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A new approach for cycle slip detection
and fix using single GPS receiver’s single
satellite dual frequency data containing
arbitrarily large pseudorange errors
Zhizhao Liu

Abstract

This paper presents a new cycle slip detection and repair method using Total Electron Content Rate (TECR)
information derived from individual satellite dual-frequency data of a single Global Positioning System (GPS)
receiver while pseudorange measurements are subject to arbitrarily large range errors. Sudden Increase of
Pseudorange Error (SIPE), similar to cycle slips in nature, is quite common in various data acquisition scenarios.
The basic principle of this method is to take advantage of the fact that the ionospheric TECR does not exceed
certain threshold, which is set as 0.35 TECU/s in this study. Analytic expressions to evaluate the effect of SIPE on
cycle slip detections have been developed. The search spaces for cycle slip candidate pairs are defined, given a
predefined (sufficiently large) SIPE value. Two cycle slip validation rules are proposed to validate the cycle slip
candidates. Over 99.9% of candidates can be rejected with the application of two validation rules. The theoretically
maximal number of remaining cycle slip candidate pairs (NRCP) can be exactly calculated based on the magnitude of
SIPE, TECR threshold, and the data sampling interval. After applying validation rules, the correct cycle slip pairs can be
identified using a modified low-order polynomial fitting method. This method is tested on 13 high rate (1-Hz)
dual-frequency datasets recorded by both ground-based static and satellite-borne high dynamic GPS receivers under
various levels of ionospheric activities. Simulated cycle slips in 12 different possible cases and varying SIPE magnitudes
are introduced into the data sets. In each test scheme, averagely 600–750 pairs of cycle slips are simulated. The SIPE
magnitudes are set to vary from 50.0 m to 1000.0 m. Test results show that all the cycle slips in all the test schemes
and all the datasets have been successfully detected and fixed even with a maximum SIPE of 1000.0 m in
pseudoranges. A distinct advantage of this method is that it works in real-time with individual satellite’s data
from a single dual-frequency receiver, even if the carrier phases have virtually any size of cycle slips and the
pseudoranges have virtually arbitrarily large errors.
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Introduction
Global Positioning System (GPS) or Global Navigation
Satellite System (GNSS) carrier phase measurements are
the major observables in high-precision geodetic applica-
tions. Under high carrier to noise ratio (C/N0) scenario,
the accuracy of GNSS receiver carrier phase observations
is usually less than 2 mm (Hofman-Wellenhof et al. 1994).
With high quality GNSS receivers and International GNSS
Service (IGS) products (Dow et al. 2009), it is possible to
obtain very accurate (1 mm/year) GNSS solutions that are
useful for many scientific research purposes (Larson
2009). However, one issue constantly encountered in
achieving such a high precision is the occurrence of cycle
slips in carrier phase measurements. Even if the slip is
only 1 cycle, the resultant range error is of ~ 20 cm (e.g.
for on GPS L1 signal). Thus the proper handling of cycle
slips has long been a critical procedure in high precision
GNSS data processing.
To detect and fix cycle slips, many methods that are

suitable for either double differencing or undifferencing
algorithms (e.g. Precise Point Positioning, PPP) have
been proposed. These include polynomial fitting (Beutler
et al. 1984), Kalman filtering based on first-order
differential equations of the carrier phase observations
(Landau 1989), an integration of Melbourne–Wübbena
Wide Lane (MWWL) combination and a polynomial fit-
ting to the geometry-free combination (Blewitt 1990),
using inertial navigation data to assist GPS cycle slip
detection (Colombo et al. 1999; Lee et al. 2003), an
integration of geometry-free phase observation and the
widelane phase minus narrowlane pseudorange (Bisnath
2000), triple differencing of carrier phase observations
(Kim and Langley 2001), Bayesian approach working
with polynomial fitting (de Lacy et al. 2008), estimating
the cycle slips through the Least-Squares Ambiguity
Decorrelation Adjustment (LAMBDA) method (Banville
and Langley 2010; Zhang and Li 2011). A more detailed
summary of those methods can refer to Xu (2007) and
Liu (2011). However these methods have their own limi-
tations and their performances under severe conditions
still need to be improved. For instance, the polynomial
fitting method indeed can be used regardless of the
pseudorange errors. However this fitting method often
fails to detect small cycle slips (e.g. 1 or 2 cycles). More-
over, the fitting usually needs multiple epochs of carrier
phase data. Thus it cannot be used for the early epochs
of one satellite’s data series. That may be why many
other cycle slip detection and fix methods, with the use
of pseudorange measurements, have been developed
over the past many years, e.g. the ones presented in
(Blewitt 1990; Bisnath 2000; Banville and Langley 2010;
Zhang and Li 2011). With the use of pseudorange mea-
surements, the quality of pseudorange data is of great
concern. When cycle slips in carrier phase data and large

errors in pseudorange data occur at the same time in an
epoch, how to detect and fix the cycle slips in real-time
mode has not been completely addressed.
It has been shown earlier that virtually any cycle slips

associated with high-rate GNSS observations can be suc-
cessfully detected and fixed, even using one single dual-
frequency GNSS receiver (Liu 2011). The test results
show that it is technically feasible to apply that method
for real-time cycle slip detection and fix in high-rate
GNSS applications. Nevertheless, the correctness of the
cycle slips calculated using that method largely depends
on the quality of the pseudorange measurements, as
shown in the MWWL linear combination. The method
given in Liu (2011) requires pseudoranges at L1 and L2
frequencies have a reasonably good accuracy. It has been
analyzed that at normal level of pseudorange noise of
0.5 m, the introduced noise in the cycle slip detection is
approximately 0.6 widelane cycle. In de Lacy et al.
(2011), the required accuracy of pseudorange mea-
surements is 10–15 cm, much higher than the half meter
requirement. In real-world circumstances, such a
stringent requirement on the pseudorange data quality is
difficult to be satisfied. Hwang et al. (2010) showed that
the multipath effects on P1 and P2 pseudoranges of
the Constellation Observing System for Meteorology,
Ionosphere, and Climate (COSMIC) spaceborne GPS
receivers are as high as 0.78 m and 1.03 m, respectively. It
also suggested that the high level of multipath was one of
the factors resulting in high rate of cycle slip of 3.45%
(Hwang et al. 2010).
In practical data acquisition, it is very likely that

pseudorange errors at particular epochs suddenly have
significantly larger values than the expected ones. This
might be due to the presence of diffraction and multi-
path or to the variations of the instrumental delays pos-
sibly due to temperature variations which can occur at
different sections: antenna, cables, amplifiers, splitters,
receivers, such as anomaly inside the GNSS receivers
(Parkinson and Spilker 1996; Defraigne and Bruyninx
2007). Without loss of generality, all these kinds of
errors can be categorized as Sudden Increase of
Pseudorange Errors (SIPE). Some ground-based experi-
ments showed that the multipath on pseudorange can
even exceed a magnitude of 6.0 m (Liu et al. 2009). Simi-
lar to cycle slips in carrier phase data, the pseudorange
can have anomalous range errors unexpectedly anytime.
For instance, an SIPE of 8.6 m was identified in the cycle
slip analysis, resulting in erroneous cycle slip fix out-
come (Liu 2011). New algorithms should be developed
to address the cycle slip detection and fix issue under
challenging situations when SIPE is present.
Liu (2011) illustrates the successful integration of

Melbourne-Wübbena Wide Lane linear combination
(Melbourne 1985; Wübbena 1985) and the TECR
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information to uniquely detect and fix cycle slips epoch
by epoch in real-time. In that work, the SIPE problem
however was not addressed. Under the circumstance of
arbitrarily large pseudorange errors, no literature has ad-
dressed the problem of cycle slip detection and repair
using a single dual-frequency receiver. This paper aims
to develop an innovative approach to completely elimin-
ating the impact of SIPE on cycle slip detection and fix.
The reliability of cycle slip detection and fix can be en-
hanced particularly under degraded GNSS observation
conditions such as large multipath errors or unexpected
pseudorange anomalies.
This paper can be considered as a continuation to our

previous effort. There are several reasons for this. First,
development of algorithms for processing GNSS data
from a single station is increasingly important as the
PPP technique has increasingly attracted attentions over
the past a few years (Zumberge et al. 1997; Le and
Tiberius 2007; Teferle et al. 2007; Ge et al. 2008; Geng
et al. 2009; Bertiger et al. 2010; Leandro et al. 2011).
Second, there is an increasing trend worldwide to deploy
high-rate (1 Hz or even higher) GNSS receivers globally.
In the EUREF Permanent Network (EPN), there are
nearly 250 high rate stations in operation (Bruyninx et
al. 2011). In the worldwide, thousands of GNSS receivers
have been deployed to routinely collect GNSS data at 1-
Hz rate (Larson 2009). Within the IGS network, over
110 receivers are configured to record GNSS data at 1-
Hz rate and thousands more GNSS receivers used by in-
dividual geodetic agencies in Canada, Europe, Japan, the
US and other countries are also logging real-time high
rate data (Larson 2009). With such a large number of
high-rate GNSS reference stations recording data for
real-time applications, it is highly desirable from a cost-
effective point of view to detect and fix cycle slips on a
real-time, single-station basis.
This paper is organized as below. In Section

Methodology for cycle slip detection and fix, the basic
principle of cycle slip detection and fix is presented; the
formulas evaluating the impact of SIPE on cycle slip fix
are derived; the impact of SIPE on cycle slip detection is
analyzed; the basic idea of this new method is
introduced; and the cycle slip search spaces are defined.
In Section Cycle slip search rules and estimation of
remaining candidate pairs, 2 cycle slip search algorithms
are proposed and their formulas for cycle slip validation
are derived; the method of estimating the remaining num-
ber of cycle slip candidate pairs is developed; a low-order
polynomial fitting method is used in a new fashion to iden-
tify the correct cycle slips from the small number of
remaining cycle slip candidates. Section Test and data
analysis presents the extensive data analysis results. The
discussion of the use of this method is given in Section
Discussion. The conclusion is given in Section Conclusion.

Methods
Basic principle
In this study, the cycle slip detection and fix are primarily
based on two formulas. One is the Melbourne–Wübbena
Wide Lane linear combination given in Eq. (1) and the
other is the ionospheric TECR measurement given in Eq.
(2) (Liu 2011).
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where
f1 and f2 are two frequencies in unit of Hz, e.g. GPS L1

and L2 frequencies;
λ1 and λ2 are wavelengths in unit of m/cycle corre-

sponding to the f1 and f2 frequencies, respectively;
γ is defined as γ ¼ f 21= f

2
2;

p is the satellite identification;
λWL = c/(f1 − f2) is the wavelength of the widelane com-

bination observation and c is the speed of light in vacuum;
TECRΦ(k) is the ionospheric TEC rate in unit of

TECU/s at epoch (k);
Δt is the data observation interval in unit of second

between epochs (k-1) and (k);
Φp

1ðk−1Þ and Φp
1ðkÞ are carrier phase measurements in

unit of cycle at epochs (k-1) and (k), respectively;
Pp
1ðk−1Þ and Pp1ðkÞ are pseudorange measurements in

unit of m at epochs (k-1) and (k), respectively;
ΔNp

1ðkÞ and ΔNp
2ðkÞ are detected cycle slips in unit of

cycle at the f1 and f2 frequencies, respectively.
The MWWL linear combination has been widely used

for cycle slip detection and fix because it removes the
effects from the atmosphere (including both ionosphere
and troposphere), the geometry, and satellite and receiver
clocks (Blewitt 1990). Similar to the MWWL linear com-
bination, the ionospheric TECR measurement is also free
from the effects of atmosphere (except the rate of iono-
spheric TEC), the geometry, and satellite and receiver
clocks. A unique characteristic of the TECR measurement
is that in most cases it is very sensitive to cycle slips, par-
ticularly when the GNSS data rate is high (e.g. 1 Hz).
Normally a small cycle slip will result in a large TECR.
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Therefore the integration of Eqs. (1) and (2) can uniquely
detect and fix cycle slips for single receiver regardless of the
GNSS receiver dynamics. The examples given in Liu (2011)
showed that cycle slips in GPS data recorded under high
dynamics (spaceborne GPS receiver on COSMIC satellite)
could be successfully detected and fixed.

Analysis of the effect of SIPE on cycle slip detection
The evaluation of the exact effect of the pseudorange
error on cycle slip detection and fix is analytically dem-
onstrated below. It can be seen in Eq. (1) that at epoch
(k), the pseudorange measurements on both frequencies
(P1 and P2 for the case of GPS) are required. If the
pseudorange measurements Pp

1ðkÞ and Pp
2ðkÞ have SIPE,

it may affect the cycle slip term in the left-hand side of
Eq. (1). It is possible that at epoch (k-1), the Pp1ðk−1Þ
and Pp

2ðk−2Þ may also have a SIPE relative to its previous
epoch. It is not difficult to analyze from Eq. (1) that
when both epochs (k) and (k-1) have pseudorange SIPE
of the same size, their impact on the left-hand term of
Eq. (1) is actually cancelled. Therefore, it might be more
precise to define the SIPE as the sudden increase of
pseudorange error relative to its previous epoch.
For brevity, we define:
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Thus the Eqs. (1) and (2) can be simplified as:
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The SIPE in Pp1ðkÞ and Pp2ðkÞ can be denoted as δPp
1ðkÞ

and δPp2ðkÞ, respectively. The maximum SIPE can be de-
fined as:

SIPEmax ¼ max δPp
1 kð Þj j; δPp2 kð Þj jf g; δPp

1 kð Þ; δPp
2 kð Þ∈ −∞;∞ð Þ

Considering the δPp
1ðkÞ and δPp

2ðkÞ , it can be easily
evaluated from Eq. (3) that the contribution of the
pseudorange errors to the widelane cycle slip term
½ΔNp

1ðkÞ−ΔNp
2ðkÞ� is:
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In Eq. (5), int[x] is the function rounding the value of x
to the nearest integer greater than or equal to x. Eq. (5)
shows that the impact of pseudorange errors δPp

1ðkÞ and δ
Pp2ðkÞ on widelane cycle slip is δ½ΔNp

1ðkÞ−ΔNp
2ðkÞ�. When

δPp1ðkÞ or δPp2ðkÞ is large enough, it is almost guaranteed
that wrong cycle slips will be obtained from Eq. (3) and
(4). The following Fig. 1 illustrates the effect of the pseu-
dorange errors on the widelane cycle slip calculation.
When both P1 (or represented by C1 in the figure) and P2
pseudoranges have a 10-m error, the resultant widelane
cycle slip error can be as large as 12 cycles. Taking the
multipath errors estimated from the COSMIC spaceborne
GPS receivers as an example (Hwang et al. 2010), the
0.78 m error on P1 and 1.03 m on P2 can result in 1 cycle
error on the widelane cycle slip.
In fact, it should be realized that the cycle slips on

GPS L1 and L2 frequencies are determined by jointly re-
solving the Eqs. (3) and (4). What Fig. 1 exhibits is the
effect of SIPE on the widelane cycle slip term ½ΔNp

1ðkÞ−
ΔNp

2ðkÞ� given in Eq. (3). We can denote the effects of SIPE
on the cycle slips ΔNp

1ðkÞ and ΔNp
2ðkÞ as δΔNp

1ðkÞ and
δΔNp

2ðkÞ, respectively. From Eqs. (3) and (4), δΔNp
1ðkÞ and

δΔNp
2ðkÞ can be evaluated as:
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The following Figs. 2 and 3 illustrate the effects of the
pseudorange errors on L1 cycle slip ΔNp

1ðkÞ detection
and L2 cycle slip ΔNp

2ðkÞ detection, respectively.
When both P1 (or represented by C1 in the figures)

and P2 pseudoranges have 10 m errors, the resultant
cycle slip errors on L1 and L2 frequencies can be as
large as 53 cycles and 41 cycles, respectively. This can be
instantly calculated from Eqs. (6) and (7) and be seen in
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Figs. 2 and 3. Taking the above COSMIC spaceborne
GPS data as an example (Hwang et al. 2010), the result-
ant cycle slip errors can be as large as 4.7 cycles and
3.6 cycles on GPS L1 and L2 frequencies, respectively. It
can be seen that the pseudorange errors appear to have
a relatively small effect on the widelane cycle slip detec-
tion as shown in Eq. (5). However its effect on the cycle
slip of individual frequency is significantly larger. This is
because in the widelane cycle slip of Eq. (3), the effects
on L1 and L2 frequencies are largely cancelled by each
other after the subtraction. Analysis of Eqs. (5), (6) and
(7) reveals that the impacts of SIPE on L1 and L2 are
about 4.5 times and 3.5 times of that on widelane cycle
slip, respectively. The results in Figs. 2 and 3 remind us

that it is necessary to guard against the severe effects of
pseudorange errors in order to ensure the reliability of
cycle slip detection.

Basic idea of the new method
The above section analytically and numerically shows
the effect of pseudorange errors on the determination of
cycle slips. To completely eliminate the large pseudor-
ange errors, one normally adopted approach might be the
pseudorange smoothing using carrier phase measurements,
such as the Hatch filter as well as the revised Hatch filter
(Hatch 1982; Hatch 1986; Lachapelle et al. 1986). However,
there is one issue associated with the application of
smoothing algorithms. These smoothing algorithms require
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the use of carrier phase measurements at epoch (k) in order
to smooth the pseudoranges at the same epoch (k). When
there are cycle slips in carrier phase data, these smoothing
algorithms normally reinitialize the smoothing process. As
a matter of fact, our purpose here is to detect and fix cycle
slips in carrier phase measurements at epoch (k). Thus it is
technically risky to employ the carrier phase data to smooth
pseudoranges prior to cycle slip detection. In practice, it is
very likely that both cycle slip and SIPE occur simultan-
eously. In this scenario, the smoothing method cannot be
used and other methods have to be developed. The basic
idea of a new approach is described below.
Assuming that the maximum SIPE in GNSS pseudor-

anges (e.g. GPS P1 or P2) is SIPEmax and that this
predefined SIPEmax is sufficiently large to bound all the
possible SIPE values under a given GNSS application cir-
cumstance (e.g. spaceborne GPS under high dynamics),
two integer search spaces corresponding to two frequen-
cies (e.g. GPS L1 and L2) for all the possible cycle slip
candidate pairs can be calculated and defined. The goal
is to search for and determine the only one pair of cor-
rect cycle slips from the two search spaces, 1 cycle slip
from each space. To validate each candidate pair in the
search spaces, each cycle slip candidate pair is used to
correct the original carrier phase data. Subsequently the
corrected dual-frequency carrier phase data can be
employed to derive TECR. It should be noted that all the
calculated TECR should obey a physical rule – not
exceeding a physically meaningful TECR threshold. The
threshold is defined as 0.35 TECU/s in this study. Our
extensive data analysis suggested that TECR threshold of
0.35 TECU/s be an appropriate empirical value for cycle
slip detection and fix for both ground-based and space-
based GPS data. Thus the validity of each cycle slip

candidate pair in the search spaces can be easily deter-
mined by judging whether it satisfies the physical rule.
Those cycle slip candidate pairs with TECR exceeding
the threshold are considered incorrect ones and they are
rejected in the cycle slip determination process.
To ensure the correct cycle slip detection under the

impact of SIPE, a new method adopting search strategy
is proposed. The search strategy can be illustrated in a
flowchart shown in Fig. 4. First the cycle slips ΔNp

1ðkÞ
and ΔNp

2ðkÞ are computed as usual using Eqs. (1) and
(2). These cycle slips are not the correct ones because of
the large pseudorange errors in both P1 and P2. To
facility the following search process, the variation scope
of ½ΔNp

1ðkÞ−ΔNp
2ðkÞ�, ΔNp

1ðkÞ and ΔNp
2ðkÞ, are estimated

using Eqs. (5), (6) and (7), respectively. Thus search
spaces for the 2 cycle slips can be formed, as to be dis-
cussed in the following section. In order to define the
maximum search space, the maximum magnitude of
sudden increase of pseudorange errors, denoted as SIPE-

max, has to be defined by the users. This SIPEmax can be
determined based on the performance of GNSS receiver
under a given observation condition. After that, two
search rules are defined and users can implement them
to search for the correct cycle slips. The two rules can
efficiently reject more than 99.9% cycle slip candidate
pairs in the search spaces. The small number of
remaining cycle slip pairs can be further verified using a
polynomial fitting method. In the implementation of
second search rule, a parameter called maximum iono-
spheric TECR, denoted as TECRmax

Φ ðkÞ, has to be defined.
In order to ensure the correct cycle slips are detected and
fixed, the TECRmax

Φ ðkÞ and SIPEmax parameters should be
appropriately set to a large enough value.
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Fig. 3 The effect of pseudorange errors on GPS L2 cycle slip detection
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Defining cycle slip search spaces
The initial cycle slips ΔNp

1ðkÞ and ΔNp
2ðkÞ usually are not

the correct ones due to the existence of SIPE, particularly
when SIPE is large. However, they provide a very good start
point to perform the search for the correct cycle slips.
With the knowledge of SIPEmax, the maximum cycle slip
error for ΔNp

1ðkÞ, denoted as δΔNp
1ðkÞmax, can be easily ob-

tained as δΔNp
1ðkÞmax ¼ int½5:255∙SIPEmax� as shown in

Eq. (6). Similarly maximum cycle slip error for ΔNp
2ðkÞ, de-

noted as δΔNp
2ðkÞmax, is δΔN

p
2ðkÞmax ¼ int½4:094∙SIPEmax�

from Eq. (7). It is not difficult to infer that the correct cycle
slip for L1 frequency, denoted as ΔNp

1ðkÞcand , should
be located within the scope ½ΔNp

1ðkÞ−δΔNp
1ðkÞmax;

ΔNp
1ðkÞ þ δΔNp

1ðkÞmax� . Similarly the correct cycle slip
for L2 frequency, denoted as ΔNp

2ðkÞcand, should be located
within the scope ½ΔNp

2ðkÞ−δΔNp
2ðkÞmax;ΔN

p
2ðkÞ þ δΔNp

2

ðkÞmax� . Thus the search spaces for the correct cycle slip
pair ½ΔNp

1ðkÞcand; ΔNp
2ðkÞcand� can be defined below as

SSΔNp
1ðkÞ and SSΔNp

2ðkÞ:

SSΔNp
1 kð Þ : ΔN

p
1 kð Þ−δΔNp

1 kð Þmax≤ΔN
p
1 kð Þcand≤ΔNp

1 kð Þ
þ δΔNp

1 kð Þmax

ð8Þ

SSΔNp
2 kð Þ : ΔN

p
2 kð Þ−δΔNp

2 kð Þmax≤ΔN
p
2 kð Þcand≤ΔNp

2 kð Þ
þ δΔNp

2 kð Þmax

ð9Þ

The numbers of candidates in the two search spaces are ½
2∙δΔNp

1ðkÞmax þ 1� and ½2∙δΔNp
2ðkÞmax þ 1� , respectively.

Taking the Figs. 2 and 3 as an example, when the SIPEmax =
10.0 m, the δΔNp

1ðkÞmax ¼ 53 cycles and δΔNp
2ðkÞmax ¼ 41

cycles. The search space SSΔNp
1ðkÞ includes 107 candidates

and the SSΔNp
2ðkÞ contains 83 candidates. To ensure the

correct cycle slips to be included in the search spaces
SSΔNp

1ðkÞ and SSΔNp
2ðkÞ , the SIPEmax should be appropriately

chosen to an adequately large value.
As a matter of fact, the cycle slip search process is not per-

formed separately on SSΔNp
1ðkÞ or SSΔNp

2ðkÞ . Instead, the
search process is performed simultaneously on both search
spaces. In the search, 1 cycle slip candidate is selected from
each of the two search spaces and the two candidates form a
cycle slip candidate pair. Thus the total number of cycle slip
candidate pairs (TNCP) can be formed and are to be jointly
searched is ½2∙δΔNp

1ðkÞmax þ 1�∙½2∙δΔNp
2ðkÞmax þ 1� , namely

{2 ∙ int[5.255 ∙ SIPEmax] + 1}{2 ∙ int[4.094 ∙ SIPEmax] + 1}. It is
clear that the TNCP depends solely on the value of SIPEmax.
It has nothing to do with the GPS/GNSS observation data.

Fig. 4 The flowchart of the cycle slip search strategy

Liu The Journal of Global Positioning Systems  (2018) 16:5 Page 7 of 21



Given a predefined SIPEmax, the TNCP can be instantly cal-
culated. When SIPEmax = 10 m, the total number of cycle
slip candidate pairs is 8881. Fig. 5 shows the relationship be-
tween the TNCP in the search spaces with SIPEmax. The
large number of candidate pairs suggests that efficient cycle
slip search method has to be developed in order to select
the one and only one correct pair of cycle slips from the
candidates. Thus 2 cycle slip search rules are proposed in
order to quickly reject the unsuitable candidate pairs.

Cycle slip search rules and estimation of
remaining candidate pairs
In this paper, two search rules are implemented. The
first one is the so-called “widelane cycle slip variation”
rule and the second is the “TECR threshold” rule.

Cycle slip search rule one: Widelane cycle slip variation
From Eq. (5), the variation of the widelane cycle slip can
be calculated using the SIPEmax value. The difference be-
tween the widelane cycle slip calculated from the pseu-
dorange contaminated by SIPEmax, i.e. ½ΔNp

1ðkÞ−ΔNp
2ðkÞ�,

and the one calculated from normal pseudorange
without SIPE, i.e. ½ΔNp

1ðkÞcand−ΔNp
2ðkÞcand�, should be

bounded by δ½ΔNp
1ðkÞ−ΔNp

2ðkÞ�max , which is defined as
δ½ΔNp

1ðkÞ−ΔNp
2ðkÞ�max ¼ int½1:16∙SIPEmax�, as shown in

Eq. (5). Mathematically it reads:

ΔNp
1 kð Þcand−ΔNp

2 kð Þcand
� �

− ΔNp
1 kð Þ−ΔNp

2 kð Þ½ ��� ��
¼ ΔNp

1 kð Þcand−ΔNp
1 kð Þ� �

− ΔNp
2 kð Þcand−ΔNp

2 kð Þ� ��� ��≤δ½ΔNp
1 kð Þ

−ΔNp
2 kð Þ�max

ð10Þ

Taking SIPEmax = 10 m as an example, the correspond-
ing δ½ΔNp

1ðkÞ−ΔNp
2ðkÞ�max ¼ 12 cycles and it yields:

ΔNp
1 kð Þcand−ΔNp

2 kð Þcand
� �

− ΔNp
1 kð Þ−ΔNp

2 kð Þ½ ��� ��≤12
It suggests that the correct cycle slip candidate pair

½ΔNp
1ðkÞcand; ΔNp

2ðkÞcand� must satisfy the condition
given in Eq. (10). The ½ΔNp

1ðkÞ−ΔNp
2ðkÞ� is obtained from

Eq. (3); ½ΔNp
1ðkÞcand; ΔNp

2ðkÞcand� is one of the candidate
pairs from the search spaces defined in Eqs. (8) and (9);
the δΔNp

1ðkÞmax and δΔNp
2ðkÞmax shown in Eqs. (8) and

(9) and the term δ½ΔNp
1ðkÞ−ΔNp

2ðkÞ�max can be readily cal-
culated with the predefined SIPEmax. A program looping
over all the candidate pairs ½ΔNp

1ðkÞcand; ΔNp
2ðkÞcand� in

the search spaces can be executed and candidate pairs that
do not satisfy Eq. (10) are rejected. The following section
will show how efficient this “rule one” is by determining
the number of remaining cycle slip candidate pairs after
implementing this search rule.

Estimating the NRCP of rule one
Eqs. (8) and (9) are rearranged and it yields:

−δΔNp
1 kð Þmax≤ΔN

p
1 kð Þcand−ΔNp

1 kð Þ≤δΔNp
1 kð Þmax

ð11Þ
−δΔNp

2 kð Þmax≤ΔN
p
2 kð Þcand−ΔNp

2 kð Þ≤δΔNp
2 kð Þmax

ð12Þ
The ½ΔNp

1ðkÞcand−ΔNp
1ðkÞ� in Eq. (11) can be treated as

one whole term, so is ½ΔNp
2ðkÞcand−ΔNp

2ðkÞ� in Eq. (12).
The benefit of doing so is that there is no need to know
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Fig. 5 Rule one: relationship between SIPEmax and the numbers of cycle slip candidate pairs
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ΔNp
1ðkÞ or ΔNp

2ðkÞ . This implies no knowledge of the
GNSS carrier phase or pseudorange observations is
needed. As indicated, the number of searched candidates
for ½ΔNp

1ðkÞcand−ΔNp
1ðkÞ� and ½ΔNp

2ðkÞcand−ΔNp
2ðkÞ� is

½2∙δΔNp
1ðkÞmax þ 1� and ½2∙δΔNp

2ðkÞmax þ 1�, respectively.
The TNCP is thus ½2∙δΔNp

1ðkÞmax þ 1�∙½2∙δΔNp
2ðkÞmax þ 1�.

By integrating Eqs. (11) and (12) with Eq. (10) and
treating ½ΔNp

1ðkÞcand−ΔNp
1ðkÞ� and ½ΔNp

2ðkÞcand−ΔNp
2ðkÞ�

as whole terms, the number of remaining cycle slip
candidate pairs ½ΔNp

1ðkÞcand;ΔNp
2ðkÞcand� can be uniquely

determined as long as δΔNp
1ðkÞmax and δΔNp

2ðkÞmax are
determined. Unlike the total number of candidate pairs,
there is no analytic formula to calculate the exact value
of NRCP. However, for any given SIPEmax, the NRCP
can be uniquely determined by Eqs. (10), (11) and (12).
The NRCP for different SIPEmax values are shown in
Fig. 5.
Figure 5 illustrates the relationship between the

SIPEmax and the NRCP. It can be seen that the applica-
tion of this rule one can considerably reject many candi-
date pairs that do not satisfy Eq. (10). The NRCP is
much smaller than the TNCP. In Fig. 5, the SIPEmax-
varies from − 100 m to 100 m. When SIPEmax = 10 m,
the TNCP is 8881, the NRCP is 2075. This is equivalent
to 23.36% of the total number, meaning 76.64% candi-
date pairs being rejected. When SIPEmax = 100 m, the
TNCP is as large as 864,513. After implementing the
rule one, the NRCP is only 192,933 pairs, equivalent to
22.32% of the total number. The rejection rate is 77.68%.
It can be seen that the TNCP increases rapidly with the
size of SIPEmax. But Fig. 5 also shows the “rule one”
given in Eq. (10) can effectively reject over 75% of cycle
slip candidate pairs.
It should be stressed that the calculation of the TNCP

and NRCP can be achieved even without the knowledge
of GNSS carrier phase or pseudorange data. The only
factor determining the two numbers is the value of
SIPEmax. It should be noted that the NRCP is still large
and further reduction algorithm has to be used to reduce
the NRCP.

Cycle slip search rule two: TECR threshold
The second rule used here to reduce the NRCP is called
“TECR threshold” rule. For each pair of candidates ΔNp

1

ðkÞcand and ΔNp
2ðkÞcand , they can be used to correct the

carrier phase measurements at epoch (k):

cΦp
1 kð Þ ¼ Φp

1 kð Þ þ ΔNp
1 kð Þcand ð13Þ

cΦp
2 kð Þ ¼ Φp

2 kð Þ þ ΔNp
2 kð Þcand ð14Þ

The TECR between epochs (k) and (k-1) can be readily
written as (Liu 2011):

TECRΦ kð Þ ¼ H∙fλ1 Φp
1 kð Þ−Φp

1 k−1ð Þ½ �
þ λ2 Φ

p
2 k−1ð Þ−Φp

2 kð Þ½ �
þ λ1ΔN

p
1 kð Þcand−λ2ΔNp

2 kð Þcand
� �g

ð15Þ

where H ¼ f21
40:3�1016ðγ−1ÞΔt.

One TECRΦ(k) can be estimated using Eq. (15) for each
pair of cycle slip candidates. After the implementing the
above “widelane cycle slip variation” rule, the remaining
number of candidate pairs is NRCP. Consequently the
number of TECRΦ(k) will be NRCP too. Which TECRΦ(k)
is valid among so many TECRΦ(k)? It should be noted
that the TEC rate is a physical parameter describing the
ionosphere variation and its value should be bounded by a
given threshold. The TECR values observed by GNSS data
at the low-latitude equatorial region showed that the
ionospheric TECRΦ(k) is bounded by 0.03 TECU/s in
ionosphere disturbance periods (Liu and Chen 2009). In
this study, a threshold value for the maximum valid
TECRΦ(k) value is defined as TECRmax

Φ ðkÞ. Taking advan-
tage of this physical property about TECR, only cycle slip
candidates whose TECRΦ(k) meet the following condition
are considered valid:

TECRΦ kð Þj j≤ TECRmax
Φ kð Þ�� �� ð16Þ

To be safe enough not to reject the correct cycle slip
candidates, the TECRmax

Φ ðkÞ should be chosen to be a
large enough value. In this study, TECRmax

Φ ðkÞ ¼ 0:35
TECU=second is adopted. As shown in Liu (2011), even
small cycle slips e.g. (1, 1) in L1 and L2 carrier phase mea-
surements can result in a TECR significantly larger than
the normal one, thus they can be easily detected. After ap-
plying the “TECR threshold” rule given in Eq. (16), many
cycle slip candidate pairs are rejected and only a very
small number of them are left. The estimation of the
NRCP will be addressed in the next section. The following
paragraphs explain why many cycle slip candidate pairs
are rejected through the “TECR threshold” rule.
Among all the cycle slip candidates ½ΔNp

1ðkÞcand;
ΔNp

2ðkÞcand� , there is at least one pair of cycle slips,
denoted as ½ΔNp

1ðkÞmin;ΔN
p
2ðkÞmin� , which produces the

minimum TECRΦ(k), denoted as TECRmin
Φ ðkÞ , among all

the TECRΦ(k) computed using Eq. (15). Normally the
TECRmin

Φ ðkÞ is at the level of 0.01 TECU/s during
ionosphere quiet period and 0.03 TECU/s during dis-
turbed period (Liu and Chen 2009). It should be noted
that ½ΔNp

1ðkÞmin;ΔN
p
2ðkÞmin� produces the minimum

TECRΦ(k), but this pair is not necessarily the correct cycle
slip pair for which we are seeking. Compared to other
candidates, this pair of cycle slip candidates ½ΔNp

1ðkÞmin;

ΔNp
2ðkÞmin� indeed has a higher likelihood to be the cor-

rect one. This is because the TECRΦ(k) corresponding to
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the correct cycle slip pair should be a reasonably small
value but not necessarily the smallest. When cycle slips
are present in carrier phase measurements, the cycle slips
can cause an artificial ionospheric TECR. It is possible the
artificial TECR has similar magnitude but opposite sign to
the natural TECR, eventually rendering the computed
TECR (a combination of both natural and artificial TECR)
to become a very small value or even 0.0 TECU/s. Thus
cycle slip candidates corresponding to the smallest TECR
(i.e. TECRmin

Φ ðkÞ) are not necessarily the correct ones.
Each cycle slip pair ½ΔNp

1ðkÞcand;ΔNp
2ðkÞcand� can be

numerically decomposed into the summation of two
parts: ½ΔNp

1ðkÞmin;ΔN
p
2ðkÞmin� and ½ΔNp

1ðkÞcand−ΔNp
1

ðkÞmin;ΔN
p
2ðkÞcand−ΔNp

2ðkÞmin� . If the candidate pair is
inserted into Eq. (15), the obtained TECRΦ(k) can also
be decomposed into two parts: the first part TECR (i.e.
TECRmin

Φ ðkÞ ) that is corresponding to ½ΔNp
1ðkÞmin;

ΔNp
2ðkÞmin� and the second part TECR that is contributed

by ½ΔNp
1ðkÞcand−ΔNp

1ðkÞmin; ΔNp
2ðkÞcand−ΔNp

2ðkÞmin�. The
latter part TECR can be denoted as TECRpart2

Φ ðkÞ. Accord-
ing to Eq. (15), the TECRpart2

Φ ðkÞ can be calculated as:

TECRpart2
Φ kð Þ ¼ H∙fλ1 ΔNp

1 kð Þcand−ΔNp
1 kð Þmin

� �
−λ2 ΔNp

2 kð Þcand−ΔNp
2 kð Þmin

� �g
ð17Þ

Thus the Eq. (16) can be written as:

TECRmin
Φ kð Þ þ TECRpart2

Φ kð Þ
��� ���≤ TECRmax

Φ kð Þ�� �� ð18Þ

Because jTECRmin
Φ ðkÞ þ TECRpart2

Φ ðkÞj≤ jTECRmin
Φ ðkÞj þ j

TECRpart2
Φ ðkÞj . If the condition in the following Eq. (19) is

met, Eq. (18) will be satisfied.

TECRmin
Φ kð Þ�� ��þ TECRpart2

Φ kð Þ
��� ���≤ TECRmax

Φ kð Þ�� �� ð19Þ

Compared to TECRmax
Φ ðkÞ, TECRmin

Φ ðkÞ has a rather
small but usually non-zero value, approximately
0.01~ 0.03 TECU/s according to the observations from
GNSS data. Thus Eq. (19) can be simplified as:

TECRpart2
Φ kð Þ

��� ��� ¼ ���H∙fλ1 ΔNp
1 kð Þcand−ΔNp

1 kð Þmin

� �
−λ2 ΔNp

2 kð Þcand−ΔNp
2 kð Þmin

� �gj < TECRmax
Φ kð Þ�� ��

ð20Þ
Using Eq. (20), all the candidate pairs that satisfy the

above condition can be found. Please note that Eq. (20)
is not identical but only an approximation to Eq. (18),
although the contribution of TECRmin

Φ ðkÞ is small but it
is usually non-zero. It is possible that TECRmin

Φ ðkÞ and

TECRpart2
Φ ðkÞ have opposite signs. Thus it is theoretically

possible that the cycle slip candidate pairs (including
one correct cycle slip pair) that satisfy the Eq. (18) might
not satisfy the Eq. (20). If Eq. (20) is used to search for
the correct cycle slip candidate pair, it is possible that
the correct cycle slip pair might not satisfy the Eq. (20)
and thus is rejected. To avoid this and compensate
the small contribution of jTECRmin

Φ ðkÞj , the value of
TECRmax

Φ ðkÞ can be properly selected to a relatively large
one by considering the magnitude of the TECRmin

Φ ðkÞ . In
this study, TECRmax

Φ ðkÞ ¼ 0:35 TECU=second is selected,
which is considered to be a large enough threshold.
Table 1 lists all the “special” cycle slip pairs whose

artificial TECR is smaller than 0.15 TECU/second when
jΔNp

1ðkÞj≤77 and jΔNp
2ðkÞj≤60. When ½ΔNp

1ðkÞcand−ΔNp
1

ðkÞmin;ΔN
p
2ðkÞcand−ΔNp

2ðkÞmin� is by chance one of the

“special cycle slip pairs”, TECRpart2
Φ ðkÞ will yield a

very small value. When the ½ΔNp
1ðkÞcand−ΔNp

1ðkÞmin;

ΔNp
2ðkÞcand−ΔNp

2ðkÞmin� is not one of such special cycle

slip pairs, generally the corresponding TECRpart2
Φ ðkÞ is

quite large, compared to the predefined threshold
TECRmax

Φ ðkÞ . Thus the corresponding ½ΔNp
1ðkÞcand;ΔNp

2

ðkÞcand� should be rejected because it violates the condi-
tion given in Eq. (20). For instance, when ½ΔNp

1ðkÞcand−
ΔNp

1ðkÞmin;ΔN
p
2ðkÞcand−ΔNp

2ðkÞmin� equals to (1, 1), which
is not a special cycle slip pair (thus not listed in Table 1),

Table 1 The Effect of special cycle slip pairs on TECR (assuming
the data interval Δt = 1.0 second)

Cycle slip on GPS L1
ΔNp

1ðkÞ
Cycle slip on GPS L2
ΔNp

2ðkÞ
TECR caused by cycle slips
½ΔNp

1ðkÞ; ΔNp
2ðkÞ�

0 0 0

77 60 0

−77 − 60 0

9 7 0.0302

− 68 −53 0.0302

68 53 −0.0302

−9 −7 −0.0302

−18 − 14 − 0.0604

18 14 0.0604

59 46 −0.0604

−59 −46 0.0604

27 21 0.0906

−27 −21 −0.0906

−50 −39 0.0906

50 39 −0.0906

−36 −28 −0.1208

36 28 0.1208

41 32 −0.1208

−41 −32 0.1208
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the resulting TECRpart2
Φ ðkÞ is − 0.514 TECU/s. This

value is significantly larger than the predefined threshold
jTECRmax

Φ ðkÞj ði:e:0:35 TECU=secondÞ . In this case, the
pair ½ΔNp

1ðkÞcand;ΔNp
2ðkÞcand� is rejected. This explains

why the NRCP is small after applying the search rule
“TECR threshold”. The above also explains that all the
remaining cycle slip candidate pairs that satisfy the condi-
tion in Eq. (20) are actually those with ½ΔNp

1ðkÞcand−ΔNp
1

ðkÞmin;ΔN
p
2ðkÞcand−ΔNp

2ðkÞmin� as “special” cycle slip pairs.
Otherwise the artificial TECR generated by ½ΔNp

1ðkÞcand−
ΔNp

1ðkÞmin;ΔN
p
2ðkÞcand−ΔNp

2ðkÞmin� will be significantly
large and exceed the jTECRmax

Φ ðkÞj . It can be seen in
Table 1 that between any two special cycle slips, the
minimum distance is 5 cycles on L1 frequency and 4 cycles
on L2 frequency, i.e.. jΔNp

1ðkÞcand;i−ΔNp
1ðkÞcand; jj≥5 cycles;

i≠ j and jΔNp
2ðkÞcand;i−ΔNp

2ðkÞcand; jj≥4 cycles; i≠ j . The

minimum distances occur with the special cycle slip
pairs [41, 32] and [36, 28], as well as pairs [− 41, − 32] and
[− 36, − 28].

Estimating the NRCP of rule two
The above section explains why many cycle slip candidates
are rejected. But the exact value of NRCP is still unknown.
In the rule one, the NRCP is a function of SIPEmax only
and has nothing to do with the values of initially detected
cycle slips ΔNp

1ðkÞ or ΔNp
2ðkÞ . In this “TECR threshold”

rule, the determination of the exact NRCP is more com-
plex. A quick look of Eq. (20) appears that the NRCP de-
pends on the predefined value TECRmax

Φ ðkÞ , GNSS data
interval Δt, ½ΔNp

1ðkÞcand;ΔNp
2ðkÞcand� and ½ΔNp

1ðkÞmin;ΔN
p
2

ðkÞmin�. The following analysis will reveal that the NRCP in
rule two actually only depends on SIPEmax, TECR

max
Φ ðkÞ ,

and GNSS data interval Δt. It has nothing to do with
the ½ΔNp

1ðkÞcand;ΔNp
2ðkÞcand� or ½ΔNp

1ðkÞmin;ΔN
p
2ðkÞmin� .

Both SIPEmax and TECRmax
Φ ðkÞ are predefined thresholds

and they can be specified before cycle slip detection and
fix. The data interval Δt is a fixed value that is known once
the GNSS data are recorded. Clearly all the three parame-
ters are irrelevant of the GNSS observations. This implies
the NRCP after implementing the “rule two” can be deter-
mined even without having to know the actual GNSS data.
Although ½ΔNp

1ðkÞmin;ΔN
p
2ðkÞmin� is unknown, however

it is for sure this is one candidate pair in the search spaces
SSΔNp

1ðkÞ and SSΔNp
2ðkÞ. It is just a special pair among all the

candidate pairs that produces the minimum artificial
ionospheric TECR, i.e. TECRmin

Φ ðkÞ . Considering Eqs. (8)
and (9), the search scopes of ½ΔNp

1ðkÞcand−ΔNp
1ðkÞmin� and

½ΔNp
2ðkÞcand−ΔNp

2ðkÞmin� can be determined as:

−2∙δΔNp
1 kð Þmax≤ ΔNp

1 kð Þcand−ΔNp
1 kð Þmin

� �
≤2∙δΔNp

1 kð Þmax

ð21Þ

−2∙δΔNp
2 kð Þmax≤ ΔNp

2 kð Þcand−ΔNp
2 kð Þmin

� �
≤2∙δΔNp

2 kð Þmax

ð22Þ

The numbers of searched candidates for ½ΔNp
1ðkÞcand−ΔNp

1

ðkÞmin� and ½ΔNp
2ðkÞcand−ΔNp

2ðkÞmin� are ½4∙δΔNp
1ðkÞmax þ 1�

and ½4∙δΔNp
2ðkÞmax þ 1�, respectively. Thus the TNCP is

½4∙δΔNp
1ðkÞmax þ 1�∙½4∙δΔNp

2ðkÞmax þ 1�. It should be noted
that the total number of candidates to be searched here is
different from the total number calculated for the search
rule one. In the rule one, the TNCP is ½2∙δΔNp

1ðkÞmax þ 1�∙
½2∙δΔNp

2ðkÞmax þ 1� . They are different because the search
spaces given in Eqs. (21) and (22) are different from the
ones given in Eqs. (11) and (12). Without actual GNSS data,
½ΔNp

1ðkÞcand−ΔNp
1ðkÞmin� and ½ΔNp

2ðkÞcand−ΔNp
2ðkÞmin� have

to take the maximum values, i.e. �2∙δΔNp
1ðkÞmax and �2∙

δΔNp
2ðkÞmax , respectively. Thus the theoretically maximal

TNCP for a given SIPEmax is ½4∙δΔNp
1ðkÞmax þ 1�∙½4∙δΔNp

2

ðkÞmax þ 1�. In practical implementation with actual GNSS
data, the actual GNSS carrier phase and pseudorange ob-
servations are available. The Eq. (16) therefore can be dir-
ectly used in the “TECR threshold” rule. The actual TNCP
can be smaller than the theoretical TNCP.
Integrating Eqs. (20), (21) and (22) will reveal that NRCP

is a function of only three parameters: TECRmax
Φ ðkÞ , GPS

data interval Δt (embedded in H), and SIPEmax. Apparently,
the larger value of TECRmax

Φ ðkÞ or Δt, the larger NRCP.
Eqs. (6) and (7) show that the larger SIPEmax, the larger
δΔNp

1ðkÞmax and δΔNp
2ðkÞmax , consequently larger NRCP

as suggested by Eqs. (21) and (22). This analysis reveals that
the theoretically maximal NRCP after implementing the
“TECR threshold” rule is completely irrelevant of the
original carrier phase or pseudorange measurements. The
NRCP can be pre-determined even before GNSS observa-
tion starts as long as TECRmax

Φ ðkÞ , Δt and SIPEmax are
specified. Usually the GNSS data interval Δt is a fixed value
(e.g. 1 s) set by the GNSS observer. TECRmax

Φ ðkÞ and
SIPEmax can be defined by the GNSS analyst before the
analysis. A large TECRmax

Φ ðkÞ value is conservatively chosen
to ensure all cycle slips can be successfully detected and
fixed. Our data analysis shows that when TECRmax

Φ ðkÞ is
chosen as 0.30 TECU/second, all the cycle slips except a
small number of cycle slips for the spaceborne GPS
receivers (COSMIC data in this study) can be correctly de-
tected and fixed. When the TECRmax

Φ ðkÞ ¼ 0:35 TECU=
second is used in the cycle slip detection and fix, all the
simulated cycle slips can be successfully detected and fixed.
Therefore TECRmax

Φ ðkÞ ¼ 0:35 TECU=second is used in
this study. SIPEmax can be defined according to the analyst’s
experience with the GNSS pseudorange quality. The pseu-
dorange quality is affected by a number of factors such as
GNSS receiver/antenna quality, observation conditions (e.g.
multipath), signal obstructions, GNSS receiver dynamics,
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among others. SIPEmax should be chosen to a sufficiently
large value to accommodate the largest pseudorange error
that potentially occur.
Figure 6 illustrates the relationship between SIPEmax,

TECRmax
Φ ðkÞ, NRCP, and the TNCP, assuming Δt = 1.0 sec-

ond. Two cases of TECRmax
Φ ðkÞ are shown in Fig. 6:

TECRmax
Φ ðkÞ ¼ 0:15 and 0:35 TECU=second . As analyzed

earlier, the theoretically maximal TNCP is irrelevant of the
value of TECRmax

Φ ðkÞ or Δt. Thus the two TNCP curves
actually overlap each other for the TECRmax

Φ ðkÞ ¼ 0:15 and
0:35 TECU=second cases. The TNCP in the rule two also
increases with SIPEmax in an approximately linear pattern.
In terms of the NRCP, The NRCP is a function of all the
three parameters. Fig. 6 shows that the NRCP increases
linearly with SIPEmaxand is approximately proportional to
the value of TECRmax

Φ ðkÞ . The NRCP corresponding to
TECRmax

Φ ðkÞ ¼ 0:35 TECU=second is approximately 2.5
times of that for TECRmax

Φ ðkÞ ¼ 0:15 TECU=second.
Taking SIPEmax = 10 m, TECRmax

Φ ðkÞ ¼ 0:15 TECU/s
and Δt = 1.0 second as an example, the search spaces for
½ΔNp

1ðkÞcand−ΔNp
1ðkÞmin� and ½ΔNp

2ðkÞcand−ΔNp
2ðkÞmin�

can be determined as:

−106 ¼ −2∙ int 5:255∙SIPEmax½ �
¼ −2∙δΔNp

1 kð Þmax≤ ΔNp
1 kð Þcand−ΔNp

1 kð Þmin

� �
≤2∙δΔNp

1 kð Þmax

¼ 2∙ int 5:255∙SIPEmax½ � ¼ 106

ð23Þ

−82 ¼ −2∙ int 4:094∙SIPEmax½ �
¼ −2∙δΔNp

2 kð Þmax≤ ΔNp
2 kð Þcand−ΔNp

2 kð Þmin

� �
≤2∙δΔNp

2 kð Þmax

¼ 2∙ int 4:094∙SIPEmax½ � ¼ 82

ð24Þ

In the search spaces defined above, there are totally
35,145 cycle slip candidate pairs. Applying the “TECR
threshold” specified in Eq. (20), most of the candidate
pairs defined as f½ΔNp

1ðkÞcand−ΔNp
1ðkÞmin�; ½ΔNp

2ðkÞcand−
ΔNp

2ðkÞmin�g will be rejected because their corresponding

TECRpart2
Φ ðkÞ calculated from Eq. (17) is larger than

TECRmax
Φ ðkÞ . As a result, only 25 cycle slip candidate

pairs remain and they are listed in Table 2. The rejection
rate is as high as 99.9289%. This clearly shows the high
efficiency of the “TECR threshold” rule in rejecting
unsuitable cycle slip candidates.
In Table 2 [*] represents ½ΔNp

1ðkÞmin;ΔN
p
2ðkÞmin� and it

is unknown yet. Once the ½ΔNp
1ðkÞmin;ΔN

p
2ðkÞmin� is

known, the absolute values for the cycle slip pairs in the
last column of Table 2 can be determined. In practical
implementation, the exact value of ½ΔNp

1ðkÞmin;ΔN
p
2

ðkÞmin� can be determined easily as long as the GNSS
data are available. From Table 2 it can be seen that there
is a difference of a few cycles in size between ½ΔNp

1ðkÞmin

;ΔNp
2ðkÞmin� and other cycle slip pairs. As shown in row

13 of Table 2, the cycle slip candidate pair with the smal-

lest TECRpart2
Φ ðkÞ is [∗] + (0, 0), i.e. ½ΔNp

1ðkÞmin;ΔN
p
2ðkÞmin�

¼ ½�� . The cycle slip candidate pair with the 2nd smallest

TECRpart2
Φ ðkÞ is [∗] ± (9, 7), as shown in rows 12 and 14. It

can be seen in Table 2 the smallest difference between the
cycle slip candidate pairs is (±9, ±7), namely 9 cycles on
L1 frequency and 7 cycles on L2 frequency. Such a magni-
tude of difference is large and can be detected using other
methods such as low-order polynomial fitting. Thus the
identification of the correct cycle slip pair from the
remaining pairs in Table 2 will be relatively easy. To

Fig. 6 Rule two: relationship between the size of SIPE and the numbers of cycle slip candidate pairs (assuming Δt = 1.0 second)
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clearly illustrate the large difference between different
cycle slip candidate pairs, another example for SIPEmax =
100 m, TECRmax

Φ ðkÞ ¼ 0:15 TECU=second and Δt =
1.0 second is shown in Fig. 7. The NRCP is 247. The
NRCP is considerably larger than 25 shown in Table 2
because SIPEmax here is 10 times larger. All the
remaining 247 cycle slip candidate pairs are shown in
Fig. 7. Only three pairs, represented by red stars in
Fig. 7, have a distance to the ½ΔNp

1ðkÞmin;ΔN
p
2ðkÞmin�

not larger than 10 cycles, i.e. jΔNp
1ðkÞcand−ΔNp

1ðkÞminj
≤10 and jΔNp

2ðkÞcand−ΔNp
2ðkÞminj≤10. Only two pairs,

denoted as black squares, have a distance to the ½ΔNp
1

ðkÞmin;ΔN
p
2ðkÞmin� not larger than 20 cycles, i.e. 10 < j

ΔNp
1ðkÞcand−ΔNp

1ðkÞminj≤20 and 10 < jΔNp
2ðkÞcand−ΔNp

2

ðkÞminj≤20. All the other 242 pairs have a large dis-
tance to ½ΔNp

1ðkÞmin;ΔN
p
2ðkÞmin� , i.e. jΔNp

1ðkÞcand−ΔNp
1

ðkÞminj > 20 and jΔNp
2ðkÞcand−ΔNp

2ðkÞminj > 20 . The
large distances from each pair of candidate cycle slips
to ½ΔNp

1ðkÞmin;ΔN
p
2ðkÞmin� can be translated into large

geometrical distances by multiplying their correspond-
ing wavelengths. Thus the identification of the correct
cycle slip candidate pair is not a difficult task since
all the candidate pairs are separated by large geomet-
rical distances.

Cycle slip further validation
The examples given in Table 2 and Fig. 7 clearly show that
only a small number of candidate pairs remain to be vali-
dated. The validation process is relatively easy since the
number of remaining pairs is relatively small and the
separation between different pairs is significant. When
TECRmax

Φ ðkÞ ¼ 0:35 TECU=second , the minimum separ-
ation between two candidate pairs is 4 cycles on GPS L1
frequency and 3 cycles on GPS L2 frequency, i.e. jΔNp

1

ðkÞcand;i−ΔNp
1ðkÞcand; jj≥4 cycles; i≠ j and jΔNp

2ðkÞcand;i−
ΔNp

2ðkÞcand; jj≥3 cycles; i≠ j . This feature of large separ-

ation is advantageous for further identification of the
correct cycle slips.

Table 2 The remaining cycle slip candidate pairs ½ΔNp
1ðkÞcand; ΔNp

2ðkÞcand�
Series number ½ΔNp

1ðkÞcand−ΔNp
1ðkÞmin�

(unit: cycles)
½ΔNp

2ðkÞcand−ΔNp
2ðkÞmin�

(unit: cycles)
TECRpart2Φ ðkÞ
(unit: TECU/s)

½ΔNp
1ðkÞcand; ΔNp

2ðkÞcand�
(unit: cycles)

1 − 104 −81 − 0.091 [*] + (− 104,−81)

2 − 95 − 74 − 0.060 [*] + (− 95,−74)

3 − 86 −67 − 0.030 [*] + (− 86,−67)

4 −77 − 60 0.000 [*] + (− 77,−60)

5 −68 −53 0.030 [*] + (−68,−53)

6 −59 −46 0.060 [*] + (− 59,−46)

7 −50 − 39 0.091 [*] + (− 50,−39)

8 −41 −32 0.121 [*] + (− 41,−32)

9 −36 −28 −0.121 [*] + (− 36,−28)

10 −27 − 21 − 0.091 [*] + (− 27,−21)

11 −18 −14 − 0.060 [*] + (−18,−14)

12 −9 −7 −0.030 [*] + (−9,−7)

13 0 0 0.000 [*] + (0,0)

14 9 7 0.030 [*] + (9,7)

15 18 14 0.060 [*] + (18,14)

16 27 21 0.091 [*] + (27,21)

17 36 28 0.121 [*] + (36,28)

18 41 32 −0.121 [*] + (41,32)

19 50 39 −0.091 [*] + (50,39)

20 59 46 −0.060 [*] + (59,46)

21 68 53 −0.030 [*] + (68,53)

22 77 60 0.000 [*] + (77,60)

23 86 67 0.030 [*] + (86,67)

24 95 74 0.060 [*] + (95,74)

25 104 81 0.091 [*] + (104,81)
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In the real implementation of cycle slip detection, the
dual-frequency GPS observation data are available. Thus
the ½ΔNp

1ðkÞmin;ΔN
p
2ðkÞmin� and the column 5 in Table 2

can be numerically determined. The following question
is how to validate the 25 remaining candidate pairs in
Table 2 and eventually identify one correct cycle slip
pair. In this study, the polynomial fitting method is used
to validate the cycle slip candidate pairs and eventually
identify the correct pair.

Polynomial fitting validation method
The polynomial fitting method for cycle slip detection/
validation is not new. This method has been used by
many researchers and its formula is given below
(Beutler et al. 1984).

cΦp
j kð Þ ¼

Xq
i¼0

Ci∙ Δtkð Þi; j ¼ 1; 2 ð25Þ

where cΦp
j ðkÞ; j ¼ 1; 2 is the fitted carrier phase data for

epoch (k); Δtk is a time interval, in unit of second, de-
fined as time of epoch (k) minus a reference time that is
normally chosen as the mid-point of a time series; Ci are
the fitting coefficients that are estimated from the least-
squares using the carrier phase data series prior to epoch
(k). The length of data series used for Ci is chosen as 25
in this study. Normally the order q is chosen between 4
to 6 in the fitting (Beutler et al. 1984). In this study q = 5
is used. This low-order polynomial fitting method can
be used to analyze the carrier phase data of both L1 and
L2 frequencies. The fitted carrier phase data cΦp

j ðkÞ;
j ¼ 1; 2 are compared to the actually observed Φp

j ðkÞ .

Their differences can be considered as cycle slips, which
are denoted as ΔNp

j ðkÞpoly; j ¼ 1; 2:

ΔNp
j kð Þpoly ¼ cΦp

j kð Þ−Φp
j kð Þ; j ¼ 1; 2 ð26Þ

It should be noted that the cycle slip ΔNp
j ðkÞpoly esti-

mated from polynomial fitting, due to the fitting error,
might not be identical to anyone of the remaining cycle
slip candidate pairs ½ΔNp

1ðkÞcand;ΔNp
2ðkÞcand� . But this

does not affect the validation process as along as certain
conditions are satisfied, which are to be discussed later.
The validation of the correct candidate cycle slip pair
among all the remaining ones can be performed accord-
ing to the following equations:

d ið ÞΔNp
1 kð Þ ¼ ΔNp

1 kð Þpoly−ΔNp
1 kð Þcand;i

��� ���
d ið ÞΔNp

2 kð Þ ¼ ΔNp
2 kð Þpoly−ΔNp

2 kð Þcand;i
��� ���

d ið ÞΔNp
1 kð Þ;ΔNp

2 kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d ið Þ2ΔNp

1 kð Þ þ d ið Þ2ΔNp
2 kð Þ

q
i ¼ 1; 2;⋯NRCP

ð27Þ

dðiÞΔNp
1ðkÞ and dðiÞΔNp

2ðkÞ are the distances between the

fitted cycle slip and the i-th cycle slip candidates for L1
and L2 frequencies, respectively. dðiÞΔNp

1ðkÞ;ΔNp
2ðkÞ is the

distance between the fitted cycle slip pair ½ΔNp
1ðkÞpoly;

ΔNp
2ðkÞpoly� and the i-th candidate pair ½ΔNp

1ðkÞcand; i;

ΔNp
2ðkÞcand; i� . For each pair of candidates ½ΔNp

1ðkÞcand; i;

ΔNp
2ðkÞcand; i�, a set of distances dðiÞΔNp

1ðkÞ , dðiÞΔNp
2ðkÞ and

dðiÞΔNp
1ðkÞ;ΔNp

2ðkÞ can be calculated using Eq. (27). In the

ideal situation, the polynomial fitting result ½ΔNp
1ðkÞpoly;

ΔNp
2ðkÞpoly� is perfect without any fitting error. Thus

Fig. 7 The distribution of remaining cycle slip pairs after applying rule two with SIPEmax = 100 m, TECRmax
Φ ðkÞ ¼ 0:15 TECU=second and Δt = 1.0 second
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the ½ΔNp
1ðkÞpoly;ΔNp

2ðkÞpoly� should be identical to the

correct cycle slip candidate pair. As a result, one set of dis-
tances with dðiÞΔNp

1ðkÞ ¼ dðiÞΔNp
2ðkÞ ¼ dðiÞΔNp

1ðkÞ;ΔNp
2ðkÞ ¼ 0

can be identified and the corresponding ½ΔNp
1ðkÞcand; i;

ΔNp
2ðkÞcand; i� is regarded as the correct candidate pair.

Nevertheless in practical data processing, the fitting result
½ΔNp

1ðkÞpoly;ΔNp
2ðkÞpoly� might not be perfect. The polyno-

mial fitting errors can be denoted as εΔNp
1ðkÞ and εΔNp

2ðkÞ for
L1 and L2 frequencies, respectively. εΔNp

1ðkÞ and εΔNp
2ðkÞ can

be defined as the differences between the fitted cycle slips
and the true cycle slips, as shown in Eq. (28).

εΔNp
1 kð Þ ¼ ΔNp

1 kð Þpoly−ΔNp
1 kð Þtruth

��� ���
εΔNp

2 kð Þ ¼ ΔNp
2 kð Þpoly−ΔNp

2 kð Þtruth
��� ��� ð28Þ

Although it will fail to find one set of distances with d

ðiÞΔNp
1ðkÞ ¼ dðiÞΔNp

2ðkÞ ¼ dðiÞΔNp
1ðkÞ;ΔNp

2ðkÞ ¼ 0 due to poly-

nomial fitting errors, one set of distances with the
smallest magnitudes can be identified among all the
NRCP sets of distances. The cycle slip candidate pair with
the smallest distances is considered to the correct one.
As shown in Table 2, there are two special candidate

pairs [*] + [41, 32] and [*] + [36, 28] (symmetrically also
[*] + [− 41, − 32] and [*] + [− 36, − 28]). The distances be-
tween these two pairs are 5 cycles on L1 frequency and
4 cycles on L2 frequency. Compared to the distances be-
tween any other pairs, the 5 cycle and 4 cycle distances
are the shortest (i.e. jΔNp

1ðkÞcand;i−ΔNp
1ðkÞcand; jj≥5 cycles

and jΔNp
2ðkÞcand;i−ΔNp

2ðkÞcand; jj≥4 cycles; i≠ j). In the pos-

sible cases where the correct cycle slip pair is [*] + [41, 32]
or [*] + [36, 28], the fitting error ½ΔNp

1ðkÞpoly;ΔNp
2ðkÞpoly�

should be small enough in order to distinguish the two
pairs using the judgment criteria given in Eq. (27). More
specifically, the fitting error εΔNp

1ðkÞ and εΔNp
2ðkÞ should be

no more than half of the minimum distances, i.e. εΔNp
1ðkÞ≤2

cycles and εΔNp
2ðkÞ≤2 cycles. Otherwise it will be difficult to

distinguish the two pairs: [*] + [41, 32] or [*] + [36, 28].
It should be noted that in Eq. (28), the cycle slip truths

ΔNp
1ðkÞtruth and ΔNp

2ðkÞtruth at epoch (k) are actually un-
known yet, because we are still in the process of validat-
ing the cycle slip candidates at this epoch. Thus εΔNp

1ðkÞ
and εΔNp

2ðkÞ at epoch (k) are in fact unknown. Consider-

ing that the GNSS carrier phase quality (except the
potential integer cycle slip at epoch (k)) is consistent
and stable within a short period of time, it is reason-
able to assume that the polynomial fitting errors
εΔNp

1ðsÞ and εΔNp
2ðsÞ ðs ¼ k−m; k−mþ 1;⋯k−1Þ at the

past m epochs ahead of the epoch (k) have behavior
similar to that at epoch (k). If εΔNp

1ðsÞ≤2 cycles and

εΔNp
2ðsÞ≤2 cycles ðs ¼ k−m; k−mþ 1;⋯k−1Þ and m is not

a large number, it is reasonable to assume that the state-
ment εΔNp

1ðkÞ≤2 cycles and εΔNp
2ðkÞ≤2 cycles is also valid at

epoch (k). In this study, the value of m is chosen as 5.
In order to estimate the εΔNp

1ðsÞ and εΔNp
2ðsÞ ðs ¼ k−m;

k−mþ 1;⋯k−1Þ , the polynomial fitting using Eqs. (25)
and (26) is actually performed for each epoch (s). The
cycle slip obtained from the polynomial fitting is denoted
as ΔNp

j ðsÞpoly ð j ¼ 1; 2Þ at the epoch (s). It should be

noted that the epochs ahead of epoch (k) are assumed to
be cycle slip free. If cycle slips indeed occur at those
epochs, they should have been detected and corrected
using the methods presented in this paper and Liu (2011).
Since epoch (s) has no cycle slip, the truth value of cycle
slip ΔNp

j ðsÞtruth at epoch (s) should be 0. Following

Eq. (28), the εΔNp
1ðsÞ and εΔNp

2ðsÞ can be easily calculated as

ΔNp
j ðsÞpoly ð j ¼ 1; 2Þ. When εΔNp

1ðsÞ and εΔNp
2ðsÞ satisfy the

condition: εΔNp
1ðsÞ≤2 cycles and εΔNp

2ðsÞ≤2 cycles , it is

reasonably safe to assume that εΔNp
1ðkÞ≤2 cycles and

εΔNp
2ðkÞ≤2 cycles.

The implementation of polynomial fitting method is
straightforward and it is effective in most cases.
However it is possible that at some epochs (s) (s = k − m,
k − m + 1, ⋯k − 1), the fitting error εΔNp

1ðsÞ or εΔNp
2ðsÞ

might be larger than 2 cycles at some epochs or at one of
the two frequencies. However it should be noted that even
if there is only one frequency with the fitting error satisfy-
ing the required condition, it is still valid to judge the cor-
rect cycle slip candidate pair ½ΔNp

1ðkÞcand; i;ΔN
p
2ðkÞcand; i�

because the cycle slip candidates are always used in pairs.
Also it is not necessary for all the m epochs to have fitting
errors εΔNp

1ðsÞ and/or εΔNp
2ðsÞ smaller than the specified re-

quirement. Our extensive data analyses show that it is suf-
ficient if a majority of the m epochs have their fitting
errors εΔNp

1ðsÞ and/or εΔNp
2ðsÞ meeting the requirement.

Result
Data description
The proposed method is extensively tested by 13 data-
sets that are recorded for 24 h each by ground-based or
space-based dual-frequency GPS receivers. All the GPS
data were originally recorded at a rate of 1 Hz except
that three receivers operated at a 5 Hz rate in Antarctic
by University Navstar Consortium (UNAVCO). The
5 Hz data are re-sampled to 1 Hz. The details of the
datasets are summarized in Table 3. The datasets have a
number of unique features. First, the ground-based GPS
receivers used in this study are distributed globally, with
8 GPS stations from the north hemisphere and 4 re-
ceivers from the south hemisphere. Second, different
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latitude regions such as equatorial, mid-latitude and
high-latitude are well represented by these datasets. The
ionospheric behaviors are generally considered to vary
significantly in different latitude regions. One station is
even located at the south pole of Antarctic. Third, both
stationary and kinematic datasets are tested. Twelve
ground-based GPS receivers record stationary data. The
COSMIC Spaceborne Integrated GPS and Occultation
Receiver (IGOR) records GPS data at high dynamics
(Wu et al. 2005). Fourth, the manufacturers and models
of GPS receivers have a good representation, ranging from
AOA, Trimble, Javad to IGOS. Fifth, the ionospheric
activity level varies significantly. It varies from very quiet
with Kp = 2.1 to medium active with Kp = 4.7~ 4.9, to
highly active Kp = 7.6. Especially the dataset from CHUR
station was recorded on 31 March 2001 and experienced
high level of ionospheric disturbance during the occur-
rence of a significant geomagnetic storm. The ionospheric
TEC increase to 100 TECU was observed during the
storm event (Foster et al. 2002). The daily average Kp
index for 31 March 2001 was 7.6, which was the highest
one in the past 20 years (1992–2011) and the 6th highest
in the past 80 years (1932–2011).

In summary, the 13 datasets demonstrate a great num-
ber of diversities in terms of characteristics. The datasets
studied here have a good representation of all kinds of
observation conditions that can be encountered in prac-
tical GPS applications.

Test configuration
The developed algorithms have been successfully imple-
mented in a computer program that is used in this
study. As shown in Table 4, an SIPE of 50 m is added to
both P1 and P2 pseudoranges in the first test case. In
the second case, an SIPE of 750 m is added to P1 and an
SIPE of 1000 m is added to P2 pseudorange. To test the
effectiveness of this algorithm under the existence of
large pseudorange errors, artificial cycle slips are also
added to carrier phase measurements L1 and L2 at the
same epoch. That is to say that at the same single epoch
all the 4 types of measurements (P1, P2, L1 and L2)
contain artificial errors. In this test, a total of 6 pairs of
cycle slip are simulated in a sequential order. They are
[− 77, − 60], [− 9, − 7], [− 5, − 4], [− 4, − 3], [− 1, − 1], and
(− 125, + 11), as shown in Table 4. As discussed in Liu
(2011), the first 5 pairs are special cycle slips that

Table 3 Description of all the test datasets

Dataset Collection
date

GPS receiver
model

Original sampling
rate (second)

Daily average
Kp index

GPS receiver location

Station Latitude (deg) Longitude (deg)

1 2001–03-31 AOA SNR-12 ACT 1 7.6 CHUR Manitoba, Canada 58.7591 −94.0887

2 2011–10-31 TRIMBLE NETR8 1 2.1 NWOT Colorado, USA 40.0554 − 105.5905

3 2011–10-31 TRIMBLE NETRS 1 2.1 LOW3 Colorado, USA 39.9495 −105.1943

4 2011–10-31 TRIMBLE NETRS 1 2.1 OKL4 Oklahoma, USA 36.0652 −97.2151

5 2011–10-31 TRIMBLE NETRS 1 2.1 GRS2 New Mexico, USA 34.3580 −106.6794

6 2011–10-31 TRIMBLE NETRS 1 2.1 SHR1 New Mexico, USA 34.3350 −106.7450

7 2011–09-10 JPS LEGACY 1.0 4.7 ADIS Addis Ababa, Ethiopia 9.0351 38.7663

8 2011–09-10 JPS LEGACY 1.0 4.7 KOUR Kourou, French Guyana 5.2522 −52.8060

9 2011–09-10 JPS LEGACY 1.0 4.7 MAL2 Malindi, Kenya −2.9960 40.1940

10 2011–10-31 TRIMBLE NETRS 0.2 2.1 PAL2 Antarctica −64.7751 −64.0511

11 2011–10-31 TRIMBLE NETRS 0.2 2.1 MCMD Antarctica −77.8383 166.6693

12 2011–10-31 TRIMBLE NETRS 0.2 2.1 AMU2 South Pole, Antarctica −89.9989 −110.7540

13 2010–04-06 IGOR 1 4.9 COSMIC spaceborne, ~ 800 km altitude

Table 4 The simulated cycle slip pairs and their impact on artificial TECR (assuming the data interval Δt = 1.0 second)

Test case 1 Test case 2 Cycle slip on GPS L1
ΔNp

1ðkÞ (cycle)
Cycle slip on GPS L2
ΔNp

2ðkÞ(cycle)
TECR caused by cycle slips
½ΔNp

1ðkÞ; ΔNp
2ðkÞ� (TECU/s)

δP1 = 50 m
δP2 = 50 m

δP1 = 750 m
δP2 = 1000 m

−77 −60 0.0000

−9 −7 −0.0302

−5 −4 0.2417

−4 −3 −0.2719

−1 −1 0.5135

−125 + 11 −252.1389
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produce only very small amount of artificial TECR. For
GPS L1 and L2 frequencies, the [− 9, − 7] cycle slip pair
is the one producing the smallest non-zero artificial
TECR in any possible cycle slip pairs, its artificial TECR
being only 0.0302 TECU/s. The [− 77, − 60] pair is an-
other special one and the artificial TECR caused by this
pair of cycle slip is 0.0 TECU/s. The [− 1, − 1], [− 4,
− 3] and [− 5, − 4] are included in this test because they
are relatively small in size and also because their artificial
TECR are relatively small. In summary, these special cycle
slips are selected in the test because they represent the
most challenging cases in GPS dual-frequency carrier
phase cycle slip detection and fix using this method. The
pair (− 125, + 11) is randomly selected and it represents
the test of this method on non-special cycle slip pairs.
During a 24-h observation period, basically each dataset

can track more than 25 different satellites. Figure 8 shows
that 30 GPS satellites are tracked during a 24-h period by
the spaceborne IGOR receiver on a COSMIC satellite. As
indicated in Liu (2011), this algorithm works satellite-by-
satellite. The cycle slip detection or fix for one satellite
does not require any data from other satellites. For each
satellite test, the number of epochs involving cycle slip
simulations is 50. Before the simulation is performed,
50 cycle slip free epochs are selected first for each satellite
in each dataset. The screening of cycle slip is first con-
ducted by the computer program. Figure 8 displays the
start epoch of SIPE and cycle slip simulation for each sat-
ellite tracked by the COSMIC spaceborne GPS receiver.
Figure 8 shows that the simulation start time for each

satellite is different. The start epoch for each satellite is
essentially randomly selected as long as there are at least
50 cycle slip free epochs after a given epoch. It is worth

pointing out that the start time for each satellite does not
have to be different. One of the advantageous features of
this cycle slip detection and fix method is that it works on
a satellite-by-satellite basis. Each satellite utilizes its own
data only and it does not use any other satellites’ data.
This satellite-wise cycle slip detection and fix method thus
can still work effectively even if all the tracked satellites of
a single epoch experience cycle slips at the same moment.
For each satellite in a dataset, the simulated SIPEmax

and one pair of special cycle slips are added to 25 epochs
evenly over a period of 50 consecutive epochs. Namely,
one simulation is added at an interval of every 2 epochs.
This simulation scheme represents a very high frequency
of cycle slip occurrence in GPS data (50% in time, 25
out of 50 epochs). All the simulation test schemes are
summarized in Table 5. Figure 9 shows the special cycle
slip [− 77, − 60] is added to 25 epochs of PRN 10 for the
COSMIC spaceborne GPS dataset.

Test results of 13 GPS datasets
The test results of the proposed method using 13 GPS
datasets are presented in Table 6. It clearly shows that
this method works successfully for all the test schemes
in Table 5, regardless of the dynamics of the GPS re-
ceivers or the ionospheric activity conditions or the geo-
graphical locations of the GPS stations. The column A is
the total number of epochs with simulated SIPE and
cycle slips for each dataset in each test scheme. The col-
umn B is the number of epochs with incorrectly de-
tected or incorrectly repaired cycle slips. It clearly
illustrates that this new algorithm is very effective and
all the cycle slips are correctly detected and fixed. The
number of undetected or detected but unfixed epochs is
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Fig. 8 The SIPE and cycle slip simulation start epoch for each satellite of the COSMIC spaceborne IGOR receiver
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0, as shown in column B. The test results clearly suggest
that virtually any cycle slips can be effectively corrected
and fixed, even with arbitrarily large errors in the pseu-
dorange measurements.

Discussion
The proposed method has demonstrated its robust per-
formance through extensive tests using 12 test schemes
with 13 datasets of various characteristics. It has shown
that the method works reliably to detect very small cycle
slips (−1, −1) and other cycle slip pairs even under very
challenging test scenarios – with high level of iono-
spheric activities, high level of dynamics of a spaceborne

GPS receiver, and very large value of SIPE. The 5 special
cycle slip pairs are considered special because they are
more difficult to be detected than others. They produce
minimum amount of artificial TECR, which represents a
weak signal for cycle slip detection and fix using this
TECR-based method. The occurrence frequency of sim-
ulated cycle slips is intentionally set high, 50% in time
domain. This test setting is essentially more challenging
than most real-world data collection situations.
It is worth noting that in the cycle slip detection and

fix, the magnitude of SIPEmax needs to be known in ad-
vance. This paper simulates two cases: SIPEmax = 50 m
and SIPEmax = 1000 m. This value must be predefined in

Table 5 The simulation test schemes

Scheme
no.

Simulated SIPE error on
pseudoranges (m)

Simulated cycle slip on
carrier phase (cycle)

Data Satellites Simulated epochs

P1 P2 L1 L2

1 50 50 −77 −60 All 13 datasets All the valid satellites
in each dataset

25 epochs for each
satellite, at an interval
of 2 epochs2 50 50 −9 −7

3 50 50 −5 −4

4 50 50 −4 −3

5 50 50 −1 −1

6 50 50 −125 + 11

7 750 1000 −77 −60

8 750 1000 −9 −7

9 750 1000 −5 −4

10 750 1000 −4 −3

11 750 1000 −1 −1

12 750 1000 −125 + 11

Fig. 9 The distribution of simulated cycle slips on L1 and L2 signals of PRN 10 of COSMIC spaceborne IGOR receiver
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the computer program before the implementation of this
method. This is a disadvantage of this method because it
is usually unknown how much the SIPE is. The specifi-
cation of the SIPEmax value in computer program is not
an optimal solution. When there is no SIPE or actual
size of SIPE is less than SIPEmax, the use of SIPEmax

simply increases volumes of the search spaces SSΔNp
1ðkÞ

and SSΔNp
2ðkÞ , as shown in Eqs. (8) and (9). Subsequently

more cycle slip candidates ½ΔNp
1ðkÞcand;ΔNp

2ðkÞcand� need
to be searched and validated. The computational burden
is unnecessarily increased, although it is normally not a
problem for today’s GNSS receiver or personal computer.
When the actual SIPE is larger than the SIPEmax specified
in computer program, it is very possible that incorrect
cycle slip detection and fix results will be produced. Thus
it is advised to predefine a sufficiently large SIPEmax in
practical implementation, by considering the specific
GNSS receiver/antenna quality, observation conditions as
well as empirical knowledge about the pseudorange qual-
ity. How to determine the magnitude of SIPEmax is not in
the scope of this study but will be studied in the future.
One might be thinking of determining the search spaces

SSΔNp
1ðkÞ and SSΔNp

2ðkÞ without the use of pseudorange data.
The approach is to use polynomial fitting method or high-
order epoch-wise differencing method to predict the cycle
slips at epoch (k), then the search spaces can be defined.
The risk is that it might not get a close enough estimate of
the cycle slips when the receiver clock has large variations.
It is true that the search spaces can be appropriately ex-
panded to handle the situation. However, how much ex-
pansion is appropriate is difficult to calculate.
In this study, the TECR threshold is defined as TECRmax

Φ
ðkÞ ¼ 0:35 TECU=second . This parameter is considered

to be extremely large already. The TECR value observed
using ground-based static GPS receiver in Hong Kong
(an equatorial region) during the 31 March 2001
when a severe geomagnetic storm occurred was just 0.03
TECU/s (Liu and Chen, 2009). The specified TECRmax

Φ ðkÞ
is more than 10 times larger than the TECR values ob-
served at equatorial region during very active ionosphere.
Our test results show that it is more than sufficient even
for spaceborne high dynamics receivers.
In order to have more rigor test on the method, actually

another test is done with the COSMIC satellite-borne
GNSS dataset and one static dataset (at CHUR station). In
this test, no cycle slip is simulated to the carrier phase
data but SIPE are simulated to the pseudoranges. This is
equivalent to adding cycle slips (0, 0) to the carrier phase
measurements. The P1 and P2 pseudoranges are added an
error of 1000 m and 2000 m, respectively, every two
epochs during the 50-epoch period. All the tracked satel-
lites are simulated with SIPE errors. The results show that
no single cycle slip is detected. This consistently indicates
the robustness of this method.
It should be pointed out the proposed cycle slip

detection and repair method is primarily for high rate
(1 Hz or higher) dual-frequency GNSS applications. In
principle, this method is valid for lower rate GNSS data,
e.g. 30.0 s but it has not been tested. The TECR thresh-
old for the lower rate GNSS data needs to be carefully
recalculated and redefined. The detection and validation
of small cycle slips might be more challenging because
of the larger interval between two neighboring epochs.
Nowadays high rate (1.0 Hz or higher) GNSS data are
increasingly used in many regional, national and inter-
national GNSS networks. More and more applications
and users rely on the provision of real-time positioning,

Table 6 Results of cycle slip detection and fix

Data set # # of tracked satellites A Simulated cycle slip pairs (cycles) Simulated SIPE (m) B

1 29 725 (−77, −60), (−9, −7), (−5, −4),
(− 4, − 3), (− 1, − 1), (− 125, + 11)

δPp1ðkÞ ¼ 50
δPp2ðkÞ ¼ 50

δPp1ðkÞ ¼ 750
δPp2ðkÞ ¼ 1000

0

2 29 725 0

3 24 600 0

4 25 625 0

5 26 650 0

6 23 575 0

7 31 775 0

8 29 725 0

9 28 700 0

10 29 725 0

11 29 725 0

12 29 725 0

13 30 750 0
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navigation and monitoring services. The innovative
method addressed in this paper is particularly useful for
these real-time scenarios.
This new method is particularly useful for those GNSS

applications under degraded observation conditions such
as multipath rich environments, for both undifferencing
such as Precise Point Positioning (PPP) and the traditional
double-differencing purposes. Typical scenarios include
the GNSS RTK in canopy, under foliage or near buildings,
as well as aircraft navigation in airports. The reception of
GNSS signals under these situations is usually less optimal
compared to the open-sky environments. Both carrier
phase and pseudorange measurements are prone to
anomalies under those degraded observation conditions.
The method proposed in this study provides a complete
solution to eliminate the impact of arbitrarily large pseu-
dorange errors on cycle slip detection and fix. The exten-
sive tests demonstrate that this method is effective for
detecting and fixing cycle slips even with arbitrarily large
pseudorange errors. Currently multiple GNSS systems are
still under development and it is understandable the mea-
surements at the early development stages might not be
as good as others. This method is particularly useful to
correct the cycle slips for those measurements with com-
promised stabilities and accuracies.
In order to reduce the sizes of the search spaces,

appropriate methods should be developed to determine
the value SIPEmax as accurate as possible. The number
of searches can be accordingly reduced and the compu-
tation efficiency can be increased. With the GNSS
modernization, the users may employ carrier phase and
pseudorange measurements from three or even more
frequencies. The method can be applied to the multiple
frequency circumstance. The cycle slip detection and
repair on multiple frequencies in principle is same as
the dual frequency. As a matter of fact, the avail-
ability of multiple frequency observations offers more
opportunities to validate the cycle slip detection and
repair results.

Conclusion
This paper describes an innovative method for carrier
phase cycle slip detection and fix using one single GNSS
receiver, even with arbitrarily large errors in pseudor-
anges. This method requires one single dual-frequency
GNSS receiver only, ideally with high rate (e.g. 1 Hz)
observations. With a predefined maximum value of
sudden increase of pseudorange errors SIPEmax, the
search spaces for dual-frequency cycle slip candidates
can be determined. The TNCP can be precisely calcu-
lated with the knowledge of SIPEmax. To search for the
correct cycle slip candidate, two rules are proposed to
validate the cycle slip candidate pairs. One rule is called
“widelane cycle slip variation” and the other is the

“TECR threshold” rule. The use of rule one can effect-
ively reject over 75% candidates while the rule two is
more effective and it can reject over 99.9% candidates.
The number of remaining cycle slip candidate pairs after
implementing the first rule can be determined as long as
SIPEmax is defined. The NRCP after implementing the
second rule can also be exactly determined with the
knowledge of SIPEmax, TECR threshold TECRmax

Φ ðkÞ, and
the GNSS data interval Δt. This implies that no GNSS
measurement is required for NRCP determination and
that the NRCPs can be determined in advance even be-
fore making any actual GNSS observation.
The new method is extensively tested by 13 different

datasets of various characteristics, including COSMIC
spaceborne GPS receiver and ground-based receivers,
GPS data under high level of ionospheric activity, vari-
ous GPS receiver manufacturers and models. The results
show that this method can effectively detect and fix
virtually any cycle slips even with a SIPEmax = 1000 m.
This method detects and fixes cycle slip on a satellite-

wise, real-time basis. The cycle slip detection and fix for
each satellite is completely independent and does not
rely on the information of any other satellites. The suc-
cess of this method heavily relies on the use of the
ionospheric physical property: TECR not exceeding the
specified TECR threshold. Taking advantage of this
property, cycle slip detection and fix is still successful
even if all the GNSS satellites of a given epoch simultan-
eously experience arbitrarily large SIPE and any kind of
cycle slips in the carrier phase data. The only disadvan-
tage of the current method is that the parameter
SIPEmax needs to be specified in advance before actual
cycle slip detection and fix. Thus a sufficiently large
value has to be defined to prepare for the worst
situation. This might unnecessarily increase computa-
tional burden.
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