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Quantifying the added value of new
biomarkers: how and how not
Nancy R. Cook

Abstract

Over the past few decades, interest in biomarkers to enhance predictive modeling has soared. Methodology for
evaluating these has also been an active area of research. There are now several performance measures available
for quantifying the added value of biomarkers. This commentary provides an overview of methods currently used
to evaluate new biomarkers, describes their strengths and limitations, and offers some suggestions on their use.
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During the past few decades, there has been an explo-
sion of work on the use of biomarkers in predictive
modeling and whether it is useful to include these when
evaluating risk of clinical events. As new biologic mech-
anisms have been discovered, genetic markers evolved,
and new assays developed, questions about the useful-
ness of new markers for clinical prediction have been
debated. In cardiology, several strong risk factors for
cardiovascular disease, namely cholesterol levels, blood
pressure, smoking, and diabetes, have been well-known
for decades [1] and have been incorporated into clinical
practice. They have also been included in predictive
models for cardiovascular disease, primarily developed in
the Framingham Heart Study [2]. Since then, many new
markers with more modest effects have been discovered
as new biologic pathways have been unearthed. In fields
which have less powerful predictors to date, development
and addition of predictive markers may be even more
important.
As interest in biomarkers has soared, so has the

methodology used to evaluate their utility. There are now
several performance measures available for quantifying
the added value of biomarkers (Table 1), several of which
have been proposed in the last decade. This commentary
provides an overview of methods currently used to
evaluate new biomarkers, describes their strengths and
limitations, and offers some suggestions on their use.

Likelihood functions
A fundamental construct for much of statistical modeling
is the likelihood function. This reflects the probability, or
“likelihood,” of obtaining the observed data under the
assumed model, including the selected variables and their
associated parameters [3]. As more variables are added
and the model fits the data better, the probability of
obtaining the data that are actually observed improves.
Much of statistical theory is based on this function.
Thus, the primordial criterion of whether new variables,
including biomarkers, can add to or improve a model is
whether and by how much the likelihood increases. When
the models are nested, we can test improvement with a
likelihood ratio test, though other related tests, such as a
Wald test, are sometimes used. For nonparametric models
or machine learning tools, other loss functions are often
used, such as cross-entropy or deviance, which are
functions of the log likelihood for binary outcomes [4].
Other likelihood-based measures do not directly perform

a test of significance, but apply a penalty for added
variables, such as the Akaike Information Criterion
(AIC) or Bayes Information Criterion (BIC). These are
particularly valuable when non-nested models are used.
While the original AIC applied a penalty of 2 degrees
of freedom per variable, a generalized version uses an
arbitrary penalty. The BIC, sometimes called the Schwarz
criterion, applies a usually larger penalty of ln(N) where N
is the number of observations. It thus favors more parsi-
monious models than the AIC, making it harder for a new
biomarker to be judged to have added value.Correspondence: ncook@bwh.harvard.edu
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The first criterion for assessing the addition of a new
marker to a model should be the test of association,
preferably based on a likelihood ratio test if models are
nested. Several authors have argued that one test is all
you need to assess new markers [5, 6]. Indeed, if a new
marker cannot improve the likelihood or reduce entropy,
then it is unlikely to have any clinical impact. Other tests
can become redundant or even biased when the null
hypothesis of no effect is true. Demler et al. [7] showed,
based on U-statistics, that other tests of improvement,
including the difference in area under the ROC curve, as
well as the NRI and IDI described below, are degenerate
and non-normal when comparing nested models under
the null hypothesis.
While likelihood-based or deviance measures or testing

can indicate significant associations or better fit for a
model, this does not necessarily translate into clinical
significance. The improvement may be small, may be

limited to a few, or may otherwise fail to influence clinical
decisions.

ROC curves
Key components for evaluating medical tests are the
sensitivity and specificity. These measures of discrimination,
or separation of cases and non-cases, can be more helpful in
determining how well a test can classify patients into those
who truly have the disease or not. The sensitivity and
specificity can be summarized over a range of cut
points for a continuous predictor using the receiver
operating characteristic (ROC) curve and the area
under the curve (AUC). The AUC, also known as the
c-statistic, can be interpreted as the probability that a
case and non-case pair is correctly ordered by a model
or rule [8]. By comparing two AUCs, one may compare
the performance of diagnostic algorithms [9]. A similar
measure, the c (for concordance) index, has been developed

Table 1 Summary of performance measures for quantifying added value

Measure Advantages Disadvantages

Likelihood-based measures Reflects probability of obtaining the observed data Based on assumed model

Likelihood ratio (LR), change
in AIC or BIC

The LR test is the uniformly most powerful test for
nested models. The AIC and BIC can be used to assess
non-nested models.

While powerful, statistical association or model
improvement may not be of clinical importance.

Discrimination Assesses separation of cases and non-cases Only one component of model fit

Difference in ROC curves, AUC,
c-statistic

Assesses discrimination between those with and
without outcome of interest across the whole range
of a continuous predictor or score. Useful for classification

Based on ranks only. Does not assess calibration.
Differences may not be of clinical importance.

Clinical risk reclassification Examines difference in assigning to clinically important
risk strata

Strata should be pre-defined. Loses information if
strata are not clinically important

Reclassification calibration
statistic

Assesses calibration within cross-classified risk strata A test for each model is needed

Categorical NRI Can assess changes in important risk strata. Cases and
non-cases can be considered separately

Depends on the number of categories and cut
points used

NRI(p) Nice statistical properties. Does not vary by event rate
in the data

May not be clinically relevant

Conditional NRI Indicates improvement within clinically important
risk subgroups

Biased in its crude form, and a correction based on
the full data is needed.

Category-free measures Does not require cut points May lose clinical intuition

Brier score Proper scoring rule May be difficult to interpret; the maximum value
depends on incidence of the outcome.

NRI(0) Continuous, does not depend on categories Based on ranks only. Measure of association rather
than model improvement. Behavior may be erratic if
the new predictor is not normally distributed.

IDI Nice statistical properties. Related to the difference
in model R2

Depends on event rate. Values are low and may be
difficult to interpret.

Decision analytics Estimates clinical impact of using model Not a direct estimate of model fit or improvement.
Need reasonable estimates of decision thresholds

Decision curve Displays the net benefit across a range of thresholds Does not compare model improvement directly but
clinical consequences of using the models for
treatment decisions

Cost-benefit analysis Compares costs and benefits of one models or
treatment strategy vs. another

Need detailed estimates of costs and benefits of
misclassification, including further diagnostic
workup and treatments
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for survival data [10, 11]. This index, however, is dependent
on the censoring distribution. Another concordance index,
Gönen and Heller’s k [12], has been developed specifically
for the Cox regression model and is robust to censoring
[13]. Uno et al. [14] also introduced a modified c-statistic
that does not depend on the study-specific censoring
distribution.
For many years the c-statistic was the primary metric

for evaluating diagnostic tests or prognostic models.
While it bears some relation to measures of association
estimated through statistical models, such as an odds
ratio from a logistic regression [15], the odds ratio does
not describe a marker’s ability to classify individuals. In
fact, many promising biomarkers for cardiovascular
disease, while having strong associations with CVD, fail
to change the AUC to a meaningful extent, leading to
pessimism about biomarker research [16, 17].
The ROC curve compares predictions across the whole

range of risks by showing how well the model can rank
predicted probabilities. It can be useful for classification,
where discriminating between those with and without
disease is of most interest. The ROC curve directly
assesses discrimination and is not affected by calibration,
or how well the predicted risks match those observed.
When comparing models, changes in ranks may or may
not be as important in patient care as changes in the levels
of absolute risk. It would be possible, for example, for a
new model to make small changes among many partici-
pants at low risk without changing risk estimates in those
at higher and more clinically important risk. Conversely,
and likely more common, big changes in risk among
those at clinically important levels may not be acknowl-
edged when looking solely at ranks [18].

Risk reclassification
Clinical risk reclassification is an alternative that considers
important risk strata and how well models classify individ-
uals into these groups [19]. It focuses on risk strata that may
be clinically important in prioritizing needs and targeting
treatment decisions. A risk reclassification table can show
how many people would be moved to new strata based on a
different model or after adding a new biomarker. It is most
useful when strata have been pre-defined and are useful clin-
ically either for treatment decisions or for further attention
and follow-up.
Besides the number changing strata, though, it is

important to assess whether the changes are accurate. One
way to do this is through the reclassification calibration
statistic [20]. This compares the observed and predicted
risks from each model separately within cells of the reclas-
sification table, leading to two chi-square statistics, similar
to Hosmer-Lemeshow tests, one for the old and one for
the new model. This assesses the calibration within clinical
meaningful categories and especially in those that are

changed. For assessing calibration across a wide range of
risk, it is usually helpful to use at least four risk strata so
that estimated risk is more homogeneous within strata. If
strata are not pre-defined, then cut points at p/2, p, and
2p, where p is the incidence or prevalence of disease, may
be useful [20]. If a new biomarker adds to a model, then
the old model should demonstrate a lack of fit in the new
strata, which is improved with the new model. A drawback
of this method is the need for two tests. There is also no
measure of overall effect, although discordant observed
and expected rates within the cross-classified risk strata
can indicate where fit may be lacking.
Several measures and various extensions have been

developed based on the risk reclassification table. The
net reclassification improvement (NRI) [21, 22], which
has become popular in the medical literature, computes
the proportions moving up or down in risk strata in
cases and non-cases separately. The overall NRI is the
sum of improvement in each set. If cut points are based
on clinical criteria, the NRI can indicate whether there
are changes in risk stratification that can affect decisions
regarding clinical care. The value of the NRI can, however,
be affected by the number and size of strata, so these
should be pre-specified [23]. A weighted version, in which
weights are assigned based on the number of categories
moved, has been described with particular reference to the
three-category NRI [24]. Those estimates are generally
similar to the original version unless there is substantial
movement across two or more categories. Note that
the components of the NRI should always be reported
separately for those with and without events, so that
these can be appropriately interpreted and reweighted
if desired [22].
More recently, a two-category version of the NRI, with

a cutoff at the event rate in the data has been described
[25]. This NRI(p) has some nice statistical properties as
it is equivalent to the net reclassification from the null
model, to the difference in the maximum Youden index,
and to the difference in the maximum standardized net
benefit (described below). It is a proper measure of
global discrimination measure that serves as a measure
of distance between the distributions of risk between
events and non-events. A problem is that it may not be
clinically relevant [26, 27]. If a model is calibrated in the
large, so that the average predicted risk equals the
observed event rate, the cutoff will be at the mean predicted
risk. If the risk estimates are normally distributed, then this
will classify about half at high risk and half at low risk,
but this may not be of clinical importance for treatment
decisions. If the event rate is low, the distribution of
risk estimates may be highly skewed and the mean will
be higher than the median. In this case, fewer than half
would be classified as high risk, but it may still be far
too many to be clinically meaningful. For example, in
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the Women’s Health Study [28], the average risk for
CVD over 10 years was approximately 3%, and about
28% would be classified as high risk. This threshold is
lower than the 7.5% used in current recommendations for
statin therapy [29]. Ideally, cost-benefit considerations
should be used to obtain the optimal thresholds to translate
these measures to clinical importance.
Clinicians are sometimes interested in identifying a

subgroup for whom further diagnostic workup may be
particularly warranted. For example, if an individual has a
risk score in the intermediate range, further biomarkers or
tests could be run such as recommended by the ACC/
AHA guidelines for cardiovascular disease [29]. Using
reclassification methods to look at change in the inter-
mediate risk group only, though, can lead to bias. Even
when there is no improvement or only random changes in
category, this conditional or intermediate NRI can be large
and statistically significant, with a large type I error [30].
A correction for this bias is available, but estimating
model improvement in this subgroup nonetheless depends
on having data across the full spectrum of risk [31].

Category-free methods
A category-free version of the NRI (often denoted as
NRI > 0) has also been described [32]. This determines
whether risk increases to any extent for cases under a
new model compared to the old or reference model, and
similarly whether risk decreases to any degree for non-cases.
While this does not require pre-specified categories and
does not lose information due to categorization, such small
up or down movement may also not be relevant clinically.
The NRI > 0 is based on ranks only and is similar to a non-
parametric test of association for a new biomarker. The size
can also be distorted if the new variable or biomarker is not
normally distributed [33]. Pencina et al. [34] have found that
this measure tracks with the odds ratio and behaves as a test
of association rather than of model improvement when the
new predictor is normally distributed. When the predictor is
not normally distributed, its behavior can be erratic.
Another measure that does not use categories but

integrates the NRI over all levels of risk is the integrated
discrimination improvement (IDI) [21]. This is equal to
the difference in the Yates slope for one model vs. another
and is equal to the difference in Brier scores scaled by their
maximum possible value, or p(1 − p) where p is the event
rate in the population. It is asymptotically equivalent to the
proportion of the explained variation, a generalization of
R2 [35, 36], and is thus related to the likelihood or change
in entropy. The IDI as well as the NRI, however, can be
strongly affected by the event rate [26]. As for R2 measures
for binary or survival models, the values of the IDI are
typically low and difficult to interpret. The relative IDI,
which divides by the Yates slope in the reference model, is
an alternative [37].

Note that while closed formulas are available for the
standard errors of the NRI and IDI, bootstrapping is
preferred for confidence interval construction [38]. In
addition, while originally developed for binary outcomes,
all versions of the NRI [32] as well as the IDI [39] and
reclassification calibration statistic [40] are available for
survival outcomes.
Hilden [41, 42] has demonstrated that unlike the Brier

score, neither the IDI nor the NRI, whether continuous
or categorical, is a proper scoring rule, though the IDI is
asymptotically equivalent to the rescaled Brier score and
is thus asymptotically proper [43]. This means that the
NRI and IDI could indicate improvement for biomarkers
with no added value. This often occurs when the models
are not well-calibrated, leading to incorrect probabilities.
The NRI and IDI are measures intended to assess discrim-
ination, while the Brier score assesses both calibration and
discrimination. Leening et al. [44] suggest that when con-
sidering the value of an individual added biomarker in an
external validation population, it may be necessary to
recalibrate the candidate models to provide a direct
assessment of the individual biomarker’s contribution to
discrimination. When comparing two different prediction
models, however, calibration and discrimination are both
essential components of model performance and need to
be evaluated carefully.

Choice of risk thresholds
The influence of thresholds is important to understand
in evaluating models and their improvement. While the-
oretically attractive, measures based on the full range of
risks, such as the c-statistic or NRI > 0 may not be rele-
vant if they are based on ranks only. For reclassification
calibration, it may be more useful to keep the number of
risk categories somewhat larger so that the estimated
risk is more homogeneous within strata. For the NRI,
however, the choice of cut points is critical since this
measure can vary widely depending on the number of
strata [33]. The thresholds should ideally reflect import-
ant clinical risk strata which may be useful in determin-
ing treatment strategies, so that changes in these have
clinical implications. Ideally, the cut points should be
based on cost-effectiveness analysis, using the relevant
costs of false positives and false negatives, both in terms
of ethical and financial costs. The optimal threshold is a
function of these. If the model is well-calibrated, the op-
timal threshold is 1/(1 + t) where the tradeoff t is the
ratio of the net cost of misclassifying a case and the net
cost of misclassifying a non-case.
In cardiovascular disease, a threshold of 0.075 has

been suggested as a starting point for statin therapy [45].
This corresponds to a tradeoff of 12 to 1, implying that
it is 12 times worse to misclassify a case than a non-case.
Whether this is appropriate depends on treatment options,
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how well those alter risk, and their costs and side effects. If
the overall event rate is used as the threshold, this is the
point where sensitivity equals specificity, which may be
optimal or not depending on the application. The NRI(p)
based on this event rate may classify too many individuals
as high risk, particularly if the outcome is rare. The low
prevalence of rare events offers a unique challenge and also
affects the performance of the various measures [26]. If the
prevalence is as low as 1/2000, the cut point based on this
would be 0.0005, equivalent to a cost tradeoff of 2000 to 1.
Modelers need to work with clinicians to determine
whether these values are appropriate. Models would also
need to be very precise to discriminate between individuals
at these very low levels of risk.
A full cost-benefit analysis can be useful in making

treatment decisions or choosing to pursue additional
testing, but this is complex. This is particularly helpful
when clinical trade-offs exist for a treatment, with both
benefits and harms. Even if the decision is whether to do
further diagnostic follow-up [46], there may be harms re-
lated to unnecessary testing, both in terms of financial costs
and in terms of unnecessary procedures or incidental find-
ings. The net benefit, which is a proper measure, compares
the benefits and risks of decisions, weighting by their rela-
tive harms or tradeoff. Choosing a specific threshold or tra-
deoff can be avoided by examining a decision curve, which
plots the net benefit of a treatment or further diagnostic
workup across a range of reasonable thresholds [47]. The
decision curve is a decision-analytic tool to illustrate and
compare the net benefit from treating all patients, treating
none, or following a predictive model. It can also be used
to compare the clinical consequences of two models across
a range of thresholds and to determine whether clinical de-
cisions based on these would lead to more good than harm
[48]. Miscalibration also reduces estimates of net benefit;
using models that severely over- or under-estimate risk
may even lead to harm, particularly at thresholds fur-
ther from the observed event rate [49].
A standardized version of the net benefit divides by

the prevalence of the outcome, reaching a theoretical
maximum value of 1, which improves interpretation [50].
This has also been called the relative utility [46]. As noted
above, this is linked to the NRI(p) which is a difference in
the maximum relative utilities across all thresholds for
two models, occurring at the event rate [25]. This may
mask clinically relevant thresholds, although it should not
be far from the maximum achievable difference in relative
utility [51]. While the NRI(p) provides a single number
summary, it may be preferable to examine the whole rela-
tive utility curve to determine appropriate thresholds.

Importance of validation
For all measures of model improvement, it is very
important to compute unbiased estimates. When the

testing or estimation is done in the data used for model
development, models will generally be overfit and esti-
mates of improvement optimistic. Adding more variables
always leads to an apparent increase in performance. This
is particularly true when the models are not pre-specified
and variable selection or model-fitting is optimized. This
may be ameliorated using penalized regression, such as
lasso or ridge regression, which place penalties on added
variables [4]. When adding a single new biomarker, the
extent of over-fitting may be small, particularly in a large
data set. In general, however, at least internal validation
should always be performed. When model fitting is
simple, internal validation through resampling, such as
with bootstrapping or X-fold cross-validation, is prefer-
able. If model fitting is more complex or more difficult
to replicate, then dividing the data into test and train-
ing samples, ideally taking an average over multiple
splits, is appropriate if sample size is sufficient. External
validation in other data, settings, or with different patient
samples should be done before any model should be im-
plemented clinically to examine generalizability, including
both reproducibility and transportability [52].

Conclusion
There is no one ideal method to evaluate the added value
of new biomarkers. Several methods evaluate different
dimensions of performance and should be considered,

Table 2 Recommendations

1. Test for model improvement using a likelihood-based or similar test.
1a. The IDI may be used as a nonparametric test or measure of effect
if the models are well-calibrated.
1b. The NRI > 0 may be misleading, especially if a new marker is not
normally distributed.

2. Assess overall calibration and discrimination of each model.
2a. Plot observed and expected risk in categories or continuously
with a smoother and compute the calibration intercept and slope.
2b. Compute the ROC curve and AUC or c-statistic if discrimination
across the whole range of risk is of interest.

3. If relevant risk strata are available, compute the risk reclassification
table with clinical cut points or the overall prevalence, if relevant.

3a. Assess improvement in calibration within cross-classified categories.
3b. Assess improvement in discrimination through the categorical NRI.

4. If relevant, consider bias-corrected conditional NRI to enhance
screening of individuals at intermediate risk.

5. If pre-specified risk strata are not available, consider cost tradeoffs
to develop appropriate cut points.

6. Consider decision analysis to assess the net benefit of using models
for treatment decisions.

6a. Decision curves can be used to compare treatment strategies
across a wide range of thresholds.
6b. Conduct full cost-effectiveness analysis if appropriate and
estimates available.

7. Validate all measures or tests of improvement in data not used to
fit or select models.

7a. Internal validation, using bootstrapping, X-fold cross-validation,
or (ideally multiple) split samples is required.
7b. External validation is preferable, particularly prior to clinical use.
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depending on the need and stage of model development
(Table 2). First and foremost, the new marker should be
associated with the outcome and preferably have biologic
validity. Unlike most epidemiologic analyses, though, a
causal relation is not required for a marker to be a good
predictor. The primary means of examining association is
through likelihood-based measures, though likelihood
ratio testing is applicable only to nested models. The IDI
provides a nonparametric estimate and test of association,
though its levels may be difficult to interpret.
Basic requirements for model fit are that a new model

is well-calibrated, with discriminant ability at least as
good as previous standards, provided that costs are similar.
To directly compare models, differences in ranks, such as
assessed through ROC curves, may be useful, but may hide
important differences in absolute risk. Several versions of
risk reclassification methods have been proposed as alterna-
tives. When clinical categories or risk strata make sense,
then the reclassification calibration statistic or the categor-
ical NRI can assess whether the new model fits best in these
strata. When sensible strata do not exist, then category-free
measures, such as the IDI, may be useful. While the event-
rate NRI can apply generally and has nice statistical
properties, it may or may not be clinically applicable.
Finally, to help determine if a model may be used to

assign particular treatments or to decide on further testing,
cost tradeoffs can be used to develop risk strata. A full
decision analysis can be used to evaluate the net benefit
of including new biomarkers. Alternatively, the decision
curve can compare strategies across a wide range of
thresholds.
Model development is not complete, however, without

validation, at least internally, but preferably externally as
well. Models intended to be applied to real patients need
to be reproducible and generalizable to other applicable
populations and settings.
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