip implants were positioned in the magnet of a 3-T scanner at various lateral offset positions in relation
to the magnetic axis in a body-phantom tank filled with polyacrylic acid gel. The temperature increase close to
the implants was measured during turbo spin-echo scanning using dual-channel parallel radiofrequency (RF)
transmission with circular in comparison to elliptic RF polarization. Circularly polarized transmission (CPT) induced
higher temperature increases (maximum 6.2 °C) than elliptically polarized transmission (EPT) (maximum 1.5 °C).
The heat induction was dependent on the distance to the isocenter with increased heating by increased
distance to the isocenter. EPT showed lower heating around implants compared to the CPT as commonly
used in single-transmission system; further, less heating was observed for both transmission settings closer to
the magnet isocenter.
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Key points

� Elliptically polarized transmission showed lower
heating around implants compared to the circularly
polarized transmission

� Heating of metallic implants was dependent on the
distance to the isocenter

� Less heating was observed closer to the isocenter of
the MR scanner for both transmission settings

Background
Recent implementations of metal-artifact reduction se-
quences in magnetic resonance imaging (MRI) have
allowed the evaluation of anatomical structures close to
metallic implants [1–3]. These sequences steadily become
more important in daily clinical use given the strongly

increasing rates of worldwide prosthesis implantations
and of health issues in an aging population. The Food
and Drug Administration now recommends to include
metal-artifact reduction sequences in the preoperative
evaluation of symptomatic patients with metal-on-metal
hip implants [4].
However, there are safety issues associated with the

examination of patients with metallic implants [5]. The
principles of heat induction by MRI radiofrequency (RF)
transmission are well known [6, 7]. The trend towards
MRI scanning at high field (≥ 3 T), beyond challenges of
optimizing image contrast and minimizing artifacts, also
accentuates the problem of guaranteeing patient safety
[8]. When comparing nominally equal image-acquisition
pulse sequences, the RF energy irradiated at 3 T can be
up to four times higher than at 1.5 T, while the limits for
the estimated absorbed energy are the same at both field
strengths [9]. The shorter RF wavelength at 3 T can cause
spatially inhomogeneous image contrast. Thus, attempts
were made to optimize the RF transmitting field by using
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a multi-transmit system, such as the TimTX TrueForm
technology (Siemens Healthcare, Erlangen, Germany). It
allows dual-channel parallel transmission via a two-port
birdcage body coil and promises a more uniform RF field
throughout the imaged body volume, with improved B1
homogeneity (RF shimming) and, thus, also the potential
to minimize standing-wave artifacts [10–13]. In part, the
improvements are reached by (optionally) switching from
the conventional circular field polarization to an elliptic-
ally polarized B1 field, whereas single-channel RF trans-
mission systems only allow circular RF polarization [14].
When scanning the thorax or abdomen, with their elliptic
trans-sectional geometries, the technology potentially im-
proves image quality by channel-specific, independent
adaptation of the two RF channel amplitudes according to
pre-established optimized patterns (elliptic TrueForm).
Such adaptations have been shown to have consequences
for RF-induced temperature increases [15, 16].
While manufacturers, must demonstrate that their

systems reliably stay within the limits specified in the
International Electrotechnical Commission 60601-2-33
standard [17], potential additional complications that
may occur in the presence of metallic implants are not
well investigated or documented. The MRI safety labels
are defined by the American Society for Testing and
Materials (ASTM) F2503-13 [18], which helps the im-
plant manufacturer in guiding them which test for which
implant is needed in respect to test for safety.
Radiofrequency heating tests are currently only done

using circular polarization. To obtain an MRI-conditional
label, implants need to be tested for RF heating at all field
strengths, since the effects may vary, e.g., due to varying
resonance effects at different resonance frequency. Ideally,

the safety should be established for all RF transmission
schemes at each field strength.
Therefore, the purpose of this phantom study was to

comparatively assess RF heating effects at 3 T using the
circularly polarized RF transmission (CPT) in compari-
son to the elliptically polarized RF transmission (EPT)
setting in the presence of metallic hip implants.

Methods

Phantom settings and preparation
MRI-induced heating was measured in accordance with
guideline of the ASTM F2182-11a [18], using a body-
phantom tank (45.5 cm × 65.5 cm) filled with an 8-cm-
deep layer of an polyacrylic acid gel, which showed a
conductivity at low frequency and 21 °C of 0.47 ± 0.04 S/m
(mean ± standard deviation) (Fig. 1a).
A plastic grid was placed 4 cm above the bottom of the

tank, in the middle of the gel layer (Fig. 1a). A hip implant
with a stem made of cobalt-chrome (CoCr) (Fig. 1b) and
one of two heads made of stainless steel or ceramic
(Fig. 1b) were positioned on the grid (Fig. 1a). Further, a
titanium cup was available. The implant materials were
supplied by Brehm (Weisendorf, Germany). The implants
were aligned as much as possible along the magnet B0
direction on the plastic grid (Fig. 1a). Temperatures dur-
ing MRI scanning were measured with a four-channel
fiber-optic conditioner with four sensors and a polyamide
0.6-mm tip (Reflex, Neoptix, Quebec, Canada). Two
temperature probes were attached at the lower end of the
stem, one at the upper end of the stem (Fig. 1c) and one
at the periphery of the tank on the contralateral side
within the gel to provide a reference baseline temperature.

Fig. 1 Images of the implants and phantom. a Phantom tank filled with polyacrylic acid gel including a hip prosthesis placed on the grid.
b Stainless steel and ceramic head as well as cobalt-chrome (CoCr) stem with dimensions. c CoCr stem with the stainless steel head and the
attached temperature probes. Two temperature probes were positioned at the lower end of the stem (white arrows) and one at the upper end
of the stem (black arrow)
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MRI protocol
All implants were scanned with a T2-weighted turbo
spin-echo sequence on a 3-T MRI scanner (Magnetom
Skyra, Siemens Healthcare, Erlangen, Germany). The
technical parameters were the same for EPT and CPT
setting and are summarized in Table 1. For scanning, a
40-year-old patient weighting 75 kg was entered in the
scanner interface. In the elliptic RF excitation setting,
the amplitude voltage of one transmit channel was
automatically reduced by the scanner by approximately
54% in relation to that of the second channel.

Temperature measurements
As a pre-test reference, the empty tank, without any im-
plant, was scanned using the CPT setting and the EPT
setting for 2 min each. The two temperature probes
were placed on the grid at the two sides of the tank,
each with a 20-cm lateral offset from the isocenter of
the scanner.
RF heating effects around implants are known to po-

tentially strongly differ at implant positions that are ax-
ially symmetric to the left and right of the magnetic axis
through the magnet’s isocenter. In the current study,
after initial “very-bad-case” measurements conducted
with the implant symmetrically positioned on both sides
of the magnet bore, subsequent experiments were re-
stricted to implant positions on the side that produced
the higher heating. For the initial measurements, the
CoCr stem with the attached stainless steel head was po-
sitioned at a 20-cm lateral offset from the isocenter of
the magnetic axis on both sides in successive experi-
ments that both were repeated with CPT and EPT,
respectively.
Subsequently, the temperature increase near the CoCr

stem with the mounted ceramic head was measured as a
function of the left lateral offset. The implant was posi-
tioned at lateral offsets from the isocenter of 20, 16, 12,

8, and 4 cm; at each offset the induced temperature in-
crease was measured for both CPT and EPT transmis-
sion settings.
In addition, the temperature increase induced by the

CoCr stem with mounted stainless steel head and titan-
ium cup was measured and compared with that induced
by the CoCr stem/ceramic head combination at a 20-cm
left-lateral offset from the isocenter. All measurements
were repeated with both CPT and EPT transmission
settings.

Data recording and presentation
Data were recorded using Excel (Microsoft, Redmond,
WA, USA) and presented descriptively. Illustrations
were created using software PRISM (Version 7, Graph-
Pad software, La Jolla, CA, USA).

Results
In the 2-min baseline experiment without any implant
in the phantom, a maximal temperature increase of
0.5 °C was measured with CPT, with a whole-body av-
eraged specific absorption rate (wbSAR) of 1.042 W/kg,
while with the EPT (wbSAR 0.750 W/kg) no relevant
temperature increase was observed. The temperature
increase on the left side (view from the patient table to the
scanner) was higher compared to the right side (4.3 °C
versus 1 °C; wbSAR 1.042 W/kg) using CPT.
In general, more severe heating was measured using

the CPT than using the EPT setting (Table 2, Fig. 2),
with the highest temperature increase measured at the
greatest distance from the isocenter (6.2 °C versus 1.5 °C)
(Table 2, Fig. 2). CoCr stem together with the stainless
steel head and the titanium cup compared to the CoCr

Table 1 Scan parameters

TSE circularly
polarized

TSE elliptically
polarized

TR (ms) 1600 1600

TE (ms) 49 49

Turbo factor 40 40

NAV 12 12

FOV (cm2) 50 × 40.6 50 × 40.6

Matrix 512 × 416 512 × 416

Flip angle 150 150

RF transmission polarization setting circularly Elliptically

wbSAR (W/kg) 1.042 0.75

TSE turbo spin-echo, TR repetition time, TE echo time, NAV number of
averages, FOV field of view, RF radiofrequency, wbSAR whole-body averaged
specific absorption rate

Table 2 Induced temperature increase, ΔT, of the cobalt-
chrome (CoCr stem with the ceramic head at different lateral
offsets and under circular versus the elliptic transmission

Lateral offset from
magnetic axis (cm)

RF transmission
polarization mode

B1 + rms (μT) ΔT (°C) wbSAR
(W/kg)

20 Circular 3.248 6.2 1.042

Elliptic 3.335 1.5 0.75

16 Circular 3.248 4.2 1.042

Elliptic 3.335 1.2 0.75

12 Circular 3.248 2 1.042

Elliptic 3.335 0.5 0.75

8 Circular 3.248 0.9 1.042

Elliptic 3.335 0.4 0.75

4 Circular 3.248 0.4 1.042

Elliptic 3.335 0.3 0.75

RF radiofrequency; B1 + rms root-mean-square value of the magnetic resonance
imaging (MRI) effective component of the RF magnetic (B1) field, μT microtesla,
ΔT induced temperature increase; °C degree Celsius; wbSAR whole-body averaged
specific absorption rate, W/kgWatts per kilogram
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stem together with the ceramic head and the titanium
cup showed slightly more severe heat induction when
using the CPT setting (5.7 °C versus 5.4 °C; wbSAR
1.042 W/kg), while it showed slightly less heat induc-
tion when using the EPT setting (1.2 °C versus 1.5 °C;
wbSAR 0.750 W/kg) at a 20-cm lateral offset from
the isocenter on the left side.

Discussion
In this study, we investigated whether different dual-
channel transmission settings, such as the CPT versus
the EPT, may determine different heat induction
around an implant material dependent on its location
within the magnetic field. While the heat induction
steadily increased with the lateral offset from the
isocenter for both settings, it was consistently higher
for CPT than for EPT. To the best knowledge of the au-
thors, this is the first study that reports a reduced heat
induction through the use of an EPT in comparison to
conventional CPT. It is also the first report to highlight
that EPT reduces the heat induction near implants
placed with a lateral offset from isocenter in comparison
with CPT.
The main driving force for the development of dual-

channel, parallel RF transmission technology was the
reduction of standing-wave artifacts in MRI of the abdo-
men and thorax [12, 13]. However, the technique was
also reported to reduce artifacts and improve image
quality in other body regions, which was mainly explained
with a better B1-field homogeneity [10] or a decrease in
locally induced RF currents resulting in decreased shading
artifacts around metallic implants [19].
For MRI-conditional devices, the safety is tested for

traditional, single-channel, RF body coils. In our mea-
surements, conducted in a phantom tank and with

implant orientations as recommended for RF heating
tests according to the ASTM standard F2182-11a [18],
the EPT resulted in consistently less heating than the
CPT. However, our findings cannot be generalized to the
general assumption that EPT would always be preferable
to, and safer than, CPT. Actual electric field patterns in
a patient’s body depend on many factors that are hard to
control in clinical examination. Certain configurations
may lead to higher heating with EPT than with CPT. For
example, Murbach et al. demonstrated that, in the absence
of implants, EPT may generate a higher temperature in-
crease near the fetus in pregnant women than CPT [16].
However, the presented results are important not only

for clinical daily use, where the EPT setting should be
preferably used if scanning implants, but also for safety
test measurements to avoid false underestimations of
heat induction around metallic objects when are con-
ducted with EPT instead of CPT. If in vitro RF heating
tests are performed following the ASTM standard
F2182-11a [18]. However, using EPT instead of CPT (as
required), the results could strongly underestimate the
potential RF heating. Special care is needed, since some
dual-transmit MR system from other vendors might
force the use of EPT setting, which cannot be overruled
in clinical software.
Some study limitations need recognition. First, all the

temperature measurements of implant-related heating
were performed over a time period of 2 min. This is a
shorter time than the duration of many clinical acquisi-
tion sequences. However, our goal was not to provide
evidence for the certification of an MRI-conditional label
for the used implants, but to relatively compare the
effects of two RF transmission settings. The scan dur-
ation (2 min) was chosen because an assessment of the
relative heat induction was considered sufficient for a
comparison of the two RF transmission settings. The
temperature increases reached after 2 min were large
enough for a robust quantification of the effects but
small enough to keep the required cool-down periods
between two successive experiments sufficiently short to
allow the realization of this study. A scan duration of 15
min would result in a temperature increase of about
twice as high, but deposit 7.5 times more energy with
thus much longer waiting time. This would only lead to
a higher likelihood of alteration of the implant or the
temperature sensors and, therefore, potentially generate
larger errors. In addition, we only used the body coil for
RF transmission. The use of transmit head or knee coils
may produce different results, while the choice of the
receive coil seems of minimum relevance in this context.
Finally, this was only a phantom study. Studying such
effects in living humans is very challenging, and the po-
sitioning of temperature probes next to the implant is
not realistic.

Fig. 2 Temperature increase of one of the implant tips attached at
the lower end of the cobalt-chrome (CoCr stem with the ceramic
head as a function of the lateral offset of the implant from the
isocenter. Note the steadily increasing heating for increasing lateral
offsets. The effects were clearly larger for radiofrequency (RF)
transmission with circularly polarized (CPT) than with elliptically
polarized transmission (EPT)
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In conclusion, in this phantom study, comparatively
testing different dual-channel transmission settings (CPT
versus EPT), we demonstrated that the heat induction
around metallic implants increases with increasing lateral
implant distance from the isocenter and is more severe
using RF with CPT than with EPT. However, further stud-
ies, including simulations and evaluations on humans, are
needed to verify and generalize our findings.
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