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Abstract

Background: In 2017, there will be 107,000 cases of gynecologic cancer diagnosed in the US with an overall survival of
around 70%-most occurring in post-menopausal individuals. In this study, we have examined a younger (< 40 years

of age) subpopulation of these women with high grade/ high stage gynecologic malignancies, attempting to identify
unique genetic abnormalities or combinations thereof through tissue block specimens. This information was then
analyzed in light of known target therapies to see if genetic analysis in this setting would yield significant therapeutic
advantage.

Methods: We retrospectively evaluated patients with high grade/high stage gynecologic cancers (< 40 years of age),
examined the presence and status of 400 oncogenes and tumors suppressor genes from Formalin-fixed, Paraffin-embedded
(FFPE) tissue and functionally classified mutations by SIFT and Polyphen.

Results: Twenty women were identified and stratified into positive and negative outcomes. No demographic,
clinicopathologic or treatment factors were significant between these groups. Of the 400 genes evaluated,
twelve mutations were significant between the groups, six with targeted therapies. Mutations associated with
negative outcomes within histologies/locations were evaluated: ERBB3 in epithelial (ovarian), ALK/GPR124/KMT2D in
neuroendocrine (ovarian/endometrial), ROS1/EGFR, ROS1/ERBB3/KMT2D/NIRK1T and GPR124 in sarcoma. All negative
outcomes were void of mutations in APC/ABL2. A predictive model for negative outcomes in our cohort was
developed from these data: AKAP9-/MBD1-/APC-/ABL2- with a mutation load of > 20.5.

Conclusions: Unique multi-gene and mutational outcome correlations were identified in our cohort. Resulting complex
mutational profiles in distinctly aggressive gynecologic cancers suggested potential for novel therapeutic treatment.
Future larger scale studies will be needed to correlate the genotypic and phenotypic features identified here.

Keywords: Rare gynecologic cancers, Young women, Molecular profile, Predictive modeling

* Correspondence: Ipuls@ghs.org

>Greenville Health System Cancer Institute, Greenville Health Systern, 900 W
Faris Rd, Greenville, SC 29605, USA

Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s41241-018-0064-x&domain=pdf
mailto:lpuls@ghs.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Pinckney et al. Applied Cancer Research (2018) 38:13

Introduction

In 2017, approximately 107,000 new gynecologic cancers
will occur in the United States [1]. Within this patient
population, 61,000 individuals will be diagnosed with a
malignancy of the uterine corpus, 22,000 of the ovary,
and 13,000 of the cervix. The overall survival for this co-
hort is just under 70%. In examining the demographics
of this population, most affected individuals are
post-menopausal with 12% of the ovarian cancer patients
<45 years of age accounting for 3.1% of all ovarian
cancer deaths. Similarly, 2.3 and 18.7% of endometrial
and cervical cancer deaths, respectively, occur in pa-
tients < 45 years [2].

There is growing evidence that certain identifiable
mutational aberrations may be therapeutically targetable
by novel treatment approaches [3, 4]. As such, persona-
lized medicine is gaining traction leading practitioners to
expedite genetic testing, revealing information that iden-
tifies unique approaches to cancer treatment [5, 6].
Increasingly, next generation sequencing methods have
allowed clinicians to ascertain the presence of driver
mutations, which can be precisely targeted with novel
therapeutics. Patients with uncommon malignancies,
advanced stage cancers, and those referred for Phase I
trials, have been shown to derive therapeutic insight
from genomic analysis [7].

This study was designed to evaluate a select group of
patients (<40 years of age) with high-grade and/or
advanced-staged gynecologic cancers treated in a single
institution. Unique genetic abnormalities were analyzed
from formalin-fixed paraffin embedded (FFPE) tissue,
outcomes were correlated to mutational combinations
and pooled genetic information was assessed for applic-
able novel treatment options.

Patients and methods

A series of gynecologic cancers diagnosed between (1/1/
2010 and 12/31/2013) were retrospectively analyzed fol-
lowing IRB approval. Inclusion criteria were high grade
and/or high stage cancers, < 40 years of age at diagnosis
and treatment at a single regional cancer institute.
Standard demographic and clinicopathologic data were
collected. Each case had a probable site of origin in the
ovary, uterus, or cervix and all cancers were considered
primary tumors. Clinical and FIGO staging was completed
by a gynecologic oncologist. One critical exclusion crite-
rion was less than adequate tumor volume from FFPE for
molecular analyses.

A gynecologic pathologist verified the status, location,
stage (TNM), histologic subtype and cell type of the
tumors for each patient included in the study. After
verification of suitability for molecular analysis, micron
sections of FFPE tumor tissue were cut and prepared for
molecular analysis. lon AmpliSeq™ Comprehensive Cancer
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Panel (ThermoFisher Scientific, Waltham, MA; Additional
file 1: Table S1), was completed for each primary tumor
(Selah Technologies, Greenville, SC). Mutations were
evaluated by functional predictive algorithms to predict
involvement in carcinogenesis [8—10]. Mutations identi-
fied as functionally relevant were evaluated for targeted
therapies [11].

For analyses, our small number of patients was
grouped into two cohorts as defined by outcome. Days
of survival were calculated from diagnosis to either
death or the end of the study. Positive outcomes were
defined as survival greater than the median of the entire
cohort and/or patients alive and disease free at the end
of the study; positive outcomes were assigned to patients
enrolled later the in the study period that also met these
metrics despite days of survival less than the median.
Negative outcomes were defined as survival less than the
median of the entire cohort. The two groups were com-
pared using 1- and 2-tailed t-tests, as well as ANOVA
analysis for continuous variables (alpha = 0.05). Classifi-
cation and Regression Tree (CART) analysis was used to
develop a model predictive of outcome [12] from the
genetic profiles (Salford Systems’ SPM7 software; http://
www.salford-systems.com; San Diego, CA) for classifying
patients as either high or low risk. All data was analyzed
with the understanding that with smaller cohorts, ana-
lysis is biased toward type-II errors (false negatives) and
that the likelihood of Type-I errors (false positives) is
contingent upon the alpha level, not the cohort size.
Additionally, since the power of small cohorts is lower, a
larger deviation from the null hypothesis (a larger effect)
or an alternative hypothesis strongly supported by the
data was to be observed if the null hypothesis was to be
rejected without changing the alpha level.

Results

Twenty women were included in the study with a mean of
survival of 563 days (range 15-2333; median 469;
Additional file 2: Table S2) resulting in the classification of
14 patients with ‘positive’ outcomes and 6 patients with
‘negative outcomes’. No significant differences were found
in demographic factors (age, race, BMI, tobacco use and
diagnosis of a previous cancer; Additional file 2: Table S2)
between the cohorts. ECOG scores between the cohorts
were insignificant with nineteen patients having scores of
0, and one patient having a score of 2 (Additional file 2:
Table S2). All lesions within each subtype were considered
high-grade (Additional file 3: Table S3).

Ovarian cancer was the most frequent malignancy in
the study population (60%) with the epithelial histologic
subtype accounting for 50% of the cancers followed by
neuroendocrine and sarcoma (20 and 15%, respectively).
Histologic grading of the tumors revealed 85% grade III
(correlating to 30% FIGO stage I, 45% FIGO stage III; all
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patients had high grade histology and/or high stage dis-
ease); however, none of these factors were significantly
associated with outcome (Additional file 2: Table S2).

All patients underwent surgical intervention (data not
shown) and the majority received chemotherapy per
standard of care (n =17; 85%). Five patients received ra-
diation therapy (25%). All-together, none of these factors
were significantly associated with outcome (Additional
file 2: Table S2).

Molecular analysis revealed that of the 400 genes exa-
mined for mutations (Additional file 1: Table S1), 230 had
mutations predicted to code for dysfunctional proteins
(data not shown). Of these, 218 were not significantly asso-
ciated with outcomes. T-tests (1- and 2-tailed) revealed 12
gene mutations significantly different between the outcome
groups (Table 1). Mutational targeted therapy was identified
for six (50%) of these genetic abnormalities; none are ap-
proved for use in gynecologic cancers. One mutation (8%),
ERBB3, has targeted therapy in clinical trials for use in
Non-Small Cell Lung Cancer (NSCLC) and breast cancer,
while five did not have discrete targeted therapies. However,
three of these (60%) are associated with cellular pathways
involved in drug metabolism (GPR124, CMPK1, MBD1)
and two (40%) of the mutations (KMT2D and AKAP9) are
associated with carcinogenesis and thus being examined as
possible candidates for targeted therapy (Table 1).

An evaluation of the three main histologic profiles and
the genes associated with each phenotype per the litera-
ture is outlined in Tables 2, 3 and 4. The epithelial pro-
file (m=11), the largest group, including serous, clear
cell, mucinous and endometrioid carcinomas (data not
shown), had demographics mirroring the entire cohort
(Table 2). Of the genes associated with this phenotype,
none were significantly associated with the phenotype in

Table 1 Genes mutated in our cohort and found to be significant
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our cohort. Within this profile, primary tumors were
identified in the ovary (64%), cervix (18%) and endomet-
rium (18%). Carboplatin/Taxol was given as the chemo-
therapy regimen to 91% of the patients, with one patient
receiving Platinum/Etoposide (cervix; Table 2). Three of
the patients (cervix/endometrial) received radiation ther-
apy; none of the patients with ovarian malignancies re-
ceived radiation therapy. For novel targets identified by
molecular typing, the greatest number of potential tar-
gets was found in ovarian tumors (six; AKAP9, CMPK,
MBD1, ASXL1, ERBB3, KMT2D), while four were iden-
tified in the endometrial group (CMPK, MBD1, ROS1,
GPR124). No significant targetable gene mutations were
identified in the cervix group. In correlating outcomes
with gene mutation profiles, two patients in the ovarian
cohort had negative outcomes (ERBB3 only and a pa-
tient without identified targetable mutations; Table 2),
while all the patients in the cervix and endometrial
groups had positive outcomes (Table 2).

Patients with gynecologic neuroendocrine tumors (1 = 4)
had a significantly lower BMI and survival than the entire
cohort (Table 3). Of the genes associated with this histology
per the literature, none were significantly associated with
the phenotype in our cohort. Within this profile, 50% were
ovarian primaries, 25% from the cervix and 25% from the
endometrium. Platinum/Etoposide, standard of care, was
given to 75% of these patients; the patient with the endo-
metrial primary was given Carboplatin/Taxol (Table 3).
Two of the patients (cervix/endometrial) received ra-
diation therapy; the patient with the ovarian tumor
did not receive radiation therapy. For novel targets
identified by molecular typing, the greatest number of
potential targets was found in ovarian and endome-
trial tumors (six for each group) while three were

Gene n=20 p-value  p-value  Targeted Therapy
1-tailed  2-tailed
ASXL1 3(15%) 0.120 0.022 Sorafenib (CMML with FLT3-ITD mutation and a corresponding ASXL1 mutation)’
ALK 2(10%) 0.010  0.022  Crizotinib (NSCLC with ALK-EML4 fusion transformation)’; Ceritinib (NSCLC or other cancers)®
EGFR 1(5%) 0065 0.130  Erlotinib (NSCLC)% Afatinib (NSCLC); Gefitinib (NSCLC)®
ERBB3 4 (20%) 0014 0.028 MM-121 (Clinical Trial NSCLC; sensitizes to other chemo)’; MM-111 (Clinical Trial Breast Cancer);
U3-1287/AMG-888 (Clinical Trial Metastatic BCA)®
GPR124 4 (20%) 0014 0.028 miR-138-5p (NSCLC cell lines; sensitizes to chemo)'®
KMT2D 4 (20%) 0014 0.130 None currently; Aka MLL2; (Head and Neck cancer biology)'"
NTRK1 2(10%) 0109 0.022 Imatinib (Gleevec; GIST)'?
AKAP9 5(25%)  0.050 0.100 None currently; (Breast, Thyroid)'> '
ASXL 2 (10%)  0.011 0.241 Sorafenib (CMML with FLT3-ITD mutation and a corresponding ASXL1 mutation)’
CMPKT  5(25%)  0.050 0.100 Deactivation of gemcitabine'®
MBD1 5(25%)  0.050 0.100 Drug resistance (Pancreatic Cancer)'®
ROST 5(5%) 0.050  0.100 Crizotinib (NSCLC)"”

Both 1-tailed and 2-tailed p-values were determined; significant 2-tailed p-values are considered more sensitive; bold items indicate the p-value for genes found to

be significant between cohorts
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Table 2 Epithelial Profile
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n=11

Age

Range 23-40

Mean 339

Median 36
BMI

Range 24-614

Mean 34

Median 30
Survival

Range 369-660

Mean 542

Median 590

Chemo Rad

Location

Ovary 7 (64%) Carbo/Taxol 0

Cervix 2 (18%) Carbo/Taxol (1) 1

Plat/Etop (1) 1

Endometrial 2 (18%) Carbo/Taxol 1

Genes associated with this histologic type®

APC ERBB2 NRAS

ARIDTA FBXW7 PIK3CA

BRAF FGFR2 PPP2RTA

BRCA1 KRAS PTEN

BRCA2 MLH1 RNF43

CDKN2A MSH6 SMARCA4

CTNNB1 MYC TP53

DNMT3A NF1

Alive Novel Targets Profiles

n= 7ab

5 (71%) AKAP9 (3) ERBB3 only (1)°
CMPK (1) AKAP9 only (3)
MBD1 (1) CMPK, ASXL1 ERBB3 (1)
ASXL1T (1) MBD1, KMT2D (1)
ERBB3 (2) No significant genes (0)°
KMT2D (1)

2 (100%) 0 n/a

2 (100%) CMPK (1) CMPK, MBD1 (1)
MBD1 (1) ROS1, GPR124 (1)
ROST (1)
GPR124 (1)

2indicates these profiles are associated with negative outcomes in our cohort; ®one patient failed to have mutations in a significant gene; “data and sources

retrieved from http://cancer.sanger.ac.uk/cosmic

identified in the cervix group. In correlating outcomes
with gene mutation profiles, one patient in the ovarian
cohort had a negative outcome (ALK/GPR124/KMT2D;
Table 2), as did one patient in the endometrial cohort
(ROS1/ALK/ERBB3/GPR124/KMT2D/NTRKI). Interest-
ingly, these two patients each displayed ALK, GPR124 and
KMT2D mutations, the only overlapping mutations
between these two groups. One patient in each the ovarian
and the cervix cohorts had a positive outcome.

The remaining patients (n = 5) were categorized in the
sarcoma/other group, which included three sarcomas, a
germ cell tumor and a high-grade sex cord stromal
tumor. Overall survival was significantly lower than the
entire cohort and the other groups (259 days; Table 4).
Of the genes associated with this phenotype, none were
significantly associated with our cohort. Within this profile,
primary tumors were in the ovary (60%) and endometrium
(40%). Platinum/Etoposide was given to 33% of the patients
with ovarian tumors; two patients (66%) had no or un-
known chemotherapy (Table 4). Of the two patients with
endometrial cancers, one was given Gemzar/Taxotere,
while the other patients received no therapy. None of the

patients received radiation therapy. For novel targets as de-
fined by molecular typing, the greatest number was found
in ovarian tumors (six; Table 4), while three were identified
in the endometrial group. In correlating outcomes with
gene mutation profiles, two patients in the ovarian cohort
had negative outcomes (ROS1/EGFR and ROS1/ERBB3/
KMT2D/NIRK1; Table 4), as did one patient in the endo-
metrial cohort (GPR124 only).

In addition to mutational profiles associated with
negative outcomes, mutation load, reflecting the total
number of mutated genes predicted to have functional
relevance (both significant and non-significant), was
evaluated for each patient (Table 5). For mean mutation
load, the ovarian tumors in the epithelial cohort had 22,
while the neuroendocrine tumors had 27 and the
sarcoma/other averages were 27 and 29, respectively.
The endometrial tumors had an average mutation load
of 111 in the neuroendocrine group, while the sarcoma/
other endometrial tumors had an average mutation load
of 21. Interestingly, all tumors that exhibited negative
outcomes were void of mutations in APC and ABL2
(Table 5).
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Table 3 Neuroendocrine Profile
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n=4
Age
Range 13-40
Mean 29
Median 32
BMI
Range 21.5-395
Mean 29.1
Median 27.7
Survival
Range 189-596
Mean 366
Median 3395
Chemo Rad
Location
Ovary 2 (50%) Plat/Etoposide 0
Cervix 1 (25%) Plat/Etoposide 1
Endometrial 1 (25%) Carbo/Taxol 1

Genes associated with this histologic type®

APC P16
FHIT PTEN
FGFR1 RB
KRAS SOX
MCC TP53
MEN-2

MYCL

Alive Novel Targets Profiles

1 (50%) AKAP9 (1)
ASXLT (1)
MBD1 (1)
ALK (1)
GPR124 (1)
KMT2D (1)

AKAP9 (1)
ASXLT (1)
CMPKT (1

)

ROST (1
ALK (1)
ERBB3 (1)
GPR124 (1)
KMT2D (1)
NTRK1 (1)

AKAP9, ASXL1, MBD1 (1)
ALK, GPR124, KMT2D (1)

1 (100%) AKAP9, ASXL1, CMPK1 (1)

)

0 (0%) ROS1, ALK, ERBB3, GPR124,

KMT2D, NTRK1 (1)?

%indicates these profiles are associated with negative outcomes in our cohort; Pdata and sources retrieved from http://cancer.sanger.ac.uk/cosmic

A profile predictive of outcomes in our cohort was
completed using CART (Fig. 1). The mutation state of
AKAP9 was the most powerful differentiation between
positive and negative outcomes with AKAP9 mutations
associated with positive outcomes (n=5; 100%) and
AKAP9 genes void of identifiable mutation (AKAP9 (-))
associated with negative outcomes. Further evaluation of
negative outcomes revealed an AKAP9(-) background
with synchronous MBD1, APC and/or ABL2 mutations
all produced positive outcomes, while patients lacking
an identified mutation in these genes had negative out-
comes. The final predictive profile of negative outcomes
utilizing CART was found to be AKAP9(-)/MBD1(-)/
APC(-)/ABL2(-) with a mutation load of greater than
20.5 (Fig. 1).

Discussion

Gynecologic cancers in pre-menopausal women are un-
common. We investigated the correlation between hist-
ology and tumor molecular profiles on the outcomes of
20 young women with aggressive gynecologic cancers to

ascertain the possibility of targeted therapeutic options.
In addition, we sought to generate an overall profile for
these lesions in our cohort that more accurately reflects
the complex signaling pathways associated with the can-
cer phenotype to investigate which mutation, or combin-
ation, is driving the biology with the hope of further
expanding therapeutic options and therefore increasing
response rates [13, 14]. Typically, most targeted response
scenarios are one-to-one correlations that may not suf-
fice to maximize benefit, requiring additional informa-
tion in the process of utilizing sequencing information
to direct therapy. In our study, we examined the effect
of multiple, interacting mutations, mutational load, and
outcomes, the true clinical utility of genomic personal-
ized medicine which hinges on the implications of these
relationships [15].

Evaluating outcomes

Careful determination of outcomes for the patients in
our heterogeneous cohort was completed as an integral
part of our evaluation. Since all patients were members
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Table 4 Sarcoma/Other Profile
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n=5 Genes associated with this histologic type®
Age BRCA2
Range 15-39 CTNNB1
Mean 25 EGFR
Median 24 FOXL2
BMI c-KIT
Range 20-46.6 P16
Mean 316 TP53
Median 23
Survival
Range 15-867
Mean 2596
Median 182
Cancer Type
Sarcoma 3 Ovary (1) Endometrial (2)
Germ Cell 1 Ovary (1)
HG Sex Cord 1 Ovary (1)
Chemo Rad Alive Novel Targets Profiles
Location
Ovary 3 Plat/Etoposide (1) 0 1 (33%) MBD1 (1) MBD1, ROST (1)
None (1) ROST (3) ROS1, EGFR (1)
Unknown (1) EGFR (1) ROST, ERBB3, KMT2D,
ERBB3 (1) NTRKT1 (1)?
KMT2D (1)
NTRKT (1)
Endometrial 2 Gemzar/Taxotere (1) 0 1 (50%) CMPK1 (1) CMPK1, MBD1 (1)
None (1) MBD1 (1) GPR124 (1)*
GPR124 (1)

%indicates these profiles are associated with negative outcomes in our cohort; °data and sources retrieved from http:/cancer.sanger.ac.uk/cosmic

of a demographic typically void of gynecologic malignan-
cies with histologically aggressive tumors, and under-
standing the small size of our cohort, patients were
divided into two groups around the median survival of
the entire cohort. Patients in remission during the study
period were considered to have a positive outcome, as
this is perhaps the best outcome a patient with any of these
cancers could achieve. For patients diagnosed later within
the study parameters, the progression of their disease was
the deciding factor in their outcome classification despite

Table 5 Profiles associated with a negative outcome in our cohort

survival less than the median: remission was denoted as
positive while disease progression and death were denoted
as negative. These criteria were used in an attempt to
normalize the data to focus on the hypothesis that under-
lying genetic similarities exist within rare, aggressive tumors
despite tumor origin within different cell types.

Treatment impacts outcome. As such, each cancer was
treated with the standard of care for the identified his-
tology; all molecular typing that may have suggested
other effective therapeutics was done retrospectively and

Cancer Type Location Chemo Mutation Profile (significant genes) Mutation Load? APCP ABL2®
Epithelial Ovary Carbo/Taxol ERBB3 only (1) 22 neg neg
NE Ovary Plat/Etoposide ALK, GPR124, KMT2D (1) 27 neg neg
Endometrial Carbo/Taxol ROST1, ALK, ERBB3, GPR124, KMT2D, NTRK1 (1) m neg neg
Sarcoma/Other Ovary Unknown ROS1, EGFR (1) 27 neg neg
None ROST, ERBB3, KMT2D, NTRK1 (1) 29
Endometrial None GPR124 (1) 21 neg neg

mutation load in our cohort based on the genes in our molecular profile; °neg indicates no mutation
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n=20
Outcomes:
6 negative

14 positive

AKAP9 (-)
MBD1 (+)
- MBD1 (-)
100% positive

mutation load
<20.5%
n=2
100% positive

mutation load
>20.5%

AKAP9(+)

n=5
100% positive

APC (+)
n=2
100% positive

responsible for the aggressive phenotype

ABL2 (+)
n=1 n=6
100% positive

Fig. 1 CART Analysis Genetic Profile of Rare Gynecologic Cancers. Plus (+) indicates the presence of a genetic mutation; minus (-) indicates the
gene has no identified mutations. All six patients with negative outcomes had the same genetic profile including no mutations in AKAP9, MBD1,
APC and ABL2 but containing more than 20 mutated genes across the entire gene panel. This suggests that there are other genetic mutations

ABL2 (-)

100% negative

thus, did not impact outcomes. This could explain why
the clinicopathologic and treatment factors were not sig-
nificantly associated with outcomes in our cohort. Due
to the small study size, a larger difference would be
needed to indicate statistical significance while a smaller
difference in these factors in a larger population may
have shown some of these variables significant. As such,
we are suggesting a larger center verify our results.

Genetic mutations and histology

Functionally relevant gene mutations identified in our co-
hort were compared to those determined by the literature
for each histologic type (Tables 2, 3 and 4). None of the gene
mutations were found to correspond. All the lesions in our
cohort were considered rare as they were from a young
demographic typically void of gynecologic malignancies,
which prompted a query into the unique attributes of these
tumors collectively. Since the genesis of these lesions likely
deviates from typical cancer development in terms of hor-
monal impetus and time to progression, alternate molecular
pathway involvement is suggested. The rarity of gynecologic
malignancies in this age group further suggests the involve-
ment of similar and multiple genetic mutations impacting
unique biochemical pathways in the development of these
lesions despite histologic variation. In fact, the genetic ana-
lysis that identifies a common genetic profile in this diverse
group suggests that, despite differing histologic origins, early

and aggressive tumors may have a common molecular on-
togeny. This idea correlates with the premise of individual-
ized therapeutics that, while histologic origin is important, it
is equally important to consider the expression of particular
cell markers and receptors indicative of a specific molecular
signature even if that particular marker or signature is typic-
ally found in a different type of cancer.

A recent study identified unique genetic signatures in
early endometrial cancer of varied types that not only
identifies subtypes within this histology, but also notes
the genomic features that overlap with cancers of other
origins, suggesting that histologic classification of tu-
mors alone is insufficient [16]. Interestingly, many of the
mutations that were found important in the genetic clas-
sification of the early endometrial subtypes overlap with
ones that were found in our cohort: ARID1A, PPP2R1A
and PIK3CA (which was significantly associated with
outcomes in our study).

Multi-gene mutational analysis

Individually, the gene mutations with novel targets associ-
ated with the epithelial profile (Table 1) produce proteins
involved in cellular growth and signaling. AKAP9, a scaf-
folding protein, participates in the G2/M transition, inter-
acting with regulatory regions of various protein kinases
and phosphatases [17] MBD], a transcriptional repressor,
assists in regulation of the G2/M transition as well as
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regulation of PLK1 [18]. ERBB3, with known involvement
in cancer development, engages MAPK, PISK/AKT and
ERK signaling pathways [19], all important in cell prolifer-
ation and differentiation, as does ROS1 [20]. ASXL1 and
KMT2D (also known as MLL2), involved in transcrip-
tional repression through histone methylation [21, 22],
promotes signaling through the Wnt pathway. GPR124
promotes signaling through G-coupled receptors in Wnt
and is thought to play a role in angiogenesis [23]. CMPK
plays an important role in de novo pyrimidine biosyn-
thesis [24]. In addition to the genes associated with novel
targets in the epithelial group, ALK and NTRK1, paralogs
involved in PI3K/AKT and MAPK signaling [25, 26] were
found associated with the small sample of neuroendocrine
tumors. The sarcoma/other group only had one additional
targeted gene mutation, EGFR, also involved in the PI3K/
AKT signaling pathway [27].

Mutation-outcome correlation

Gene mutations resulting in alternately functioning pro-
teins involved in immense biochemical signaling cascades
may culminate in cellular phenotype and behavior alter-
ations. As such, patterns emerged when gene mutations
and patient outcomes in our cohort were correlated
(Table 4). In patients with negative outcomes, muta-
tions in four genes, either individually or in combin-
ation, were noted: ROS1, ALK, GPR124 and KMT2D
(MLL2). An evaluation of how these genes impact
intracellular signaling [http://string-db.org] revealed
that ALK and KMT2D (MLL2) proteins appear to
converge on CTNNBI1, a key member of the Wnt
pathway, important in cell adhesion and maintenance
of an appropriate cell cycle [28] (Additional file 4:
Figure S1). GPR124, ALK and KMT2D proteins con-
verge on HSP90AAI, a key regulator in PK1 activity
at the G2/M transition [24] (Additional file 5: Figure
S2). Interestingly, ROSI, involved in other less well
defined intracellular pathways, also interacts with
HSP90AAL1 and is important in the transformation of
non-small cell lung cancer (NSCLC) [29].

Novel therapeutics targeting the Wnt pathway are
under investigation; however, the complexity of this
pathway has made single strategy therapy difficult [30],
particularly due to the interconnectedness of oncogene
and tumor suppressor pathways. In addition, since
HSP90AA1 has been shown to stabilize several cancer
proteins, it is now an attractive target for cancer therapy
development [31].

Mutational load

Genomic instability (overall mutation load) acknowl-
edges multiple mutations in complex signaling cascades
effect cancer phenotypes [32] and the persistence of in-

stability depends on DNA repair, chromosome
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segregation, and cell cycle checkpoints for cessation of
cell cycle progression [33]. Additionally, the distribution
of genetic instability differs between cancers and varies
during carcinogenesis creating fluctuating instability and
heterogeneity within tumors [34]. In our study, mutation
load only considers functionally relevant mutations
within each primary tumor, both significant and not sig-
nificant in our cohort, suggesting that the presence of
mutations are indicators of cellular processes that can be
gauges of genetic instability, and thus, players in
carcinogenesis.

While mutation load comments on relative stability of
the genome, it does not infer the precise functional im-
pact of the mutations on cellular signaling. Multiple mu-
tations often converge to affect protein stability [35] and
activity, producing truncated protein subunits without
functionally relevant domains, proteins that are func-
tional but impaired, or in some cases, less than optimal
protein concentrations, diminishing their influence.
These scenarios don’t consider gene mutations that ob-
literate transcription, leaving a void in a biochemical
pathway [36]. Considering mutation load in the classifi-
cation of cancer has been done by other studies [16].

Taken together, the gene signature of each patient,
functionally relevant mutations and mutation load, were
analyzed by CART, evaluating the variables that were the
best predictors of positive versus negative outcomes in
our patient cohort (Fig. 1). The gene best able to stratify
positive/negative outcomes was AKAP9. While typically
gene mutations are thought to confer negative out-
comes, all patients in our cohort with an AKAP9 muta-
tion had a positive outcome (n=5; 100%). Numerous
studies illustrate that while gene mutations correlate
with negative outcomes [37], mutations accompany posi-
tive prognoses, such as ERBB3 in serous ovarian cancer
[38, 39]. The theory behind this phenomenon stems
from the complexity of the signaling cascade coupled
with allelic burden and mutated proteins’ interactions
with other mutations and other pathways to attenuate
the implications of individual alterations in an individual
protein (Additional file 4: Figsure S1 and Additional file
5: Figsure S2) [40].

Further CART analysis indicated that, like AKAP9,
mutations in MBD1, APC and ABL2 conferred posi-
tive outcomes, suggesting that these mutations may
alter complimentary pathways that allow for a favo-
rable prognosis. In addition, positive outcomes had a
lower average mutation load, indicating less genomic
instability than patients with negative outcomes.
Overall, non-mutated AKAP9, MBD1, APC and ABL2
in conjunction with a higher mutation load were
associated with negative outcomes (n=6; 100%),
suggesting mutations in other genes not identified in our
cohort as driving the cancerous phenotype. Interestingly,
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AKAP9, MBD1 and ABL2 mutations have not been asso-
ciated with gynecologic malignancies, while APC muta-
tions has been shown to be associated with a minority of
endometrial carcinomas [41].

The analysis of our cohort suggests that for rare gyne-
cologic cancers in young women, other drivers, yet to be
identified, potentially impact the development and
aggressive behavior of these lesions, highlighting the
complexity of cancer development. Additionally, when
considering typical cancer drivers such as p53 or BRCA,
is it possible that mutations in these genes ‘develop’ over
time to create a cancerous phenotype while mutations in
other genes affecting alternate biochemical pathways de-
velop in such a manner to affect phenotype of the cancer
in a manner to produce a more aggressive tumor earlier?
Is it also possible that a particular mutation can cause a
cascade of events to produce an aggressive phenotype in
a young person and still be sporadic?

Implications and future directions

The relationships that emerge from this analysis of twenty
patients and their outcomes create a new set of observa-
tions/questions outside of the one-to-one mutation:out-
come paradigm. Firstly, we have documented genetic
mutations that correlate with positive outcomes from
standard of care chemotherapies. For these patients, would
genomic sequencing and identification of mutations lead to
more effective use of non-targeted therapies? Secondly,
how meaningful is the finding that combinations of muta-
tions correlate to outcomes? Can the relationship between
discrete mutations that apparently interact to influence out-
comes be interrogated to provide rationale to predict which
mutations could plausibly influence each other and which
mutation combinations do not? Lastly, this analysis merits
a larger study with longer outcomes. What size of study
and what additional data would be necessary to derive
meaningful implications for the clinical utility of this kind
of outcome correlation?

Notably, this analysis has been by design limited as to
the additional information utilized to establish correlation
with patient outcomes. The information comes exclusively
from a fixed and somewhat reductionistic data source —
FFPE tissue — an archive of the genomic state of the
tumor at a single time-point, the results from which are
difficult to project forward into dynamic scenarios
influenced by a number of poorly understood or controlled
interactions. As opposed to such approaches, the recreation
and/or manipulation of complex living systems themselves
provides an additional source of information. The paradigm
shift in in vitro techniques to three-dimensional (3D) cell
culture microenvironments is demonstrating increasingly
meaningful clinical correlations [42] with patient response
outcomes. The use of genomic analysis to inform drug se-
lection followed by the generation of patient-specific
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phenotypic, live cell drug response data then creates an en-
tirely new source of data. When coupled with complex ana-
lysis of multiple, interacting mutations and mutational load,
as has been demonstrated in the current study, it could re-
sult in particularly powerful elucidation of the complex re-
lationship between drugs and cancer patient response.

Conclusion

We sought to generate an overall genetic profile for rare
histologically aggressive gynecologic tumors in premeno-
pausal women that more accurately reflects the complex
signaling pathways associated with the cancerous pheno-
type in hopes of further expanding therapeutic options.
Through evaluating the effect of multiple interacting
mutations, mutational load and outcomes, we identified
mutational patterns associated with good and bad
outcomes in our cohort. Firstly, the data illustrates in-
volvement of similar and multiple genetic mutations
impacting unique biochemical pathways in the develop-
ment of these lesions despite histologic variation. Within
each histologic type, genes identified in our cohort did
not overlap with those identified in the literature, sug-
gesting that early and aggressive tumors may have a
unique and common molecular ontogeny. Interestingly,
some of the mutations that were found important in our
cohort were also found important in the genetic classifi-
cation of the early endometrial cancer.

The gene signature of each patient, functionally
relevant mutations and mutation load were analyzed
by CART, evaluating the variables that were the best
predictors of positive versus negative outcomes in our
patient cohort. Interestingly, mutations in AKAP9,
MBD1, APC and ABL2 along with a lower average
mutation load conferred positive outcomes, indicating
less genomic instability than patients with negative
outcomes and suggesting that these mutations may
alter complimentary pathways that allow for a favor-
able prognosis. Non-mutated AKAP9, MBDI1, APC
and ABL2 in conjunction with a higher mutation load
were associated with negative outcomes. Many of the
gene products identified in our cohort are predicted
to converge on the PI3K/AKT, MAPK and the Wnt
signaling pathways, all of which are under investiga-
tion for novel therapeutics.

Overall, early and rare cancers appear to have a unique
genetic signature and genomic instability, acknowledging
the biochemical complexity that portends cancerous phe-
notypes, conflicting the one-to-one mutation:outcome
paradigm. Teasing out meaningful mutations to inform
drug selection followed by the generation of patient-specific
phenotypic, could result in particularly powerful elucidation
of the complex relationship between genetic profiles, drugs
and cancer patient response.



Pinckney et al. Applied Cancer Research (2018) 38:13

Additional files

Additional file 1: Table S1. Ampliseq Comprehensive Cancer Panel.
(DOCX 140 kb)

Additional file 2: Table S2. Patient Demographics (DOCX 83 kb)
Additional file 3: Table S3. Histology and Grade* (DOCX 77 kb)

Additional file 4: Figure S1. ALK and KMT2D (MLL2) converge on
CTNNB1. An evaluation of the potential role of the gene products from
mutated genes in our cohort that are associated with negative outcomes
was completed to potentially identify pathways that could be targeted
for novel therapy in this young group. String®, a protein-protein network
modeling website sponsored by the String Consortium and the Swiss In-
stitute of Bioinformatics (SIB) [http:/string-db.org], was used to postulate
how the gene mutations were connected in biochemical pathways that
could potentially create the carcinogenic phenotype. In our cohort, ALK
and KMT2D (MLL2) gene mutations were found to be associated with
both ovarian and endometrial negative outcomes in patients with neuro-
endocrine histology. In the String program, the ALK and KMT2D proteins,
while being involved in multiple pathways, appear to converge on
CTNNBT1, a key member of the Wnt pathway. The Wnt pathway is import-
ant in cell adhesion and maintenance of an appropriate cell cycle and
has been found to be compromised in a variety of cancers. Additionally,
dysregulation of the Wnt pathway has recently been implicated in main-
tenance of cancer stem cells, metastasis and immune control (Zhan T et
al, Oncogene 2017; 36:1461-1473). The String algorithm also revealed
that HSP90AAT is also involved in this complex pathway. HSP90AA1 has
been shown to be a prognostic indicator of both liver and breast cancers.
(https://www.proteinatlas.org/ENSG00000080824-HSP90AA1/pathology)
(DOCX 687 kb)

Additional file 5: Figure S2. GPR124, ALK and KMT2D proteins
converge on HSP90AAT. An evaluation of the potential role of the gene
products from mutated genes in our cohort that are associated with
negative outcomes was completed to potentially identify pathways that
could be targeted for novel therapy in this young group. String®, a
protein-protein network modeling website sponsored by the String
Consortium and the Swiss Institute of Bioinformatics (SIB) [http://string-
db.orgl, was used to postulate how the gene mutations were connected
in biochemical pathways that could potentially create the carcinogenic
phenotype. Gene mutations in GPR124, ALK and KMT2D (MLL2) were
associated with negative outcomes in Sarcome and Neuroendocrine
histologies in our cohort and converge on HSP90AAT1, a chaperone pro-
tein associated with an unfavorable prognosis in both liver and breast
cancers. HSP90AAT is a key regulator in PK1 activity at the G2/M transi-
tion of the cell cycle. Inhibition of HSPO9OAAT and PK1 halts progression,
promoting apoptosis. [http://string-db.org]; [www.genecards.org/cgi-bin/
carddisp.pl?gene=HSP90AA1&keywords=HSPI0AAT]. Both Additional files
4 and 5: Figure S1 and S2 illustrate the complexity of the carcinogenic
phenotype and illustrate the variety of pathways available if a single or
even multiple pathways are blocked (DOCX 271 kb)

Abbreviations

ABL2: ABL2 is a cytoplasmic tyrosine kinase that plays a role in cytoskeletal
rearrangements; AKAP9: The A-kinase anchor proteins (AKAPs) are a group of
structurally diverse proteins which have the common function of binding to
the regulatory subunit of protein kinase A (PKA) and confining the holoen-
zyme to discrete locations within the cell; ALK: The ALK gene provides
instructions for making a protein called ALK receptor tyrosine kinase, which
is part of a family of proteins called receptor tyrosine kinases;

ANOVA: Analysis of Variance statistical test used to analyze the differences
among group means; APC: The APC protein acts as a tumor suppressor;

BMI: Body Mass Index; CART: Classification and Regression Tree; analysis to
determine a set of if-then logical (split) conditions that permit accurate
prediction or classification of cases; CMPK1: This gene encodes one of the
enzymes required for cellular nucleic acid biosynthesis; EGFR: The EGFR gene
provides instructions for making a receptor protein called the epidermal
growth factor receptor, which spans the cell membrane so that one end of
the protein remains inside the cell and the other end projects from the
outer surface of the cell; ERBB3: This gene encodes a member of the
epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases;
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ERK: Extracellular signal-regulated kinases; FFPE: Formalin-fixed, Paraffin-
embedded tissue; FIGO: The International Federation of Gynecology and
Obstetrics (FIGO) staging systems for vulva, cervix, endometrium, and
sarcomas; GPR124: Probable G-protein coupled receptor 124 gene codes for
a protein that is a member of the adhesion-GPCR family of receptors;

IRB: Institutional Review Board; KMT2D: The KMT2D gene, also known as
MLL2, provides instructions for making an enzyme called lysine-specific meth-
yltransferase 2D that is found in many organs and tissues of the body;
MAPK: Proteins that are involved in pathways directing cellular responses to
a diverse array of stimuli, such as mitogens, osmotic stress, heat shock and
proinflammatory cytokines; MBD1: this gene is a member of a family of
nuclear proteins that functions in transcription repression and in other
protein interactions; NSCLC: Non-Small Cell Lung Cancer; NTRK1: The NTRK1
gene provides instructions for making a protein that is essential for the
development and survival of neurons; this protein acts as a protein kinase
involved in cell growth and survival; PI3K/AKT: Pathway is an intracellular
signaling pathway important in regulating the cell cycle;

Polyphen: Polymorphism Phenotyping is a tool which predicts possible
impact of an amino acid substitution on the structure and function of a
human protein using straightforward physical and comparative
considerations. Please, use the form below to submit your query; ROS1: This
proto-oncogene, highly-expressed in a variety of tumor cell lines, belongs to
the sevenless subfamily of tyrosine kinase insulin receptor genes; SIFT: SIFT
predicts whether an amino acid substitution affects protein function. SIFT
prediction is based on the degree of conservation of amino acid residues in
sequence alignments derived from closely related sequences, collected
through PSI-BLAST. SIFT can be applied to naturally occurring nonsynon-
ymous polymorphisms or laboratory-induced missense mutations. (http://
provean.jcvi.org/index.php/); TNM: The TNM Classification of Malignant
Tumors is a notation system that describes the stage of a cancer which
originates from a solid tumor with \alphanumeric codes. T describes the size
of the original (primary) tumor and whether it has invaded nearby tissue;

N describes nearby (regional) lymph nodes that are involved; M describes
distant metastasis.); Wnt pathway: The Wnt signaling pathways are a group
of signal transduction pathways made of proteins that pass signals into a cell
through cell surface receptors
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