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Abstract

Navigation systems are ubiquitous tools to assist wayfinders of the mobile information society with various
navigational tasks. Whenever such systems assist with self-localization and path planning, they reduce human
effort for navigating. Automated navigation assistance benefits navigation performance, but research seems to
show that it negatively affects attention to environment properties, spatial knowledge acquisition, and retention of
spatial information. Very little is known about how to design navigation systems for pedestrian navigation that increase
both navigation performance and spatial knowledge acquisition. To this end, we empirically tested participants (N = 64)
using four different navigation system behaviors (between-subject design). Two cognitive processes with varying levels
of automation, self-localization and allocation of attention, define navigation system behaviors: either the system
automatically executes one of the processes (high level of automation), or the system leaves the decision of when and
where to execute the process to the navigator (low level of automation). In two experimental phases, we applied a
novel empirical framework for evaluating spatial knowledge acquisition in a real-world outdoor urban environment.
First, participants followed a route assisted by a navigation system and, simultaneously, incidentally acquired spatial
knowledge. Second, participants reversed the route using the spatial knowledge acquired during the assisted phase,
this time without the aid of the navigation system. Results of the route-following phase did not reveal differences in
navigation performance across groups using different navigation system behaviors. However, participants using
systems with higher levels of automation seemed not to acquire enough spatial knowledge to reverse the route
without navigation errors. Furthermore, employing novel methods to analyze mobile eye tracking data revealed
distinct patterns of human gaze behavior over time and space. We thus can demonstrate how to increase spatial
knowledge acquisition without harming navigation performance when using navigation systems, and how to
influence human navigation behavior with varying navigation system behavior. Thus, we provide key findings for
the design of intelligent automated navigation systems in real-world scenarios.

Keywords: Attention, Automation, Ecological validity, Empirical user study, Human—-computer interaction (HCl),
Incidental learning, Location-based services (LBS), Spatial cognition

Significance

Envision that you exit a bus on your way to your friend’s
house, but you have no idea where your friend’s house
is. Luckily, you have your friend’s address on your
phone, which is equipped with a navigation system. You
confidently follow the route suggested by your smart de-
vice. As you arrive at your friend’s house, you discover
that your friend is not there and that the battery of your
phone is empty. On top of all this, you realize that you
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have lost your keys somewhere along the way. Would
you be able to recall your path to the bus stop to search
for your lost keys?

Navigation systems assist us during navigation, but
they also affect our navigation behavior. During assisted
navigation, we may completely rely on the system and
tend to focus either on it or on matters other than navi-
gation. We thus do not attend to the environment sur-
rounding us, which degrades our spatial knowledge
acquisition. Such behavioral changes are mostly uninten-
tional and not properly empirically investigated, particu-
larly in real-world environments.
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In this study, we examine how navigation system be-
havior (in terms of automating cognitive processes)
changes our behavior in and attention to the environ-
ment. We will only be able to design intelligent systems
with a deeper understanding of their effects on human
navigation behavior. Perhaps then the task of finding the
same way back might not be as difficult as it was for
some participants in our study.

Introduction

The cognitive process of “navigation” consists of two
major components: locomotion and wayfinding. Locomo-
tion refers to the actual bodily motion of a human moving
in his or her nearby surroundings. Wayfinding is the plan-
ning process of finding a destination. For example, using
landmarks for orientation and decision-making (Montello,
2005). Finding a destination is an essential human behav-
ior (Montello, 2005) and requires knowledge about the se-
quence of environmental properties, turns, segments, and
sights along the route (Downs & Stea, 1973; O’Keefe &
Nadel, 1978). To find our way from one place to another
in partly or fully unknown environments, we nowadays
often use automated navigation systems. Navigation sys-
tems primarily aim to deliver easy-to-understand naviga-
tion instructions that support people in reaching a
destination more quickly and help reduce cognitive load
during wayfinding (Allen, 1999). Despite the popularity of
navigation systems, concerns have been raised in the lit-
erature about the negative effects on spatial knowledge ac-
quisition caused by their extensive use (e.g., Gardony,
Brunyé, Mahoney, & Taylor, 2013; Klippel, Hirtle, & Da-
vies, 2010; Montello, 2005). These systems consume most
of a pedestrian’s attention, leading to decreased spatial
knowledge (Parush, Ahuvia, & Erev, 2007) and even to
fatal accidents (Lin, Kuehl, Schoning, & Hecht, 2017) due
to divided attention between the survey perspective of-
fered by the navigation system and the route perspective,
i.e, the first-person view (Gardony et al, 2013). As the
trend towards using navigation systems increases, a con-
siderable amount of literature has recently examined how
navigation systems negatively affect spatial knowledge ac-
quisition and human navigation behavior. For example,
previous research (e.g., Miinzer, Zimmer, Schwalm, Baus,
& Aslan, 2006) comparing paper maps with navigation
systems has found that pedestrians using paper maps
show better spatial knowledge and orientation, but at the
cost of lower navigation performance (e.g., longer duration
to destination) compared to when they are using naviga-
tion systems. Despite considerable research demonstrating
detrimental spatial knowledge acquisition with navigation
systems (e.g., Bertel, Dressel, Kohlberg, & von Jan, 2017;
Parush et al., 2007; Willis, Holscher, Wilbertz, & Li, 2009),
surprisingly few empirical investigations have been con-
ducted about ways to balance navigation performance and
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spatial knowledge acquisition during assisted navigation.
However, achieving such a balance seems feasible because
navigation systems can feature varying levels of automa-
tion and, with this, vary the level of human involvement
in decision-making. The influence of different navigation
system behaviors—that is, different levels of automation—
on human behavior is not yet understood. One of the
main limitations of many empirical navigation studies is
the missing connection to a real-world environment and,
thus, their ecological validity (Dai, Thomas, & Taylor,
2018; Kiefer, Giannopoulos, & Raubal, 2013). This study
empirically investigates the effect of different navigation
system behaviors on human navigation and spatial know-
ledge acquisition in real-world navigation tasks in an
urban, outdoor environment. One of the most important
goals in designing different navigation system behaviors is
to keep navigation performance high while increasing the
user’s spatial knowledge acquisition. We will first briefly
review the research investigating the impact of assisted
navigation on spatial knowledge acquisition, which also
motivates our research questions. We then introduce the
empirical framework and study design. This is followed by
a summary of the results of the study, which we critically
discuss in the subsequent section. The paper ends with a
summary of the implications of different automated navi-
gation system behaviors on human behavior that should
be considered when designing navigation systems and
conducting outdoor studies.

Background

Spatial knowledge acquisition with navigation systems
Spatial knowledge acquisition has been discussed in sev-
eral different research fields. Spatial knowledge was ori-
ginally divided into three types: landmark, route, and
survey knowledge (Siegel & White, 1975). However, crit-
ical arguments have emerged on whether the three types
can really be (strictly) separated (e.g., Montello, 1998).
Research has addressed how these types of spatial know-
ledge might change during navigation system use in dif-
ferent environments (e.g., Ishikawa, Fujiwara, Imai, &
Okabe, 2008; Miinzer et al., 2006; Parush et al., 2007;
Willis et al., 2009).

For navigational tasks, acquiring spatial knowledge is
crucial to orient and navigate in space without losing the
way (Montello, 2005; Siegel & White, 1975). However, the
formation of mental spatial representations is demanding
and limited by humans’ attentional capacities (Downs &
Stea, 1973; Miunzer et al., 2006; Siegel & White, 1975;
Wahn & Konig, 2017; Weisberg & Newcombe, 2018).
Therefore, we often use a navigational aid to support the
cognitive processes required to navigate as optimally as
possible in an unknown environment (Ludwig, Miller, &
Ohm, 2014). Several researchers have compared different
kinds of navigation aids (e.g., Bakdash, Linkenauger, &
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Proffitt, 2008; Hirtle & Raubal, 2013; Ishikawa et al., 2008;
Ishikawa & Takahashi, 2013; Klippel et al., 2010; Parush et
al., 2007; Richter, Dara-Abrams, & Raubal, 2010; Willis et
al., 2009). All found that modern digital navigation sys-
tems have a negative impact on the formation of mental
spatial representations, but people using navigation sys-
tems are more time-efficient and effective in finding the
route than people using paper maps (Dickmann, 2012;
Lee & Cheng, 2008). On the one hand, a paper map can
support tasks such as route planning, self-localization, and
orientation (Thorndyke & Hayes-Roth, 1982), all of which
require attending to the environment and acquiring infor-
mation about environmental properties, such as spatial
configuration and landmarks. On the other hand, naviga-
tion systems seem to change how humans attend to the
environment, leading to a loss of the crucial skill of
acquiring environmental knowledge (Parush et al,
2007). The use of a navigation system reduces what
properties from the surroundings a navigator selects
and diminishes the navigator’s allocation of attentional
resources (Ishikawa et al, 2008). The navigation sys-
tem designers pre-determine which properties get se-
lected and how they are represented by the system,
which, thus, also pre-determines the allocation of at-
tention (Parasuraman, 2000).

During assisted navigation, the navigation system auto-
matically selects and depicts environmental properties
(e.g., landmarks) without any user intervention, which
leads to decreased attentiveness to relevant properties
(Taylor, Brunyé, & Taylor, 2008). Consequently, the navi-
gator does not attend to the traversed surroundings, but
reallocates attention toward the automated navigation
system (Gardony et al., 2013; Willis et al., 2009). The re-
sources are transferred toward the system itself and a re-
spective instruction execution (Parasuraman, 2000). The
navigator has to constantly switch between a survey per-
spective offered by the navigation system and a route
perspective, ie., the first-person view (Dai et al., 2018;
Gardony et al.,, 2013). The distribution of human atten-
tional resources changes with the use of navigation sys-
tems compared to no use of a navigation aid. Without a
system, humans actively make decisions and interact
predominately with their surroundings. Several studies
have demonstrated that automated guidance divides a
navigator’s attention between the navigation system and
the environment (e.g., Gardony et al.,, 2013; Ishikawa et
al., 2008). For example, a constantly updating GPS pos-
ition signal (blinking light or beeping sound) on a navi-
gation system can induce such an attentional division.
As the navigator’s position is continuously updated, the
visual tracking of the GPS signal distracts the navigator’s
attention from the surroundings toward the system
(Ishikawa et al,, 2008). When continuously relying on
this kind of positional updates, we do not attend to the
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information the traversed environment provides, and
thus we lose the respective skill (Parush et al., 2007).
But if the navigation system fails, navigators have to
rely on their acquired knowledge, which would be
challenging because not mentally processing proper-
ties along a travelled route results in decreased spatial
knowledge in the end (e.g., Hirtle & Raubal, 2013;
Huang, Schmidt, & Gartner, 2012; Miinzer et al,
2006; Parasuraman, 2000; Parush et al., 2007).

To better understand attentional behavior in a spatial
context, eye tracking is a technology that records a navi-
gator’s gaze behavior during navigation (Duchowski,
2007; Holmgqyvist et al., 2011; Kiefer, Giannopoulos, Rau-
bal, & Duchowski, 2017). Mobile eye tracking is particu-
larly interesting in navigation scenarios because it can
measure a human sense (gaze behavior) in real-world
environments quite accurately and thus provides some
indication of the information acquisition process (Kiefer
et al.,, 2017). Fixation durations as an eye tracking meas-
ure can be interpreted as a measure of cognitive func-
tion and visual complexity of the scene (Duchowski,
2007; Goldberg & Kotval, 1999). However, the annota-
tion process of the recorded data is laborious due to in-
dividual walking speeds and viewing directions in a
constantly changing spatio-temporal context (Kiefer et
al., 2017). Efficient methodologies to analyze such data
are yet to be developed.

Active role during spatial knowledge acquisition
An increasing number of empirical studies investigate
how active and passive roles during navigation may in-
fluence the attention paid to the immediate surround-
ings of a navigator and, consequently, may support or
hinder the formation of mental spatial representations.
Minzer et al. (2006) introduced the active learning hy-
pothesis. These authors contend that added active efforts
during assisted navigation lead to spatial learning bene-
fits. Attentiveness toward the environment (Klippel et
al., 2010) and the level of control and the amount of
decision-making (Bakdash et al., 2008) are suggested to
yield differences in spatial knowledge acquisition. When
actively making decisions and facing consequences,
humans connect to their surroundings (Bakdash et al.,
2008). Gardony et al. (2013) explored the relationship
between navigators’ attention to the surroundings and
their spatial decision-making during navigation system
use. They discovered that if both decision-making with
and attention to the traversed environment decrease, the
navigators’ spatial knowledge acquisition also decreases.
Participants who knew that they had to learn a route
(intentional learning) showed better route knowledge
than participants who did not know that they would be
asked to memorize a route (incidental learning; Chrastil
& Warren, 2012). The ability of recalling objects for the
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two different learning types is different. Intentional
learners are better at recalling the location of objects,
and incidental learners are better at recalling the names
of objects (Chrastil & Warren, 2012; Van Asselen, Frits-
chy, & Postma, 2006). Chrastil and Warren (2012, p.14)
state that “(...) full route knowledge and survey know-
ledge appears to require the intention to learn, implying
the need for attention to the relevant spatial relation.
(...) intentional encoding appears to be necessary for
place-action association, reproducing a route, and spatial
relations between landmarks.” A navigation system
directing attention to specific properties in the sur-
roundings can lead to active encoding of spatial know-
ledge (Chrastil & Warren, 2012) and should be
considered when designing such a system.

Designing navigation systems that actively involve the
user to increase spatial knowledge acquisition

During navigation system use, the locomotion compo-
nent of navigation is emphasized over wayfinding, the
planning and decision-making component (Montello,
2005)—planning and decision-making are essentially
taken over by the system. A few scholars have begun to
explore possible interventions during assisted wayfind-
ing, such that users proactively make decisions to return
their attention to the surroundings (Chung, Pagnini, &
Langer, 2016; Kiefer, Giannopoulos, Sch, & Raubal, 2016;
Parush et al., 2007). Such system interventions should be
context-dependent, adaptable, and controllable by the
navigator (Kiefer et al., 2016; Parasuraman, 2000; Rich-
ter, Tomko, & Coltekin, 2015; Sheridan, 2002). However,
Pielot and Rello (2017) found that system notifications
distract a user and interrupt other activities. Moreover,
Lee et al. (2014) found that smart devices featuring noti-
fications increase the user’s attention allocation on the
system and away from the surroundings. People seem to
worry that they may miss important information if they
are not attending to these notifications (Pielot & Rello,
2017). In contrast, a navigation system should invite a
navigator to proactively attend to the environment (Kraft
& Hurtienne, 2017) and thereby increase a navigator’s
cognitive resource allocation for a task (Parasuraman,
Sheridan, & Wickens, 2000), which in turn should lead
to better spatial knowledge (Parush et al., 2007). To in-
crease spatial knowledge acquisition, navigators need to
interact with both their surroundings and the navigation
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system (Willis et al., 2009). Research suggests different
cognitive problems using navigation systems and pro-
poses several application solutions (Table 1).

One way to do this is to engage navigators in a spatial
location quiz, thus associating locations with a particular
question (Parush et al., 2007), or to make them perform
an otherwise automated action manually (Chrastil &
Warren, 2012; Parasuraman et al, 2000) to improve
mental representations. Parasuraman et al. (2000) identi-
fied different types (e.g., decisions or actions) and levels
(from manual to full automation) of human interactions
with automation. Figure 1 lists ten levels of automation
for the decision and action selection. These levels vary
from low (no system assistance; human makes all deci-
sions and performs the actions) to high (system makes
all the decisions; no human intervention possible).

All these studies clearly indicate that there is a rela-
tionship between system behavior and human behavior,
and thus also with knowledge acquisition. However, it is
unclear which kind of information and in what format a
navigator ideally might need to get from a navigation
system (e.g., Montello, 2009; Willis et al., 2009). Al-
though some research has been carried out on spatial
knowledge acquisition during navigation system use,
very little has been done on how these findings translate
to designing systems that assist navigators in both the
navigational task and spatial knowledge acquisition, and,
more generally, how pedestrians should engage with a
system during navigation in outdoor environments (e.g.,
Dai et al, 2018; Giudice, Walton, & Worboys, 2010).
The overall goal, according to Sheridan (2002), should
be to design systems that complement humans.

The study presented in this paper empirically investi-
gates human behavior during navigation tasks when fa-
cing different system behaviors according to the levels of
automation as introduced by Parasuraman et al. (2000),
using a novel empirical framework for efficiently testing
pedestrians’ spatial knowledge in real-world environ-
ments (Briigger, Richter, & Fabrikant, 2016).

This study aims to answer the following research
questions:

Behavioral: How do varying navigation system behav-
iors (levels of automation) influence (i) navigation per-
formance, (ii) spatial knowledge acquisition, and (iii)
gaze behavior during navigation tasks in a real-world
outdoor environment? We hypothesize that when more

Table 1 Two cognitive problems and their suggested solution based on Willis et al. (2009)

Cognitive problem Solution

The passive nature of interaction

“Enable users to stimulate and control the delivery of information, and require users to

confirm information mid-task” (p.109)

Lack of referencing between information delivered
by application and real environment

“require user to either self-select cues from existing knowledge, self-report location or
to cue-match so that the user cross-references features in the application with real-world

environmental features” (p.109)
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Levels of automation
high (System)

_|10. The system decides everything, acts autonomously, and ignores the human.

o

The system informs the human only if the system decides to do so.

I

The system informs the human only if the human asks the system.

B

The system executes tasks automatically, and informs the human.

o To T Ton Ta

[—

low (Human)

of automation = Human)

\

The system allows the human to veto a decision before automatic task execution.
The system executes a suggestion if the human approves it.

The system suggests one alternative.

The system narrows a selection of choices and presents these to the human.

The system offers a complete set of decisions or action alternatives.

The system offers no assistance whatsoever.

Fig. 1 Levels of automation of decision and action selection (original figure in Parasuraman et al,, 2000; adjusted text and extended with a linear
scale): either the system decides and performs actions (high level of automation = System), or the human decides and performs actions (low level

automation is built into a navigation system, (i) the bet-
ter the navigation performance, (ii) the lesser the spatial
knowledge acquisition, and (iii) a change in gaze behav-
ior occurs during navigation.

Methodological: Is the experimental framework of an
assisted and unassisted navigation phase a valid ap-
proach to gather useful data in terms of spatial know-
ledge acquisition, and to allow for a smooth execution of
an outdoor experiment? We hypothesize that the experi-
mental framework of an assisted and unassisted naviga-
tion phase offers an efficient, ecologically valid way of
determining spatial knowledge acquisition without the
need for standard questionnaires and tests.

Methods

This study aims to gain further insights into how naviga-
tion system behaviors influence human navigation and
spatial knowledge acquisition. We conducted an empir-
ical user study in an outdoor urban environment. We
contend that the additional challenges of running studies
in the real world are outweighed by the high ecological
validity these settings offer (e.g., Kiefer et al., 2013). We
applied a between-subject design by varying the behavior
of the navigation system (independent variable) during
an assisted route-following task. The dependent vari-
ables are (i) navigation performance, (ii) the acquired
spatial knowledge during a route-reversal task, and (iii)
gaze behavior.

Participants

In total, 64 participants (44 females and 20 males),
mostly freshmen at the University of Zurich and the
ETH Zurich with different disciplinary backgrounds,
took part in the experiment. The mean age of partici-
pants was 25 years, ranging from 18 to 60 years (M =25
years, SD = 8 years). All except two participants owned a
smartphone, thus representing a sample with back-
ground knowledge in using mobile digital devices. Each
participant received CHF 20.00 for participation in the
experiment. Participants signed a consent form approved
by the Department of Geography at the University of
Zurich and were told that they could stop the experi-
ment at any time.

Materials

The study was conducted outdoors in Zurich,
Switzerland. The study area is located in an urban resi-
dential neighborhood close to the University of Zurich,
but it was unknown to the participants (we asked about
familiarity in a questionnaire). The location of the route
is displayed in Fig. 2a. The route was chosen by two of
the authors based on its variety of intersections, turns,
and landmarks. Figure 2a shows a Google Maps excerpt
with the route highlighted in black. The blue pin at the
bottom of the map indicates the starting point, and the
black flag at the top of the map depicts the destination.
The route is approximately 800 m long with a decline of
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(b)
Fig. 2 (a) Route (highlighted in black) with starting point (blue pin) and destination (black flag) depicted on the background map of Google Maps
(© 2016 Google). All intersections are annotated with “-" and a number indicating their position along the route. The intersection annotationss
did not appear on the map display for the participants and are only added to this figure to allow references to intersections within this paper. (b)
A participant holds the navigation system and wears eye-tracking glasses with an attached laptop in the backpack during the experiment. The
experimenter follows the participant and takes notes (re-enacted scene). (Photo: Marc Latzel)

11m in total. The route consists of 14 intersections
(marked in Fig. 2a with “I-” and a number indicating its
position in the route-following task) and different kinds
of landmarks, building types, parks, etc., representing a
typical urban residential environment. The route con-
sists of three right (I-3, I-7, I-13) and three left (I-9, I-12,
[-14) turns in walking direction from the start to the
destination. The turns did not follow a regular pattern
and divide the route in seven straight segments of differ-
ent length.

A base map (Google Maps API) with the highlighted
route was displayed on a SAMSUNG Galaxy Tab S10.2
tablet. The test application was set to display a north-up
street map and did not allow for switching layers (e.g., to
a satellite image) to ensure that all participants used the
same road map. However, participants could rotate,
zoom, pan, and tilt the map according to their needs
to provide a map use experience very similar to that
on their personal devices. In contrast to the original
Google Maps available on mobile devices, the test
map would remain in north-up orientation and at the
initial zoom level if participants chose not to interact
manually with it.

We designed four navigation system variations that
differ in their level of automation (i.e., system behavior).
These variants combine two cognitive processes (CP),

“allocation of attention” and “self-localization”, each in
two different modes (detailed description below). Using
these two modes is motivated by the reviewed re-
search and by the role of attention during learning
(e.g., Chrastil & Warren, 2012), the active learning
hypothesis (Miinzer et al., 2006), and the system solu-
tions for cognitive problems (Willis et al., 2009) listed
in Table 1. Combining the two cognitive processes,
each with one of the two implemented modes, results in
four different navigation system behaviors that we tested
(Fig. 3). Each navigation system behavior is associated with
either a high level of active participation on the human
side and a low level of system automation (Fig. 3 left; “Hu-
man”, abbreviated “Hum”) or a high level of system assist-
ance and a low level of active participation on the human
side (Fig. 3 right; “System”, abbreviated “Sys”). We used a
between-subject design in which participants were ran-
domly assigned to one of the four different navigation sys-
tem behaviors, such that each system behavior was used
by 16 participants.

CPI1: Allocation of attention (abbreviated “Alloc”) di-
rects one’s attention to a certain property in the environ-
ment, such as a landmark (Chrastil & Warren, 2012;
Richter & Winter, 2014) and is implemented in the fol-
lowing modes to address the two cognitive problems
stated by Willis et al. (2009) (Table 1).
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Levels of automation
m== CP1“Allocation of attention” (Alloc)  high: System (Sys)
== (P2 “Self-localization” (Loc) 10

I Navigation system behavior [l :

9.

. -

o T T To 1N

I

low: Human (Hum)

AllocHum_LocHum

AllocHum_LocSys AllocSys_LocHum AllocSys_LocSys

Fig. 3 Four navigation system interface designs with varying navigation system behavior in terms of a combination of two cognitive processes
(CP): allocation of attention (Alloc; green) and self-localization (Loc; blue). Each cognitive process involves either higher active participation from the
human side (low level of automation; Hum) or higher system assistance (high level of automation; Sys). The figure illustrates for each navigation
system design how the implemented processes map to the levels of automation of Parasuraman et al. (2000) (Fig. 1). The further up a horizontal
bar is, the higher the level of automation. Background map is from Google Maps API (© 2016 Google)

e The system (abbreviated “Sys”) performs the process decision regarding which landmark they wish to pay

on its own, which means that the description of a
certain landmark appears automatically on the map
by displaying a marker symbol and a text description
on the map as the user approaches it without any
user interaction. The system vibrates for 5 s to make
the user aware of the availability of this description
and to make him or her attend to one of the three
different landmarks used in this study (residential
home, two adjacent flag poles, and a bus stop). This
mode corresponds to “Level 9. The system informs
the human only if the system decides to do so” by
Parasuraman et al. (2000) as shown in Fig. 1.

The system offers the opportunity for the human

attention to, but also what kind of text they want

to add at the chosen location. At three self-chosen
locations along the route, participants were asked to
press a “Marker” button in the app, which then allows
them to type in a description of their current
surroundings or some landmark in their vista
space. The description is linked to the current
position of the participant, but it does not appear
on the map, i.e., the map does not change after
performing this action. This mode corresponds to
“Level 1. The system offers no assistance whatsoever”
by Parasuraman et al. (2000).

(abbreviated “Hum”) to type in some keywords that
describe three self-chosen landmarks along the
route. Participants are asked not only to make a

CP2: Self-localization (abbreviated “Loc”) is the process
of determining one’s current location in relationship to the
environment by using visual clues (e.g., Meilinger, Holscher,
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Biichner, & Brosamle, 2007). This was implemented in the
following modes to address the two cognitive problems
identified by Willis et al. (2009) (Table 1).

e The system (abbreviated “Sys”) performs the process
on its own. This means that the location of the
navigator is updated on the map as a blue dot and
thus is permanently visible. This mode corresponds
to “Level 10. The system decides everything, acts
autonomously, ignores the human” of the levels of
automation by Parasuraman et al. (2000) as shown
in Fig. 1.

e The system provides the human (abbreviated
“Hum”) with an opportunity to perform an action
(pressing a “GPS on” button) to display the current
location on the map for 10, after which the blue
dot disappears. This mode corresponds to “Level 8.
The system informs the human only if the human
asks the system” of the levels of automation by
Parasuraman et al. (2000).

Participants wore mobile SMI eye tracking glasses
(SMI-ETG) during the experiment to record their gaze
movement. Sunshades and wind protection stuck to the
glasses reduced the infrared interferences and prevented
participants from squinting. This protection was added
to ensure better data quality from the eye movement re-
cordings. The glasses were connected to a laptop that
participants carried in a backpack. This laptop recorded
all eye movements during the navigation experiment.
Figure 2b shows the experimental setup, with a partici-
pant holding a navigation system and wearing a back-
pack with a recording device attached to the eye
tracking glasses (for privacy reasons, a friend of the ex-
perimenter re-enacted the experimental scene).

Experimental framework

We divided the experiment into two phases. During
Phase 1 (assisted route-following or “incidental know-
ledge acquisition”), we asked each participant to follow a
route (Fig. 2a) presented by the navigation system
(Fig. 3). Participants were first given a scenario that they
had just left a bus at the starting point (blue pin in
Fig. 2a) and that they had received a suggested route to
a friend’s house (black flag in Fig. 2a). Participants were
asked to follow this route as quickly as possible, without
running. The two participant groups using the naviga-
tion system with a low level of automation in terms of
the cognitive process “allocation of attention” were add-
itionally given the following instruction (translated from
German to English): “On the way to your friend’s house,
you should write down three locations that are relevant
for you for this route. The position at which this entry
will be made is saved together with the text information
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and will be later integrated into the application. The
entry is made when you click the ‘Marker’ button.” Im-
portantly, all participants from all groups knew that
there was going to be a second part of the experiment,
but they did not know what this second task would in-
volve. Therefore, the spatial knowledge acquired during
the first phase can be considered the result of incidental
learning.

For Phase 2 (unassisted route-reversal or “knowledge
recall”), we asked all participants to reverse the exact
same route back to the starting point, similar in proced-
ure to a study by Karimpur, Roser, and Hamburger
(2016) that was conducted in a virtual reality (VR) set-
ting. The scenario for this second phase was
use-inspired. We told the participants that they had lost
their keys, and because of a (fictitious) empty battery,
they had to reverse the exact same route without using
the navigation system. This also meant that the partici-
pants could not use any shortcuts in the route-reversal
phase, even if they had been able to find them.

Experimental procedure

The experimenter individually contacted participants
and arranged a date for the experiment. The experiment
took place during daytime from September to November
2016, on days without any rain. In case of forecasted
rain, the experimenter cancelled and rescheduled the ex-
periment because it was conducted entirely outside. Par-
ticipants were asked to complete an online demographic
questionnaire and the self-assessment questionnaire
“Raumliche Strategie” by Miinzer and Holscher (2011)
in advance at home. The questionnaire asked partici-
pants to rate their spatial strategies in global-geocentric,
survey scale, and cardinal directions. Minzer and
Holscher (2011) showed that these self-report measures
are able to predict participants’ spatial knowledge acqui-
sition abilities. The experimenter sent a reminder to par-
ticipants a day before the experiment and reminded
them to fill out the questionnaire if they had not com-
pleted it by that date.

After arriving at the meeting point, participants were
asked to sign a consent form and were introduced to the
procedure of the experiment. Following this introduc-
tion, the experimenter explained the randomly assigned
navigation system behavior (one of the four applications
depicted in Fig. 3) to the participants, who then could
get used to the application during a training session.
Next, the experimenter asked participants to don the eye
tracking glasses. This was followed by a three-point cali-
bration phase with the eye tracking software iView. For
the calibration of the eye tracking glasses, participants
were asked to look at objects near them, such as street
signs, in a distance of approximately 7-10 m. Partici-
pants who wear glasses were asked beforehand (via
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email) to wear contact lenses as a requirement for par-
ticipation. The experimenter led the participant to the
starting point of the test route where the participant was
asked to read the instructions for Phase 1. The partici-
pant received the tablet with a running application, and
was asked to perform the navigation task for Phase 1.

The experimenter shadowed participants at about 10
m distance, taking notes about potential changes in the
environment for each participant. This was necessary
because the experiment took place in a real dynamic
urban environment (this point is taken up again in the
Discussion section). After arriving at the destination,
participants were given the instructions based on the
scenario for Phase 2. Each participant was then asked
to subjectively rate the difficulty of Phase 2 on a Likert
scale from 1 (very easy) to 5 (very difficult). The rating
before execution of this task provides a personal assess-
ment of the perceived difficulty of the task, independ-
ent of a participant’s actual performance. Next, the
participant was asked to reverse the route and walk un-
assisted (that is from memory) to the starting point of
the route. Again, the experimenter shadowed partici-
pants at about 10 m distance. If participants took a
wrong turn at an intersection (decision point), the ex-
perimenter had to call them back to the intersection
where they had to make a new decision. Participants re-
ceived explicit feedback (e.g., “You took the wrong
road. Come back and make a new decision”) during
their navigation performance (similar to Karimpur et
al.,, 2016). After completing Phase 2, participants were
asked 1) to draw the route on a printed map (the same
map as shown on the starting screen, but without the
route and starting and destination points), and 2) again
rate the difficulty of Phase 2 on a five-point Likert
scale. The participant rating indicates perceived naviga-
tion difficulty.

After completing the second phase of the experiment,
participants were asked to fill out a post-test question-
naire and to complete the Building Memory test
(Ekstrom, French, Harman, & Dermen, 1976). This test
elicits an individual’s ability to memorize the position of
buildings on a street map. Results of the test indicate a
participants’ ability to memorize landmarks on a map
(survey perspective) used during Phase 1, which in turn
may explain parts of their performance of Phase 2. We
administered the test after the main experiment so as to
not give away the memory component of the experiment
(Phase 2), which might have influenced their learning
behavior during Phase 1. At the end of the experiment,
participants received CHF 20.00 compensation, signed a
confirmation of receipt, and were thanked for taking
part in the experiment. The experimenter also reminded
participants to keep the experimental procedure confi-
dential. The experiment lasted about 70 min, on average.
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Mobile eye tracking analysis
The first step in the eye tracking analysis was to segment
the data such that it allows for comparison between par-
ticipants’ behaviors along the route. This was necessary
because eye tracking data in real-world environments
are not synchronized with any other sensor data and
also are not synchronized between participants; behavior
is highly dynamic and the recordings do not (automatic-
ally) provide any spatial references to the environment
they are recorded in (i.e., at the same point in time two
different participants might be at two very different loca-
tions along the route). We segmented the route at inter-
sections that correspond to decision points for both
experimental phases, according to Fig. 4. Each segment
features the spatial context of approaching a decision
point and the intersection itself, resulting in 13 segments
both ways. The data analysis was performed with the
iMotions© software using a duration dispersion-based
fixation algorithm (fixation duration > 100 ms). We an-
notated the screen recordings of participants’ eye move-
ments with start and end position for each segment to
assign each fixation (its duration) to a specific route
segment.

Each fixation has a duration which we used to com-
pute the mean fixation duration of each participant in
each segment by using the following formula:

where X is the mean fixation duration in the segment, N
the total number of fixations in a segment, and x; the
duration of fixation i in this segment.

Results

We first describe the participant sample, including
demographics, self-assessed spatial strategies, and spatial
memory abilities. Second, we present the navigation per-
formance for the two experimental phases separately. To
evaluate participants’ navigation performance, we use
four standard measures suggested by Dillemuth (2005),
and Meilinger, Franz, and Biilthoff (2012): time to task
completion, interactions with the map (e.g., zooming,
etc.), navigation errors, and the number of stops along
the route. This is followed by the results of the gaze ana-
lysis recorded with the mobile eye tracking glasses dur-
ing Phase 1 and Phase 2. We report results according to
the four groups of the between-subject design. All fig-
ures and tables follow the same order of system behav-
iors provided above (Fig. 3).

Participants
The experimenter randomly assigned each participant to
one of the four experimental groups. Each group consisted
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Fig. 4 Spatial segmentation of the route (schematic) into 13 segments. Each segment represents the spatial context of approaching a decision
point in walking direction including the relevant intersection. Spatial segmentation of the route for Phase 1 (a) and Phase 2 (b)
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of 16 participants (11 females, 5 males). As mentioned, in
an online questionnaire, we asked participants to report
their frequency of using any kind of map application on
their mobile system with a five-point Likert scale. Most
participants (87%) use their smart device several times a
month for navigational purposes. Apart from the use of
digital map applications, we asked them to specify their
experience in mapping-related fields, such as map reading
and cartography (map production). The majority
(80%) had experience in using map applications on a
mobile device and in reading maps in general. The
majority (60 to 70%) of the participants rate their ex-
perience with Geographic Information Systems (GIS)
and with orienteering as little or none. These results
suggest a relatively homogenous sample of partici-
pants in terms of map use in general and experience
in using digital maps, specifically.

Spatial abilities

We collected participants’ self-rated spatial abilities with
the “Raumliche Strategie” questionnaire by Miinzer and
Holscher (2011). Table 2 reports the mean ratings of this
test for each application type group. The egocentric
orientation scale evaluates how well a person knows

directions and routes. The survey scale summarizes how
well a person can build a mental map, and the cardinal
direction scale assesses awareness of cardinal directions.
Question 12 (“I am good in remembering routes and
finding my way back without problems”) directly
matches the second experimental phase (“unassisted
route-reversal”). The scores range from “1: I don’t agree”
to “7: I strongly agree”. The higher the scores, the better
participants assess their ability. Overall, the results reveal
that all three scales show a large range within all four
groups. There are no significant differences in ratings
across the groups for any of the scales (egocentric,
F(3,60) =5.12, p=0.525; survey, F(3,60)=0.604, p=
0.615; cardinal, F(3,60)=2.13, p =0.106), tested with a
one-way ANOVA. A Kruskal-Wallis test reveals that rat-
ings for question 12 were also not significantly different
between the groups (H(3) =2.3191, p = 0.508). Hence, in
terms of spatial abilities, these results indicate a
homogenous sample of participants across and within
the four system behavior groups.

Spatial memory
For the “Building Memory” test (Ekstrom et al., 1976),
participants were asked to place buildings on an empty
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Table 2 No difference in participants’ self-assessed spatial strategies scores across groups (means and standard deviations)

Strategic scale AllocHum_LocHum

AllocHum_LocSys

AllocSys_LocHum AllocSys_LocSys

Total M=4.28 SD=142 M=443
Global-egocentric orientation M=422 SD=149 M =430
Survey M =444 SD=136 M=4.64
Cardinal direction M=403 SD=147 M=434
Question 12 M =462 SD=1.89 M=5.12

SD=1.08 M=3381 SD=127 M=4.2 SD=0.86
SD=1.02 M=3.76 SD=1.13 M=3.95 SD=087
SD=1.19 M=4.05 SD=150 M=427 SD=104
SD=153 M=3.18 SD=143 M=353 SD=1.16
SD=131 M=418 SD=197 M=5.06 SD=134

Strategic scales: total (questions 1-19), global-egocentric orientation (questions 1-10), survey scale (questions 11-17), cardinal direction (questions 18-19) and the
specific question 12: “l am good in remembering routes and finding my way back without problems”

street map after studying the same layout with the build-
ings shown. Zero points were assigned if all buildings
were placed at wrong locations. If all buildings were cor-
rectly positioned, the maximum achievable score was 24.
Table 3 lists participants’ average scores. The higher the
test score, the more buildings were correctly located. All
groups show high mean scores with rather small stand-
ard deviations. The group AllocSys_LocSys (allocation of
attention and self-localization by system) is the only
group with an average mean score of less than 20 and
the one with the largest standard deviation. Overall,
spatial memory ability of our participants is high. A
Kruskal-Wallis test revealed no significant differences
between the four groups (H(3) = 0.9761, p = 0.807).

The results of the spatial strategies and spatial memory
tests indicate a homogenous distribution of spatial abil-
ities across the four participant groups.

Phase 1: Assisted route-following (incidental knowledge
acquisition)

The first set of analyses examined the impact of different
navigation system behaviors on human navigation be-
havior during Phase 1 of the experiment. This included
navigation efficiency, stops and hesitations (i.e., signifi-
cantly slowing down) along the route, and the interac-
tions with the map during the route-following task. The
findings of Phase 1 might then explain potential differ-
ences in incidentally acquired spatial knowledge that
was tested in Phase 2.

Navigation performance

One goal of this study was to test whether a higher
active participation of the human navigator with a navi-
gation system (lower level of automation) could be
achieved without harming navigation performance.
Figure 5 depicts the duration for walking the route from
the starting point to the destination assisted by a

navigation system. Overall, the time to walk the route
ranged from 7 to 12 min (M =9.26 min, SD = 1.08 min).
A Kruskal-Wallis test revealed no significant differences
for completion time between the four groups (H (3) =
3.356, p = 0.339). This result shows that different system
behaviors did not affect the time it took for participants
to complete Phase 1. Furthermore, none of the partici-
pants made any navigation errors during Phase 1.

We analyzed how many times participants stopped or
hesitated (slowed down) along the route during Phase 1.
A stop means that the participant has both feet on the
ground and does not move in any direction. A hesitation
is a clearly identifiable reduction of speed while continu-
ing to move. Overall, participants hardly ever hesitated
during the assisted route-following phase. The two
groups AllocHum_LocHum (allocation of attention and
self-localization by human) and AllocHum_LocSys (allo-
cation of attention by human and self-localization by
system) stopped on average two to three times (to type
the required keywords), but without harming their effi-
ciency, as Fig. 5 shows.

As mentioned, two out of the four groups (Allo-
cHum_LocSys, AllocSys_LocSys) were perpetually
shown their position on the digital map while navi-
gating. The other two groups (AllocHum_LocHum,
AllocSys_LocHum; allocation of attention by system
and self-localization by human) had the option to
display their current location on the map by pressing
the “GPS on” button. On the one hand, pressing this
button causes a distraction from attending to a navi-
gated surrounding if it is unnecessarily used. On the
other hand, this can help to self-localize and reorient
in the environment, if used strategically. Figure 6a
suggests that, on average, the AllocSys_LocHum
group (Mdn =14, SD=7.4) used the “GPS on” but-
ton more often than the AllocHum_LocHum group
(Mdn =3, SD=4.9). This difference is statistically

Table 3 No differences in spatial memory scores for the “Building Memory” test (by Ekstrom et al,, 1976) across groups (means and

standard deviation)

AllocHum_LocHum AllocHum_LocSys

AllocSys_LocHum AllocSys_LocSys

Score M=21.07 SD=264 M=2061

SD=3.17

M=20.42 SD=3.71 M=1898 SD=5.02
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Fig. 5 Navigation assistance levels do not influence route completion times for Phase 1. Average duration for walking the route assisted with a

navigation system. Black dots indicate outliers

significant (W =33.5, p<0.01, r=-0.51; Wilcoxon
test).  Therefore, also the time that the
self-localization information was displayed was con-
siderably higher for the AllocSys_LocHum group
(Mdn =40, SD =18.2) than for the AllocHum_ LocHum
group (Mdn=7.5, SD=12.8) (Fig. 6). This difference is

Each time a participant zoomed, panned, rotated, or
tilted the map, the system recorded the type of inter-
action in a log file. Figure 7 shows all the interactions
with the navigation system, aggregated across the four
navigation system groups. Generally, some participants
interacted a great deal with the map display, while others

statistically significant (W =31, p<0.05, r=-0.53; hardly ever interacted with the map. None of the partici-
Mann-Whitney U test). pants used the tilt function.
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Fig. 6 Participants in group AllocSys_LocHum pressed the “GPS on” button more often than the group AllocHum_LocHum (a). Distribution within
and across groups of counting the instances of participants pressing the “GPS on” button (statistically significant difference, **p < 0.01). Therefore,
participants of the AllocSys_LocHum group had the self-localization displayed and accessible for a longer amount of time (statistically significant
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Fig. 7 Significant differences in counts of interactions (zoom, pan, rotate) with the map display during Phase 1 across groups (statistically significant

difference between groups, **p < 0.01). Black dots indicate outliers

The group AllocHum_LocHum has the largest range of
interactions. The group AllocHum_LocSys shows the
smallest range, with one outlier (Fig. 7). A Kruskal-Wal-
lis test suggests that the amount of interactions with the
navigation system significantly differs between the four
groups (H(3) = 18.166, p < 0.01). Pairwise comparisons of
the mean ranks between groups reveal the following sig-
nificant differences; the critical difference for all compar-
isons was 17.36 (corrected for multiple comparisons) at
a 0.05 level (Table 4).

Phase 2: Unassisted route-reversal (knowledge recall)
First, we report the number of errors participants made
in the route-reversal task, which reveals how well partic-
ipants are able to recall their incidental spatial know-
ledge acquired during Phase 1. Second, we examine the
efficiency of participants’ unassisted navigation by look-
ing at duration of the route-reversal phase and counting
of stops and hesitations along the route. Finally, we re-
port participants’ self-reports of task difficulty collected
in Phase 2, before and after completing Phase 2 to
compare self-assessed task difficulty with actual task
performance.

Testing spatial knowledge

We tested the participants on how well they found
their way back to the starting point unassisted. Be-
cause participants were asked to reverse the exact
same route to the starting point, each wrong turn at
an intersection was counted as one error. Table 5
summarizes the results for the different groups. In
the two groups with more active navigator participa-
tion (AllocHum_LocHum and AllocHum_LocSys), three
participants (18%) made a wrong route choice at one
intersection. In the group AllocSys_LocSys, six (37.5%)
participants made at least one mistake during Phase
2. What stands out is that 10 out of 16 participants
(62.5%) in the group AllocSys_LocHum made a wrong
navigation decision at at least one intersection. Table 5
also lists the number of errors per person and per
group and the mean error per group. A
Kruskal-Wallis test reveals that the mean error is sig-
nificantly affected by the navigation system behavior
(H(3) =8.4962, p =0.034). However, it is important to
mention that the number of errors is often zero and
generally low. Still, the number of participants with a
navigation error varies greatly between the groups.

Table 4 Differences in interactions with the navigation system between groups

AllocHum_LocHum

AllocHum_LocSys

AllocSys_LocHum AllocSys_LocSys

AllocHum_LocHum - -

AllocHum_LocSys 19.75% -
AllocSys_LocHum 1.34 18.40*
AllocSys_LocSys 21.15% 140

19.81% -

Statistally significant difference between groups, *p < 0.05
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Table 5 Different numbers of navigation errors across groups during the experimental Phase 2 indicating varying degrees of

recalling the acquired spatial knowledge of the traversed route

AllocHum_LocHum AllocHum_LocSys AllocSys_LocHum AllocSys_LocSys

participants with no error 13 13 6 10

participants with 1 error 2 1 6 3

participants with 2 errors 1 2 2 1

participants with 3 errors 0 0 2 2

total participan%s with > 1 3 (18%) 3(18%) 6 (37.5%)

errors
mean error per group 0.25 0.3125 0.6875

Number of participants per group who made zero, one, two or three errors at intersections (darker red color indicates more navigation errors per group)

The four participants with the highest number of er-
rors (three) are in the two navigation groups using a
navigation system that features lower active human
participation (i.e., higher levels of automation). More
errors suggest that these participants were less effect-
ive in recalling their spatial knowledge of the route
compared to the other participants, and indeed ac-
quired less (accurate) spatial knowledge during Phase
1. Twelve participants made only one error, and 42
participants made no errors at all. Hence, these par-
ticipants were more effective in reversing the route.

Navigation performance

Figure 8 depicts the duration for reversing the route
unassisted from the destination back to the starting
point. Overall, the time to walk the same route un-
assisted ranged from 6 to 13 min for participants (M
=8.3min, SD=12min), with most participants
returning to the starting point in less than 10 min. A
Kruskal-Wallis test revealed no significant completion
time differences between the four groups in Phase 2
(H(3) =0.051, p=0.997). This means that being ex-
posed to differing navigation system behaviors during
Phase 1 did not significantly influence navigation per-
formance without any navigation system assistance for
the reversed route (Phase 2).

Similar to Phase 1, we counted how many times par-
ticipants stopped or hesitated along the route during
Phase 2. On average, participants hesitated zero to once
across groups (Table 6). The two groups AllocSys_Lo-
c¢Hum and AllocSys_LocSys stopped slightly more often
than the groups AllocHum_LocHum and AllocHum_-
LocSys, who hardly ever stopped or hesitated during un-
assisted navigation phase.

Difficulty rating
After participants had read the instructions for Phase 2,
they were asked to rate their perceived difficulty of the

task “finding the exact same way back without assist-
ance” on a five-point Likert scale ranging from 1 (very
easy) to 5 (very difficult). They were asked to rate the
difficulty of the task again after completing their walk
back, using the same scale. Table 7 shows the average
scores across the four groups. Overall, on average, the
ratings are all below 3, thus indicating they perceived
the task to be easy. The range of ratings is larger before
than after participants performed the route-reversal. The
variation in ratings is very small for group AllocSy-
s_LocSys, meaning that participants in this group agreed
more about the difficulty of this task before and after
Phase 2 compared to the other groups. All groups
rated the difficulty of Phase 2 as easier after they per-
formed it compared to before. This indicates an over-
estimation of task difficulty in their first rating. A
Kruskal-Wallis test revealed no significant differences
in ratings before (H(3)=3.6814, p=0.289) or after
(H(3) =0.75636, p = 0.8599) performing Phase 2 across
the four groups.

Mobile eye tracking
Overall, the differences in navigation performance and
spatial knowledge acquisition during Phase 1 and Phase
2 indicate changes to human navigation behavior based
on navigation system behavior. To see if navigation sys-
tem behavior also influences gaze behavior, we now re-
port the analysis and results of the eye tracking
recordings during Phase 1 and Phase 2. Unfortunately,
we could only analyze 26 of 64 participant recordings
(AllocHum_LocHum, 6; AllocHum_LocSys, 6; AllocSy-
s_LocHum, 8; AllocSys_LocHum, 6) that had adequate
data quality for both experimental phases due to calibra-
tion and recording issues. Given the small sample size in
each group, we did not run any statistical analyses on
the eye tracking data.

Figure 9 shows the mean fixation durations for
each segment during both test phases and across the
four groups. What stands out first is that generally,
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Fig. 8 Navigation assistance levels do not influence route completion times of Phase 2. Average duration for walking the route unassisted. Black
dots indicate outliers

for all groups, the mean fixation duration during agree that the transformation of assisted navigation from
Phase 1 (incidental knowledge acquisition) follows a  static paper maps to interactive map displays (e.g., navi-
wave pattern that starts with longer mean fixation gation systems) that provide information at any time
durations in the first segments of the route, followed and potentially at any location influences the way we
by segments with shorter mean fixation durations, perceive, remember, and interact with our surrounding
and then again segments with longer fixation dura- environment (e.g., Ishikawa et al, 2008; Klippel et al,
tions toward the end of the route. This wave pattern  2010; Parush et al., 2007). We designed an experiment
seems to be independent of the employed navigation to study the possible influence of different navigation
system behavior. During Phase 2 (knowledge recall), system designs derived from different levels of automa-
we do not observe this wave pattern. Here, no clear tion (Parasuraman et al, 2000) on navigation system
pattern emerges, and fixation durations show large use, spatial knowledge acquisition, and gaze behavior
variations. Interestingly, the pattern of the AllocSy- during a route-following task. The implemented naviga-
s_LocHum group was inversed during Phase 2 com- tion system behaviors were selected based on research
pared to Phase 1. on spatial knowledge acquisition, active learning, and au-

However, while there do not seem to be differences tomated systems. Research that emphasizes the import-
between the four navigation system behaviors, distinct ance of engaging a user with the environment (e.g.,
differences in the fixation duration patterns emerge be-  Gardony et al., 2013) suggests that this active user partici-
tween the two experimental phases: incidental know- pation with a navigation system benefits spatial learning
ledge acquisition (Phase 1) and knowledge recall (Phase  during navigation. We developed a new two-phase empir-
2). We conclude that the difference in mean fixation du- ical framework for testing incidental spatial knowledge ac-
rations depends on whether participants are using a  quisition in real-world outdoor environments. First,
navigation system or not, but not on the different behav-  participants were asked to follow a pre-defined route

iors of the navigation system. assisted by a navigation system (incidental knowledge ac-
quisition phase). Second, participants were asked to re-
Discussion verse the route without the navigation system (knowledge

Maps on mobile devices allow navigators to efficiently recall phase). We now discuss our empirical results with
and effectively find their way across space. Researchers regard to the leading research questions and within the

Table 6 Count of hesitations and stops across groups during the unassisted route-reversal task (mean and standard deviations)

AllocHum_LocHum AllocHum_LocSys AllocSys_LocHum AllocSys_LocSys
Hesitations M=0.50 SD=063 M=043 SD=0.51 M=131 SD=1.19 M=1.06 SD=1.61
Stops M=0.12 SD=034 M=0.18 SD=0.40 M=0.56 SD=0.89 M=037 SD=0.61

Participants barely hesitated or stopped in Phase 2. The groups AllocSys_LocHum and AllocSys_LocSys hesitated slightly more often than the other two groups,
indicating uncertainty in recalling the next navigation action or in recognizing the surrounding environment
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Table 7 Average score of task difficulty across groups at different stages (before and after) in Phase 2

Difficulty Rating AllocHum_LocHum

AllocHum_LocSys

AllocSys_LocHum AllocSys_LocSys

M=243 SD=1.15
M=212 SD=038

M=237
M=212

Before Phase 2

After Phase 2

SD=1.14
SD=095

M=297 SD=092
M=243 SD=0.15

M=281
M=231

SD=0.75
SD=1.07

Rating scale: 1 (very easy) to 5 (very difficult). All groups rated the difficulty of Phase 2 as easier after they performed it compared to before, indicating an initial

overestimation of task difficulty

context of the research findings reported in the literature.
We begin with the behavioral research question:

How do varying navigation system behaviors (levels of
automation) influence (i) navigation performance, (ii)
spatial knowledge acquisition, and (iii) gaze behavior
during navigation tasks in a real-world outdoor
environment?

Navigation performance and spatial knowledge acquisition
Research on assisted navigation has studied navigation ef-
ficiency (e.g., Lee & Cheng, 2008) or spatial knowledge ac-
quisition (e.g., Gardony et al., 2013; Taylor et al., 2008).
According to this research, successful navigators assisted
by a navigation system should still make their own deci-
sions, attend to their surroundings, and actively take part
in the navigation process because these factors positively
affect spatial knowledge acquisition (Chrastil & Warren,
2012; Chung et al., 2016; Kiefer, Giannopoulos, Athanasios
Anagnostopoulos, Schoning, & Raubal, 2017; Parush et
al., 2007). Based on these studies, we implemented two
cognitive processes (i.e., the allocation of attention and
self-localization) relevant for wayfinding (Glisky, 2007;

Lobben, 2004) with different levels of automation in
which either the navigation system or the navigator
makes a decision and performs an action (Parasuraman et
al,, 2000).

The implemented system behaviors with higher levels
of human participation aim to increase spatial know-
ledge acquisition during assisted navigation while still
ensuring efficient navigation of their users. Indeed, our
results did not reveal any difference in completion time
for the assisted route-following phase across the four
tested groups. This holds even though two groups had
to first decide on and then enter short landmark descrip-
tions into their system three times during Phase 1 and,
consequently, needed to stop more often. Still, partici-
pants in these groups did not need more time to
complete the route-following task compared to partici-
pants using systems that selected for them what they
should allocate their attention to (e.g., automatic notifi-
cations). Thus, navigation system behavior did not influ-
ence time to task completion during the assisted part of
the experiment. This finding has important implications
for developing navigation systems that regulate active
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user participation (i.e., low level of automation) without
harming navigation efficiency.

To determine the impact of system behavior on inciden-
tal spatial knowledge acquisition, participants had to re-
verse the same route without any navigation system
assistance, thus using only their spatial knowledge that
was incidentally acquired during the assisted route-follow-
ing phase. We counted a wrong decision at an intersection
as a navigation error. During the assisted navigation phase,
all participants followed the route without any error. This
may not be surprising because they were assisted by a
navigation system. During the unassisted phase, the num-
ber of errors varied across the four groups.

The different navigation systems implemented the
cognitive process “allocation of attention” with two
modes at the extreme ends of the spectrum of levels of
automation. The two tested modes of the cognitive
process “self-localization” exhibit a less pronounced dif-
ference of these levels (Fig. 3). We observed a clear dif-
ference between the two extreme modes for acquiring
spatial knowledge. Both groups with users’ decisions on
where to mark landmarks and, thus, where to allocate
attention (AllocHum_LocHum, allocation of attention
and self-localization by human; and AllocHum_LocSys,
allocation of attention by human and self-localization by
system) show 82% success rates in finding the exact
same route back. The two groups in which the system
allocates users’ attention to landmarks show success
rates of 63% (AllocSys_LocSys, allocation of attention and
self-localization by system) and 38% (AllocSys_LocHum,
allocation of attention by system and self-localization by
human). The fact that so many participants did not find
their way back correctly after just 10 min of walking
along a simple route may seem surprising. However,
these results support the hypothesis of Chrastil and
Warren (2012), Parush et al. (2007), and Willis et al.
(2009) that activating a user with a location-dependent
task (in our case, typing three self-selected keywords
into a navigation system) increases spatial knowledge ac-
quisition. In contrast, the two study groups with notifi-
cation texts (AllocSys_LocHum and AllocSys_LocSys)
who were using a navigation system with a high level of
automation show lower success rates. This result seems
to confirm findings by Pielot and Rello (2017) and Lee et
al. (2014), who demonstrated that system notifications
can interrupt an activity. In our case, textual notifica-
tions indicated by tactile alarms forced users to focus on
their navigation system, rather than the environment, at
locations defined by the system. Navigation decisions
were taken away from navigators by the system, and thus
may have interrupted the process of acquiring spatial
knowledge. We further explain this result with the fact
that the AllocSys groups were forced to switch to the
survey perspective at the system’s discretion, while the
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AllocHum groups could maintain the first-person per-
spective until choosing themselves to make the switch to
the survey perspective in order to make a place—action
link (as described in Chrastil & Warren, 2012). This ex-
planation aligns with the divided attention literature
(Gardony et al.,, 2013) and the stated cognitive problem
of “passive nature of interaction” (Willis et al., 2009).
The effects of the two modes of the cognitive process
“self-localization” are less pronounced in our study,
which may at least in part be explained by the fact that
they are similar in their level of automation (levels 8 and
10 in Fig. 1, respectively).

We initially hypothesized that the group faced with
the highest level of automation, ie., in which both deci-
sions on attention allocation and self-localization are
made by the device (AllocSys_LocSys), would acquire
least spatial knowledge. Our results do not really sup-
port this hypothesis since the group AllocSys LocHum
made the most errors when reversing the route. One
possible explanation for this might be that participants
in this group interacted with the map more often than
the two other groups AllocHum_LocSys and AllocSy-
s_LocSys. Consequently, the AllocSys_LocHum group was
frequently switching between the route and survey per-
spective and seemed to have paid more attention to the
navigation system than to the environment compared to
the other groups (Ishikawa et al., 2008).

Another explanation may lie in the use of the “GPS
on” button to facilitate self-localization. The group
AllocSys_LocHum used this button significantly more
often than the other group with the same option (Allo-
cHum_LocHum). The AllocHum_LocHum group, which
needed to choose and type keywords about landmarks,
had this particular task to concentrate on. In contrast,
the participants of group AllocSys_LocHum, who did not
have any other tasks to fulfill, used this button much
more than necessary, and consequently had their pos-
ition displayed on the map for a longer amount of time.
Just having the option of pressing this button likely dis-
tracted participants in this group more than expected.
There are several possible explanations for this result.
First, users in the group AllocSys_LocHum may indeed
have needed repeated confirmations of their current loca-
tion on the map to successfully find the route during
Phase 1. Second, they used the button just because they
could or, third, just to offload cognition to the system to
reduce “stressful” cognitive activity, which would confirm
the findings by Willis et al. (2009). Overall, this result
seems consistent with research that found that using
smart devices can lead to excessive reliance on the system
(Klippel et al., 2010; Parush et al, 2007). Additionally,
navigation system use may diminish our navigation
skills more generally and, with that, we may not be
able to appropriately judge when the use of a
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navigation interface element becomes optional (Mon-
tello, 2009). Third, frequent perspective changes can
interrupt the process of allocating enough attention
to the surrounding environment.

In general, our results suggest that the use of inter-
active display elements (e.g., zoom, pan, rotation, GPS
button, etc.) invites users to switch between perspectives
(Dai et al, 2018) and thus facilitate the division of
navigators’ attention between the system and the envir-
onment (Gardony et al., 2013). Possibly the groups with
a lower level of system automation engaged with the
interactive display tools more strategically and in a
goal-directed manner. The groups with a higher level of
automation did not seem to invest cognitive resources in
the navigation task, but rather explored the system’s cap-
abilities and looked for ways to let the system do all the
work. Regarding cognitive processes involved in using
navigation systems, our findings suggest that differences
in the levels of automation of navigation system behav-
ior, specifically, allocating attention and self-localization,
affect human navigation behavior and, with it, incidental
spatial knowledge acquisition. We further highlight the
importance of better understanding the effects of inter-
active interface components (e.g., display buttons) in
navigation system design because they can support, but
also hinder, spatial knowledge acquisition, even if they
may not affect navigation performance. Our study starts
building knowledge to more deeply understand real-
world navigation when using navigation systems, as sug-
gested by Dai et al. (2018).

Gaze behavior

Because research has found that navigation systems
change how humans allocate their attention to the envir-
onment and change their landmark selection (Gardony
et al., 2013; Ishikawa et al, 2008; Parush et al., 2007;
Taylor et al., 2008), we analyzed participants’ gaze behav-
ior during the two experimental phases. Eye movement
behavior is one measure of information acquisition
(Kiefer et al., 2017) and strategies (Holmgqvist et al.,
2011). The goal of the eye tracking analysis was to
determine the spatio-temporal distribution of partici-
pants’ fixation durations along the route.

The results of the fixation duration analysis did not re-
veal any differences in navigators’ gaze behaviors across
navigation system behaviors but, interestingly, did so be-
tween the two experimental phases. We found a clear
gaze behavior pattern during the assisted route-following
task, but no clear patterns emerged during the un-
assisted route-reversing task. We are unable to systemat-
ically identify what participants allocated their attention
to during the experiment due to the vast amount of dy-
namic eye fixation data and the extensively laborious an-
notation process (Kiefer et al, 2017). However, the
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applied method generally can tell us something about
potential similarity of gaze behaviors across groups in a
spatio-temporal context. With our method of segment-
ing the route according to decision points (i.e., intersec-
tions), we were able to detect spatial segments that led
to higher mean fixation durations, thus potentially indi-
cating higher cognitive functions, and segments showing
lower mean fixation durations, suggesting a potential for
increasing visual complexity (Duchowski, 2007). Longer
fixation durations in the early segments of the route
might indicate that participants are actively becoming fa-
miliar with the task, the navigation system, and their
surroundings, and, connected to this, higher information
processing, or, conversely, that participants had more
difficulty to extract information (Goldberg & Kotval,
1999). Longer fixations in this context could also be
interpreted as making a clear place—action link, as de-
scribed in Chrastil and Warren (2012). Interestingly, in
segments 6 and 7 of the route, which can be character-
ized as an unremarkable and quiet street, participants
showed the lowest mean fixation durations, with only
small variations. According to the literature, spatial
scenes with lower fixation durations show decreased
cognitive functions and information processing and an
increase in visual complexity of the environment. This
could mean that unremarkable streets might have led to
a switch into a passive navigation mode, i.e., navigators
did not pay much attention to the task.

These results suggest that we might be able to relate
human behavior to the spatial context during navigation
system use, which is a clearly identifiable knowledge gap
in the literature (Dai et al., 2018).

With our descriptive summary approach analyzing dy-
namic mobile eye tracking data, we are able to clearly
distinguish different behaviors during different cognitive
tasks along a route—this without exactly knowing what
features participants attended to. These findings provide
further insights into how the allocation of attention
might shift between navigation system use and environ-
mental context during navigation.

Limitations and future work
We present aggregated results across four navigation
system groups. Participants do not show any differences
across groups in spatial ability. Consequently, we cannot
attribute errors made during Phase 2 to spatial ability.
Due to small sample sizes, gender and spatial ability are
not further analyzed in this study. Certainly, they could
(or should) be assessed and/or controlled for in future
navigation studies.

The current studied navigation behaviors rely on visual
information only (i.e., map and text). In future work, it
would be interesting to include auditory system
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modalities, as these were found to be beneficial for naviga-
tion performance (Klatzky, Marston, Giudice, Golledge, &
Loomis, 2006). For example, the system could provide
spoken route instructions. Navigation system modes used
to reallocate attention could employ auditory modalities
to better understand the impact of modality of the pre-
sented information. One way of applying these could be
that participants are asked to voice-record landmark
descriptions, instead of typing them into the system
(AllocHum), or that the system voices a landmark de-
scription when navigators approach their locations,
instead of displaying a label on the map (AllocSys).

To develop a fuller picture of the gaze behavior, labori-
ous annotations of the eye tracking data are required,
which in turn could help us to further verify interpreta-
tions of results.

Finally, a similar experiment and data analysis could
also be performed in an indoor environment (Riehle,
Lichter, & Giudice, 2008) to gain further insights into
the influence of varying environmental contexts on navi-
gation behavior.

Overall, our findings have important implications for
designing and developing navigation systems that allow
for efficient navigation while at the same time support-
ing acquisition of spatial knowledge. Navigation system
design needs to be more thoroughly empirically investi-
gated with respect to levels of automation, modality of
information delivery, and where attention is allocated
during navigation because these have direct conse-
quences for human navigation behavior and for the ease
of acquiring new spatial knowledge.

Is the experimental framework of an assisted and
unassisted navigation phase a valid approach to gather
useful data in terms of spatial knowledge acquisition and
to allow for a smooth execution of an outdoor
experiment?

A second goal of this study was to test a new empirical
framework in an outdoor environment, and to use navi-
gation errors at intersections as an indicator of spatial
knowledge quality, as Dillemuth (2005), Hund and Gill
(2014) and Lovelace and Hegarty (1999) suggested. So
far, most research on spatial knowledge acquisition has
been carried out in VR setups, under highly controlled
conditions (e.g., Brunyé et al, 2014; Gardony et al,
2013). Studies testing spatial knowledge acquisition in
the real world, and especially in outdoor environments,
are still rare and usually only have small numbers of par-
ticipants (e.g., Bertel et al., 2017; Frei, Richter, & Fabri-
kant, 2016). Other wayfinding studies in this domain
either tested aspects of usability (Cheverst, Mitchell, &
Davies, 2001; Gulliksen et al., 2003; Li & Longley, 2006;
Looije, te Brake, & Neerincx, 2007) or of attention allo-
cation (Gardony et al., 2013; Kiefer et al., 2013; Michon
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& Denis, 2001; Roger, Bonnardel, & Le Bigot, 2009; Ross,
May, & Thompson, 2004). Our approach involved a
real-world outdoor scenario in which participants’ spatial
knowledge was assessed with a route-reversal task that
asked participants to find the identical route back. The
framework, introduced in Briigger et al. (2016), is similar
to the VR study by Karimpur et al. (2016), but was
modified for execution in a dynamically changing out-
door urban environment. To be able to apply a real-life
scenario (e.g., finding lost keys) in a real-world environ-
ment, we let the participants reverse the route and did
not use any of the usually applied direction or distance
estimation tasks (as, e.g., in Burte & Montello, 2017).
What is more, the new proposed framework tests users’
in situ recognition of the environment and allows for ef-
ficient experimental execution.

Challenges of applying the use-inspired framework in the
real world

We conducted the experiments on days with similar
weather conditions, and only during daytime. Weather
conditions have led to cancellations and rescheduling of
trials, which makes outdoor studies time-consuming and
more difficult to plan. Because the experimental Phases
1 and 2 were executed within half an hour, the environ-
mental testing conditions can be considered stable, ex-
cept for moving objects (e.g., cars, pedestrians, etc.).
Hence, changes in the environment might have occurred
between trials. Another challenge of testing this
use-inspired framework is the in situ change of partici-
pants’ walking direction between Phase 1 and Phase 2.
Because participants experience actual locomotion, are
embedded in the real-world environment, and have a
novelty of landmark perspectives (Bakdash et al., 2008;
Klippel et al., 2010; Montello, 2005; Richter & Winter,
2014), we argue that the change of walking direction is
easier to deal with in the real world compared to in vir-
tual environments. Our results confirm that route rever-
sal is a a valid use-inspired task for our purposes as,
indeed, two-thirds of the participants were able to re-
verse the route without any navigation errors.

Self-assessed task difficulty of reversing a route
Participants’ perceived task difficulty rating (collected
before the navigation task) revealed that they expected
the task to be manageable and without many problems.
The same task was again rated after they completed the
navigation task, and participants found it even easier
than expected. This finding is surprising given that more
than one-third of the participants made a navigation
error. This underestimation of real-world navigation per-
formance is interesting and requires further analysis of
subjective perception on navigation performance across
system designs.
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Further development of the experimental framework

Being able to reverse a route one just walked may not
represent the only goal of navigation (and neither would
pointing back to the origin from a destination), but we
contend that the approach we implemented in our study
indeed represents an everyday problem. Furthermore,
we argue that the framework successfully captures differ-
ences in spatial knowledge acquisition without using any
of the standard measures, such as pointing or sketch
map drawing. Still, to develop a fuller picture of spatial
knowledge acquisition during assisted navigation, add-
itional studies in outdoor environments need to further
refine our proposed use-inspired framework. For ex-
ample, it would be useful to develop a classification and
quantification scheme for navigation errors (e.g., naviga-
tion error and behavior categorization, according to
varying spatial contexts), which would allow for more
detailed and meaningful analyses of spatial knowledge
acquisition and human navigation behavior, beyond this
study. Overall, our scenario of finding one’s lost keys on
a previously walked route without any navigation assist-
ance does represent a real-world scenario that can be
easily applied to different environments and locations,
navigation modalities, and other empirical study
contexts. Studying spatial knowledge acquisition in
real-world outdoor environments makes an important
contribution to the challenges of developing “realistic”
outdoor studies, beyond the lab-standard of controllabil-
ity, typically using impoverished environments and lack-
ing realistic contexts. We see this as a benefit, not a
limitation.

Conclusions

Current navigation systems primarily provide informa-
tion that is useful for navigation performance (effi-
ciency). Due to the way this is implemented in
state-of-the-art systems, it typically consumes a naviga-
tor’s attention, while in fact navigation systems could
be leveraged to better manage attention allocation and
self-localization, i.e., could benefit both navigation effi-
ciency and spatial knowledge acquisition. The purpose
of this study is to determine how navigation system be-
havior influences navigation performance, gaze behav-
ior, and incidental spatial knowledge acquisition of
pedestrians traversing outdoor environments. We ap-
plied a new empirical use-inspired framework that in-
cludes a real-world scenario of walking a route assisted
by a navigation system and then reversing the same
route without the assistance of a navigation system. We
have further demonstrated that it is possible to study
spatial knowledge acquisition in outdoor environments
by recording navigation errors at intersections, using
them as one of the indicators of lacking mental spatial
representations. Further experimental studies are needed
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to gain a deeper understanding of the kinds of navigation
errors participants make during an unassisted recall
phase.

Our approach of deriving navigation system behaviors
from levels of automation in cognitive processes relevant
for wayfinding is unique, and it extends our knowledge
of how navigation system behavior influences human be-
havior in real-world environments. A greater focus on
the combination of cognitive processes during assisted
navigation in outdoor environments would enhance our
understanding of a navigator’s active role during naviga-
tion and possible divided attention effects. The uncov-
ered gaze pattern differences illustrate the opportunities
eye tracking data offer to study navigation behavior in
real-world and outdoor studies in order to relate human
behavior and cognitive activity to spatial context and
spatial tasks. We contend that once we find behavior
patterns dependent on task, navigation system, and
spatial context, we will be better able to design systems
that allocate attention based on these patterns in
real-time to better handle spatial knowledge acquisition
and navigation performance. For example, the system
might sense a specific behavior pattern (e.g., intensive,
repeated use of a button, or constantly lowering fixation
positions) and consequently may force the navigator to
keep using his or her own skills by disabling the use of
the button or by reminding the user to look up to the
environment. With our study, we contributed to the de-
sign of future intelligent navigation systems that know
where, when, and in which modality cognitive processes
should be supported by automation to increase spatial
knowledge acquisition during assisted navigation tasks.
The task to reverse the same route without a navigation
system should then be possible for everybody without
any navigation errors.
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