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Abstract

perceived, and vice versa.

cued to rate, for a second time, one of four.

Keywords: Ensemble perception, Scenes, Valence

Background: The visual system uses ensemble perception to summarize visual input across a variety of domains.
This heuristic operates at multiple levels of vision, compressing information as basic as oriented lines or as complex
as emotional faces. Given its pervasiveness, the ensemble unsurprisingly can influence how an individual item is

Methods: In the current experiments, we tested whether the perceived emotional valence of a single scene could
be influenced by surrounding, simultaneously presented scenes. Observers first rated the emotional valence of a
series of individual scenes. They then saw ensembles of the original images, presented in sets of four, and were

Results: Results confirmed that the perceived emotional valence of the cued image was pulled toward the mean
emotion of the surrounding ensemble on the majority of trials, even though the ensemble was task-irrelevant.
Control experiments and analyses confirmed that the pull was driven by high-level, ensemble information.

Conclusion: We conclude that high-level ensemble information can influence how we perceive individual items in
a crowd, even when working memory demands are low and the ensemble information is not directly task-relevant.

Significance

If we encounter someone who appears upset, the appro-
priate response might be to express sympathy or offer
support to that individual. Successful interaction with an
individual depends on a veridical interpretation of their
emotional state. However, can the surrounding scene
context influence an observer’s judgment about an indi-
vidual’s emotional state? If, in the above example, we
saw that sad individual in the context of a party where
everyone appeared to be happy, would that influence
how upset we perceived that person to be? The current
experiments suggest, yes, the interpretation of an indi-
vidual’s emotional state is biased toward the emotional
state of other nearby people, even when that information
is irrelevant. This suggests that ensemble information,
while a generally useful algorithm for compressing
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redundant information, can have unintended, and per-
haps undesirable, consequences for the perception of
one’s emotional state.

Background

Conscious visual perception tends to be a singular and uni-
fied experience, despite an overwhelming amount of incom-
ing visual information. Although how perceptual unification
is achieved remains unresolved, psychologists have identified
a number of heuristics that may provide some insight into
this challenge (Helson, 1933; Wertheimer, 1923). For ex-
ample, the Gestaltists conceived of a number of simple rules
for determining the likelihood that something would be per-
ceived as a singular surface (e.g,, good continuation, proxim-
ity, good form). These rules may be used to guide the
successful segregation of textures and surfaces (ala Marr,
1982), a likely prerequisite to a unified perceptual experience.
Convergent evidence comes from neurophysiology, which
has revealed a number of convergent cellular mechanisms
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that map onto the Gestalt rules, such as border ownership
cells (Zhou, Friedman, & Von Der Heydt, 2000), cells that re-
spond to subjective contours (Von der Heydt, Peterhans, &
Baumgartner, 1984), and cells that respond to complex
shapes and contours (Tanaka, 1996), forging an important
link between psychophysical and neuroscientific approaches.

These mechanisms are still insufficient, however, to
support a wholly veridical perceptual experience. The
shared ‘grand illusion’ of visual completeness (Noe,
Pessoa, & Thompson, 2000) belies how impoverished
our visual consciousness truly is (Luck & Vogel, 1997;
Rensink, ORegan, & Clark, 1997; Simons & Chabris,
1999). We must appeal to additional heuristics to ac-
count for a unified perceptual experience in the face of
limited representational fidelity. The heuristic most ger-
mane to the current study is the phenomenon of ensem-
ble perception, the visual system’s tendency to extract an
average representation from redundant information
within a scene (Ariely, 2001). The ensemble system sum-
marizes a complex scene efficiently and succinctly, but
at the expense of detailed representations at the individ-
ual item level (i.e., it creates the experience of complete-
ness despite limited information). Ensemble perception
is ubiquitous, operating at multiple levels across the vis-
ual system (Haberman, Brady, & Alvarez, 2015), from
basic features such as size (Chong & Treisman, 2003,
2005a), color (Maule, Witzel, & Franklin, 2014), speed
(Watamaniuk & Duchon, 1992), orientation (Parkes,
Lund, Angelucci, Solomon, & Morgan, 2001), and num-
ber (Halberda, Sires, & Feigenson, 2006), to higher-level
features such as emotion (Haberman & Whitney, 2007,
2009), identity (Fockert & Wolfenstein, 2009; Neumann,
Schweinberger, & Burton, 2013), biological motion
(Sweeny, Haroz, & Whitney, 2012), eye gaze (Sweeny
et al, 2012; Sweeny & Whitney, 2014), and animacy
(Leib, Kosovicheva, & Whitney, 2016). It is robust to
variations in time (Albrecht & Scholl, 2010; Haberman,
Harp, & Whitney, 2009; Hubert-Wallander & Boynton,
2015), spatial position (Alvarez & Oliva, 2009; Chong &
Treisman, 2005b), and impoverished visual information
(Haberman & Ulrich, 2019), and conscious access may
not even be necessary (Alvarez & Oliva, 2008; Fischer &
Whitney, 2011; Haberman & Whitney, 2011). Summary
representation is not restricted to the central moment,
as observers represent other summary statistical infor-
mation, such as variance and range (Haberman, Lee, &
Whitney, 2015; Lau & Brady, 2018; Solomon, 2010).
Ensembles are so efficiently accessed, they tend to be the
default representation when faced with memory or
perceptual uncertainty about line length (Duffy,
Huttenlocher, Hedges, & Crawford, 2010), time judg-
ments (Jazayeri & Shadlen, 2010), emotional expression
(Haberman & Whitney, 2009), and internal and external
perceptual noise (Olkkonen, McCarthy, & Allred, 2014).
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Some researchers have argued that ensemble percep-
tion, given its visual pervasiveness, may provide a source
of stability in a dynamic and uncertain visual environ-
ment (Cohen, Dennett, & Kanwisher, 2016; Corbett &
Melcher, 2014). While change blindness reveals a strik-
ing disconnect between what we think we see and what
we can actually report seeing (Simons & Ambinder,
2005), many examples of change blindness tend to dis-
rupt the local scene statistics while keeping global scene
statistics, as outlined Oliva and Torralba (2006), intact.
Recent work, however, reveals that when global scene
statistics are disrupted, we are explicitly sensitive to
those changes (Alvarez & Oliva, 2009), in line with the
notion that we may depend on global ensemble informa-
tion (akin to texture segregation) to rapidly categorize a
scene (Brady, Shafer-Skelton, & Alvarez, 2017). Ensem-
ble perception may help to maintain perceptual stability
exactly because it is robust to local scene perturbations,
similar to how below-threshold internal noise goes un-
noticed despite its continued presence (Morgan, Chubb,
& Solomon, 2008).

Although numerous studies have shown that observers
possess limited knowledge regarding the individual ele-
ments of a set despite precise knowledge of the average
(Chong & Treisman, 2003b; Haberman & Whitney,
2007), the average logically must be derived from infor-
mation about the individuals (Haberman, Brady, et al,
2015; Neumann, Ng, Rhodes, & Palermo, 2017). How-
ever, given the instability of the individual item repre-
sentations (Alvarez, 2011; Haberman & Whitney, 2012),
it follows that they may be more susceptible to percep-
tual alteration by the more robust summary representa-
tion, even when the summary is task-irrelevant. Indeed,
there is already some evidence that average size and
average orientation information is hierarchically encoded
such that individual judgments may impact judgments
about the ensemble and vice versa (Brady & Alvarez,
2011; Utochkin & Brady, 2020). Relatedly, recent work
has revealed that an ensemble of faces can influence the
memory representation of an individual face within the
set, such that a neutral face may be recalled as happier
when presented with several other happy faces (Corbin
& Crawford, 2018; Griffiths, Rhodes, Jeffery, Palermo, &
Neumann, 2018).

Previous research has suggested that the interaction
between the individual and ensemble might reflect an
‘optimal integration’ of information in order to minimize
noise at the individual item level (Brady & Alvarez,
2011). That is, when the visual system is inundated with
too much information, an efficiently derived average
may be used as a guide for creating a more precise rep-
resentation of a single individual. While ensembles may
provide this benefit when visual working memory cap-
acity has been exceeded, the current experiments reveal



Alwis and Haberman Cognitive Research: Principles and Implications

a strong influence of the ensemble on the individual
even when such systems are not overly taxed. Indeed,
the existence of an ensemble representation is not predi-
cated on overwhelming working memory systems (al-
though they may be most valuable under such
conditions) — whether set information is derived auto-
matically or in parallel is not diagnostic of ensemble rep-
resentations (Whitney & Yamanashi Leib, 2018). Most
critical for our purposes is whether more than one elem-
ent has been integrated into a moment of central
tendency.

The mounting evidence that reveals a strong influence
of the ensemble on the individual should come as little
surprise to individuals familiar with research on emotion
perception, as it is well known that context matters
when evaluating facial expressions (Barrett, Mesquita, &
Gendron, 2011; Walker & Vul, 2014). Faces are rarely
seen in pure isolation, and work on the ensemble per-
ception of faces begins to address this concern by simul-
taneously presenting multiple faces across emotions,
identities, and races. However, even these studies fall
short of displaying a complete context by removing fea-
tures such as hair or by presenting images extracted
from a much richer scene. Indeed, recent work has dem-
onstrated the perception of information provided by
scene context with facial information obscured closely
matches the perception of that scene when facial infor-
mation is fully visible (Chen & Whitney, 2019). Thus, far
from interfering with emotion recognition, scene context
may serve to enhance it. In the current experiments, we
use a stimulus set that preserves contextual information,
thus we refer to multiple exemplars presented simultan-
eously as an ensemble of scenes. While all the images
contain a visible face in some format, the additional con-
text serves to enhance, and even hone, the perception of
emotion in each stimulus.

Observers were asked to provide a valence rating for each
of the scenes presented individually. Ensembles of four
scenes were then constructed based on observer responses
(all positively valenced or negatively valenced). Observers
were asked to then provide a second valence rating of a sin-
gle, cued scene from the ensemble. The only difference be-
tween the first and second viewings was the cued image’s
coincidence with the three other images. To preview our re-
sults, the rating of the cued scene was pulled in the direction
of the average valence of the irrelevant images over 70% of
the time. Control experiments showed that the pull was un-
equivocally toward the average valence and not the valence
of just one of the unattended items. Overall, our findings
show that an irrelevant ensemble can influence the perceived
valence of an individual item. This operates over high-level
scene stimuli, does not result from taxing visual working
memory capacity, and occurs in response to the whole en-
semble, not just a single, subsampled item.
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Experiment 1

Method

Participants

Fifty Rhodes College undergraduates, ages 18 to 22, par-
ticipated in this study for course credit. All participants
gave informed consent and had normal or corrected-to-
normal vision. This research, and all research described
herein, was conducted in accordance with the Declar-
ation of Helsinki and was approved by the Institutional
Review Board at Rhodes College.

Stimuli and Design

Experiments were implemented using custom scripts
written in Psychtoolbox (Brainard, 1997) within Matlab.
Each experiment was divided into two parts, completed
in a single experimental session. Stimuli were images
depicting complex scenes of varying emotional valence,
collected from advertisements appearing in the Ameri-
can Journal of Psychiatry during the 1950s for a separate
research project. Stimuli were displayed on a Dell flat
screen monitor at a resolution of 1920 x 1080. In Part I,
all images were 600 x 600 pixels subtending 16.2° x 16.2°
of visual angle, displayed in the center of the screen. In
Part II, an ensemble of four images, each 280 x 280
pixels subtending 7.6° x 7.6° of visual angle, appeared in
a square formation with each image displayed 3.53° de-
grees radially from the center. These sets were con-
structed from the same images observers rated in Part 1.

Procedure
Participants sat 63 cm from the screen. In Part I, they
viewed a total of 190 unique images presented in ran-
dom order. Each image was shown for at least 1.5 sec-
onds, at which point they were instructed to rate the
image’s emotional valence on a scale from -5 (negative)
to +5 (positive), excluding O (Fig. 1). In Part II, partici-
pants viewed the same images in sets of four, with each
image in the set being unique. After 1 second, partici-
pants were cued to one of the four images at random by
highlighting the target image with a green border. After
an additional 500 ms, the images disappeared and the
participants were instructed to rate the emotional
valence of the cued image, just as they did in Part I. Sets
consisted of either only positive images or negative im-
ages based on the ratings given in Part I. Each partici-
pant performed 200 trials in Part IL

We chose to fix the order of the blocks (Part I: rate in-
dividual images followed by Part II: rate those images
again when surrounded by an ensemble) because it pre-
served critical individual differences. Part II is tailored to
each observer’s perceptual experience. While we ac-
knowledge potential concerns associated with a fixed
serial order, the alternative, where an independent sam-
ple for each part of the experiment is used, creates even
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from a set of four in Part Il
.

Fig. 1 Example trials from Part | (feft) and Il (right). Participants rated the emotional valence of a single image in Part | and then a cued image

more problems. For example, averaging the ratings of in-
dividual images results in regression to the mean, whereby
the functional range of the valence ratings is drastically re-
duced. Since Part II depends on the ratings of Part I, this
restricted range would make it impossible to generate en-
sembles that were sufficiently different from the target
image. Thus, we opted for the fixed order in order to pre-
serve individual differences across valence ratings.

Results and Discussion

For each participant, we calculated the proportion of tri-
als in which the emotional rating of the cued image in
Part II shifted in the direction of the ensemble (i.e., the
average valence of the other three items given by the
participant in Part I). We only included trials in which
the difference between the mean emotion of the irrele-
vant ensemble and the original rating was greater than
0.5 in order to ensure there was a perceptually meaning-
ful difference that could create a shift. On average, the
rating of the cued image was shifted toward the irrele-
vant ensemble on 71.4% of trials (Mp;j,s = 0.71, SDgpj,s =
0.06, t(49)=8.12, p<0.001), compared to 65% chance
performance as determined by Monte Carlo simulations,
which simulated 10,000 observers selecting target re-
sponses at random for Part II; Fig. 2.

Note that the simulations predicted 65% of the trials
would be pulled in the direction of the irrelevant ensem-
ble just by chance. The reason this number is so high is
due to the statistical skew of the distribution. For ex-
ample, if an observer rated an image in Part I as +5 in

valence, it will always be true that the second rating in
Part II will be the same or less than + 5, since responses
cannot be > 5. Therefore, it is difficult to determine the
pull of the irrelevant ensemble independent of the re-
sponse bias introduced by our experimental design. To
address this, we ran a secondary, more conservative ana-
lysis designed to remove the response bias. We included
only trials in which the original rating of the image from
Part I was exactly +3, which is the midpoint of the
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Fig. 2 Percent of trials in which emotional bias was in the expected
direction. Bias in the expected direction was calculated by determining
the percent of cued image ratings that shifted toward the mean of the
distractor image ratings. ‘No Bias' line determined by Monte Carlo
simulations. Error bars represent one standard error of the mean
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response distribution. This approach allowed us to iso-
late the influence of the irrelevant ensemble. This con-
trol analysis resulted in an average of 20 trials per
participant included in the analysis (although this re-
sulted in the inclusion of only 10% of the data per obser-
ver, the large sample size overcame any power concerns,
as revealed by the statistical results below). On average,
participants’ ratings of the cued image shifted in the dir-
ection of the mean ensemble rating on 73% of these tri-
als, comparable to what was found in the original
analysis (Mpj,s = 0.73, SDgpips =0.19, t(49) =842, p=<
0.001, compared to 45% chance performance, as deter-
mined by Monte Carlo simulations). The impact of in-
cluding only the ratings of +3 was primarily on the
Monte Carlo simulations, which now showed chance
responding (i.e., no bias) at 45%. With the potential re-
sponse bias removed, we have created a purer measure
of the influence of the irrelevant ensemble. We used this
approach for all subsequent experiments. If emotional
information of the cued images in Part II was processed
independently of the other items in the set, we would
expect no consistent bias of the ratings of images in Part
II relative to Part I. However, the emotional rating of the
cued image was pulled toward the mean emotional rat-
ing of the surrounding images on a significant propor-
tion of the trials. These results suggest that high-level,
irrelevant emotional information consistently influences
the perceived emotion of individual scenes.

This bias is not simply the result of the influence of a
single, random item from the irrelevant ensemble, but
rather reflects its aggregate influence. We once again
conducted the bias analysis described above, but instead
of determining the influence of the entire ensemble on
the rating of the cued image, we determined the influ-
ence of a single, randomly selected item from the set. As
before, these calculations were based on participants’
ratings from Part I of the experiment. For each observer,
we averaged the results of 5000 iterations of the sam-
pling procedure to obtain the average pull of a single
image from the set. Only 56.6% of the sampled trials
were pulled in the direction of the irrelevant ensemble,
averaged across observers. This was significantly above
chance (t(49) = 4.6, p <0.001) suggesting a single irrele-
vant item affected the target valence rating. Critically,
however, the random sample exerted significantly less
pull on that rating than when the whole ensemble was
considered (t(49) = 4.43, p <0.001). This analysis demon-
strates that the entire ensemble, not just a randomly
sampled image within the ensemble, is responsible for
influencing the perceived emotion of the cued image.

We then calculated the magnitude of the pull on those
trials that demonstrated a pull toward the mean. On
average, the difference between the irrelevant ensemble
rating (rated in Part I) and the original rating of the cued
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image (also rated in Part I) was 0.61, and the difference
between the original rating of the cued image (rated in
Part I) and the new rating of the cued image (rated in
Part II) was 0.1. This means that the shift of the ratings
was around 16% of the maximum possible, an impressive
shift given observers were not supposed to be respond-
ing to the uncued stimuli.

Experiment 2

Experiment 1 established that perceived emotion of an
individual scene can be influenced by an irrelevant sur-
rounding ensemble. Additional analyses demonstrated
that randomly sampled, individual images did not match
the bias effect revealed by the average of the entire en-
semble. Experiment 2 replicated Experiment 1 using
inverted ensemble images while keeping the target image
upright. Inverting images decreases recognition of faces
while keeping individual part information intact (Farah,
Wilson, Drain, & Tanaka, 1998; McKone, Martini, &
Nakayama, 2001), supporting the notion that faces are
processed configurally. Expression recognition is also
impaired for both single faces (Bartlett & Searcy, 1993)
and ensembles of faces (Haberman & Whitney, 2007).
We therefore hypothesized that the emotional pull of
the inverted ensemble images would be weaker than in
Experiment 1.

Method

Participants

Nineteen Rhodes College undergraduates, ages 18 to 22,
participated in this study for course credit. All partici-
pants gave informed consent and had normal or
corrected-to-normal vision.

Stimuli and design

The setup for Experiment 2 was identical to that of Ex-
periment 1, except that ensemble images in Part II were
inverted, while the target image remained upright
(Fig. 3).

Procedure
The experimental procedure was identical to that of Ex-
periment 1.

Results and discussion

The bias analysis was conducted as described in Experi-
ment 1. Similar to Experiment 1, participants’ ratings of
the cued image shifted in the direction of the mean
emotional rating of the ensemble (M =0.78, SD =0.14,
t(18) =69.71, p = <0.001, compared to 45% chance per-
formance determined by Monte Carlo simulations).
Emotional pull persisted despite the inversion of the
ensemble images, suggesting that ensemble valence in-
formation from the inverted scenes still influenced the
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Fig. 3 Example trial from Part Il. Participants saw an upright image
that was cued after 1 second along with inverted distractor images

\

perceived valence of the cued scene. Additionally, the
amount of bias for the inverted condition likely came
from the same population distribution as the upright
condition, as indicated by a Bayesian independent sam-
ples ¢ test implemented in JASP (BFy;, =2.14; Jarosz &
Wiley, 2014)). Although these results seem to contrast
our initial hypothesis, which was based on the ensemble
literature (Haberman & Whitney, 2007), accurate emo-
tional processing is still possible when relying just on
component information, which is still available with
inverted stimuli (Lipp, Price, & Tellegen, 2009; McKel-
vie, 1995). In previous ensemble work, observers were
explicitly asked to extract the average expression of a set
of inverted faces, a task that relies upon precise repre-
sentations. In the current task, it is possible that access
to the overall valence of a set of scenes, which may not
require the same level of precision required in previous
ensemble tasks, remains robust in the presence of inver-
sion. The bias effect is as large as it was in Experiment
1, a testament to the power of averaging, even when ac-
complished unintentionally.

Experiment 3

Experiments 1 and 2 demonstrate that an ensemble can
bias the perceived emotion of an individual image, re-
gardless of the ensemble orientation. Experiment 3 fur-
ther pushes the limits of unintentional averaging, testing
whether the bias effect is mitigated when semantic con-
tent is disrupted by scrambling the ensemble images.
We hypothesized that there would be little to no emo-
tional pull of the cued image toward the average emo-
tional valence of the ensemble.

Method

Participants

Thirty-one Rhodes College undergraduates, ages 18 to
22, participated in this study for course credit. All partic-
ipants gave informed consent and had normal or
corrected-to-normal vision.
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Stimuli and design
The setup for Experiment 3 was identical to those of Ex-
periments 1 and 2 except that all images in Part II were
scrambled prior to running any participants, ostensibly
removing high-level, semantic content from the images
while preserving low-level image features. The scram-
bled images used were the same across participants. On
each trial, participants viewed four scrambled images,
and after 1 second, the target image was unscrambled
and cued with a green border while the other images
remained scrambled (Fig. 4). The set remained on the
screen for 1.5seconds before disappearing, at which
point the participants were instructed to rate the emo-
tional valence of the cued image.

Stimuli were scrambled by dividing the images into 8
x 8 grids and randomly permuting the arrangement of
the tiles.

Procedure

The experimental procedure was identical to those of
Experiments 1 and 2 except for the use of scrambled
images.

Results and Discussion

A bias analysis was conducted as described in Experi-
ment 1. Participants’ ratings of the cued image was
shifted toward the mean emotion of the surrounding
scrambled images (M =0.62, SD =0.19, t(30) =4.74, p <
0.001, compared to 45% chance performance as deter-
mined by Monte Carlo simulations; Fig. 2). However, the
effect of the scrambled ensemble was significantly
weaker compared to the upright images shown in Ex-
periment 1, as determined by an independent samples ¢
test (t(79) = 2.52, p = 0.014).

We were somewhat surprised to find a significant pull
toward the ensemble of the scrambled images, given the
disruption of the original images’ configuration. We ex-
plored the possibility that some high-level emotional
content was still available in the scrambled images in a
study run on Mechanical Turk. We created 19 sets of 10

Fig. 4 Example trial from Part II. Participants saw four scrambled

images, one of which was unscrambled and cued after 1 second
.
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pseudorandomly selected scrambled images from our
original set of 190. Fifty participants (who were con-
sented and compensated for their time) each rated one
set of 10 scrambled images." We then correlated these
ratings with the average ratings of the original images
from Experiment 1. This analysis revealed a relatively
strong correlation between the ratings (r =0.56; p <
0.001; Fig. 5) suggesting that some valence information
was available even when the images were scrambled.
It is important to note, however, the significant re-
duction in the overall pull is likely due to the re-
moval of the much of the original configural content
of the image. Overall, these results confirm that emotional
valence of the ensemble images, not just low-level features
(which were preserved in the scrambled images), are
responsible for biasing the perceived emotion of the
cued image.

It is conceivable that, since the scrambled images con-
tain reduced discernable high-level scene information,
the memory for the original rating of a given image
might be easier to access. Note, however, that this ac-
count would still be consistent with our hypothesis that
the ensemble is driving the bias observed in Experiment
1, and that no discernable ensemble is available when
viewing scrambled images in Experiment 3. To test the
possibility that the memory for target images is better in
the scrambled version (Experiment 3) than in the intact
version (Experiment 1), we compared the absolute mag-
nitude of the difference between the target ratings in
Part II and Part I in each version (intact and scrambled).
Specifically, if memory for the target were better in Ex-
periment 3, we would expect the rating of the second
image to be more consistent with the rating of the first
image across all trials (i.e., less of a difference). We did
not observe this in our analysis. The overall absolute dif-
ference between the first and second ratings of target
images was nearly identical across Experiments 1 and 3
(p >0.05), suggesting that in Experiment 3 observers’ re-
sponses were distributed both toward and away from the
ensemble (i.e., unaffected by it), and not that memory
for the target was better because of reduced interference
from the surrounding images.

General discussion

These experiments convincingly reveal an unintentional
influence of an irrelevant ensemble on the perception of
an individual item. When observers were asked to evalu-
ate the valence of an individual scene, their ratings
shifted toward the average of the other scenes in the set.
The magnitude of this shift was around 16% of max-
imum, maximum being defined as the unlikely event of

!Participants were not prevented from rating more than one set of the
scrambled items.
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MTurk vs. Original Image Ratings

r=0.567 .

Scrambled Ratings

Normed Ratings

Fig. 5 Correlation between the average ratings of the original images
(x-axis) and the average ratings of the scrambled images (y-axis)

altogether ignoring the cued image and instead reporting
only the average of the three irrelevant items. This shift
occurred in spite of potential anchoring effects (Helson,
1964), as observers had already evaluated each scene
once, originally presented in isolation. The pull of the
average persisted even for inverted irrelevant scenes,
suggesting average valence information was still available
and could wield an influence on the individual. When
high-level valence information was disrupted by scram-
bling the irrelevant scenes, observers’ assessments of the
cued (intact) scene was only marginally influenced, sug-
gesting the information driving the unintended shift is
high-level in nature.

While it is the case that observers potentially had time
to saccade to all images in a given set, it is nonetheless
surprising that attention failed to fully suppress the ir-
relevant information. Once the target was highlighted,
attention might be expected to suppress information in
other spatial locations (Smith, Singh, & Greenlee, 2000),
but some information clearly leaked through. What is
most compelling, however, is the form of the informa-
tion that bypassed the attentional gate. It was not just
that a single item influenced the second rating of the
target image, but rather it was the whole ensemble, as re-
vealed by our sampling analysis. Thus, attention might
fail to suppress irrelevant ensemble information, even
when observers are not told anything explicit about an
ensemble code.

It is interesting to note that individual ratings were
pulled in the direction of the ensemble even within an
emotional category. All sets viewed in Part II contained
entirely positive or negative images, based on the ob-
server’s own ratings, which makes the strong connection
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between the individual item and the irrelevant ensemble
even more compelling. It did not require a strongly
negative irrelevant set to affect a positive item. Positive
sets whose irrelevant ensemble had a valence greater
than three pulled the second ranking of the individual in
the same direction, and positive sets whose irrelevant
ensemble had a valence less than three did as well. The
same was observed for the negatively valenced irrelevant
ensembles.

Ensemble perception has been demonstrated for a
number of high-level stimuli, including biological mo-
tion (Sweeny et al, 2012), animacy (Leib et al., 2016),
and gaze (Sweeny & Whitney, 2014), but this is one of
the first examples demonstrating average scene percep-
tion. The fact that it operated without explicit instruc-
tion to engage in any sort of averaging process is a
testament to the power of ensemble perception. That
said, the judgments observers made about these scenes
concerned their valence, which arguably is another ver-
sion of an average expression judgment, and not the sort
of characteristic typically evaluated when viewing scenes
(e.g., openness; Greene & Oliva, 2009). Interestingly, a
recent poster presentation revealed precise ensemble
perception for scenes when observers were asked to
judge scene content (naturalness) and boundary (open-
ness) information (Tharmaratnam, Haberman, & Cant,
2019, which may be more directly linked to traditional
measures of scene perception (Greene & Oliva, 2009;
Oliva & Torralba, 2001).

These results are striking because the shift toward the
irrelevant ensemble occurred for ratings on stimuli ob-
servers already had rated when viewed in isolation. In
other words, the shift indicates that the influence of the
irrelevant ensemble was so powerful that it overcame
traditional anchoring effects (Helson, 1964). One might
reasonably expect the first and second ratings of the
same image to be unchanged, especially given that ob-
servers were likely to remember having seen each image
(Konkle, Brady, Alvarez, & Oliva, 2010). In spite of likely
having remembered seeing a given image and giving it
an initial rating, participants’ second ratings of the cued
image were strongly influenced by the ensemble rating of
the other images.

Often times ensemble perception is thought to operate
optimally given overwhelming working memory condi-
tions. When the visual system is inundated with infor-
mation, or when it is unable to discriminate individual
items, the average may be a reasonable proxy for any
given single item (Brady & Alvarez, 2011; Parkes et al.,
2001). In the current experiments, however, there are no
working memory pressures and all items are easily dis-
tinguishable, and yet ensemble information wields a
strong influence on individual item representation. Con-
textual information can certainly influence judgments
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about facial expression (Barrett et al., 2011), but our re-
sults reveal that the influence is coming from an inad-
vertently derived ensemble, and not just a single,
randomly sampled item from the periphery.

Overall, these findings converge with and extend the
work of Griffiths and colleagues (Griffiths et al.,, 2018),
who showed that a crowd of faces can alter the memory
representation of an individual face. Our results confirm
that the influence is high-level in nature, and relates to
the ensemble representation itself. They critically show
that the ensemble can influence the individual item rep-
resentation even when working memory systems are not
operating at capacity (i.e., observers only had to ever re-
member one item).

Conclusion

Ensembles are an efficient way to compress a remarkable
amount of information about the visual world. They enhance
cognition by granting access to more information than might
be predicted by the fidelity of individual object representation
(Alvarez, 2011), and they facilitate rapid, global scene percep-
tion (Brady et al,, 2017). While some work suggests that en-
sembles implicitly operate when working memory demands
are high (Brady & Alvarez, 2011; Griffiths et al,, 2018), pro-
viding stability in a noisy and dynamic environment, our re-
sults reveal that high-level ensemble scene information can
influence individual item representation even when memory
demands are low. The influence is substantial — more than
71% of the trials were pulled in the direction of the irrelevant
scenes — and is unequivocally the result of the ensemble, not
just a randomly selected item from the set. Overall, our re-
sults suggest that the surrounding context can alter a percep-
tual representation in meaningful ways, even when counter
to current task goals. Practically, unintentional averaging
could lead to inaccurate interpretation of emotional informa-
tion, so perhaps it is best practice to hold serious, one-on-
one conversations in more secluded settings.
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