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Abstract
This paper revisits the numerical shape-from-shading method proposed in early 1980s. The original problem is
non-convex due to the unit norm constraint for surface normal, and the existing approaches including the original
Ikeuchi and Horn’s work uses approximate solution strategies for the original problem. This paper instead studies
relaxation strategies for the original non-convex constraint and describes corresponding solution techniques that are
built upon advanced convex optimization. We analyze the effect of the relaxations in terms of resulting accuracy and
computational complexity.
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1 Introduction
Shape-from-shading [11] is a problem of determining
shape in the form of surface normal from the shading
distribution observed in a single image. While a human
can naturally achieve this task, it is computationally non-
trivial and still remains as one of the central problems in
computer vision.
The major difficulty arises from the fact that the prob-

lem is under-constrained, i.e., there are many solutions
that satisfy the image formation model. In other words,
there exists a set of shapes that yields exactly the same
shading appearance under a fixed lighting condition. To
overcome this issue, previous approaches incorporate
additional priors, such as the smoothness constraint [13].
With such priors, it has been shown that the shape-from-
shading problem can be better constrained.
There is another difficulty in shape-from-shading that is

often overlooked, the non-convex nature of the problem
due to the unit norm constraint. Even assuming a linear
(Lambertian) reflectance model, the problem of inferring
shape in the form of surface normal requires the surface
normal vector to be in the unit norm, namely, ‖n‖2 = 1,
for a surface normal vector n ∈ R

3. Oftentimes, a two-
parameter notation of a surface normal vector (p, q, 1)�
is used, but it comes with the normalization of its mag-
nitude, resulting in n = (p, q, 1)�/

√
p2 + q2 + 1.

It makes the unit norm constraint somehow implicit;
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however, the problem is fundamentally unchanged and
the non-convexity of the problem still remains1.
This paper studies the effect of the unit norm con-

straint (‖n‖2 = 1) that always appears in shape-from-
shading problems, under the conventional assumptions of
orthographic projection and calibrated point light source.
This constraint makes the overall problem non-convex;
therefore, it is important to understand its property and
develop work-around if any for the method to be applied
in practical situations. We illustrate various relaxation
strategies and corresponding solution methods and assess
the effect of the approximations. Our study puts its basis
on the early work of numerical shape-from-shading [13]
and revisits the problem with advanced convex relaxation
and optimization methods that have been more recently
developed.

1.1 Related works
Since Horn’s original work [11], the problem of shape-
from-shading has been one of the central problems in
computer vision. While the shape-from-shading prob-
lem can be described in a simple manner, it exhibits a
mathematically rich structure. There have been a numer-
ous number of previous works that study shape-from-
shading, and an excellent survey of the early methods is
found in [45]. The survey categorizes the approaches into
four classes: minimization [5, 13], propagation [11, 19],
basis representation [23, 28], and linear approximation
[27, 37] approaches. Our method falls in the class of min-
imization approaches, in which the smoothness of the
surface normal is maximized under some constraints. The
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vast majority of the early works focuses on the solution
strategies; however, surprisingly very few works explic-
itly discussed the issue of the non-convex nature of the
problem until more recently [7, 18]. Early methods tried
to avoid the issue of non-convexity by their customized
solution technique. For example, Ikeuchi and Horn [13]
iterate between solving the problem without the non-
convex constraint and normalizing the surface normal.
Szeliski’s work [35] has used a gradient-descent method
for obtaining the surface normal in conjunction with
a hierarchical basis representation based on scale-space
theory [38] for shape and its gradient, effectively avoid-
ing local minimas. More recently, Xiong et al. [43] used
a locally quadratic shape representation for robust infer-
ence of the global shape. A newer survey of shape-from-
shading [6] provided a comprehensive summary of recent
shape-from-shading methods.
Most of the existing methods, including the original

shape-from-shading [11] and our method, assume an
orthographic camera projection and calibrated light con-
dition, i.e., the light source direction is known. Recently,
methods to alleviate with these restrictions have been pro-
posed. Tankus et al. [36] proposed a shape-from-shading
method under a perspective projection based on an exten-
sion of fast marching [20]. They have evaluated their
method using synthetic images and the medical images
recorded by an endoscopy and demonstrated improve-
ment in accuracy by the perspective projection model.
Richter et al. [30] used a learning-based approach for
estimating surface normal under perspective and uncali-
brated conditions. Their method uses a regression forest
for determining surface normal trained with synthetic
data and has shown promising results.
While most of the methods assume a point light

source, Queau et al. [29] proposed a shape-from-shading
method under natural illumination. They used a varia-
tional method for ensuring smoothness of surface nor-
mal through regularization by solving partial differen-
tial equations. Their method demonstrates robustness
in estimation without tedious tuning of a regularization
parameter.
For the purpose of making shape-from-shading appli-

cable to real-world scenarios, there are threads of works
that aim at relaxation of restrictive assumptions. They
include the relaxations of known and uniform albedo
assumption [2] using a coarse depth information, spa-
tially uniform illumination assumption [8], and known
illumination assumption [31] with a discriminative learn-
ing approach. With these advancements, shape-from-
shading has been successfully applied to some real-world
applications, such as endoscopy [42], recovery of shape
with high-frequency details [41, 44], and face recognition
[3, 34] to list a few. Our study also aims at broadening
the use of shape-from-shading, and this paper particularly

studies the unit norm constraint that is inherent in shape-
from-shading problems. Unlike previous approaches that
introduce new assumptions for making the problem more
tractable, our focus is to analyze the behavior of the unit
norm constraint and its relaxed surrogates.

2 Background
Given a measurement vector m ∈ R

p that consists of p-
pixel observations under a distant light l ∈ R

3, ‖l‖2 = 1,
we wish to recover the surface normal map (scaled by
albedo) N ∈ R

3×p based on the Lambertian image forma-
tion model

m� = l�N. (1)

We revisit the original numerical shape-from-shading
formulation [13] using a matrix notation because of
its simplicity of notations. The three constraints intro-
duced in the original work [13]—brightness, smoothness,
and occluding boundary constraints—can be written as
follows:

Brightness constraint. The brightness constraint
ensures the agreement among observations m, light-
ing l, and surface normal N via the Lambertian image
formation model:

l�N − m� → 0. (2)

Smoothness constraint. Smoothness constraint ensures
the surface normal estimates have locally smooth varia-
tions. Using a 2D Laplacian matrix D ∈ R

p×p defined
over grid locations in a valid image region, the smoothness
constraint can be written as

ND → 0. (3)

Occluding boundary constraint. At pixels on an
occluding boundary, it is assumed that the surface orien-
tation information is available. Namely, it assumes that the
surface normal direction is perpendicular to the tangent
line of the object boundary, looking outward. Let F, a diag-
onal p × p matrix, indicate the pixel locations where the
occluding boundary constraint is applicable (1 for such
pixels and 0 otherwise), and a matrix G ∈ R

3×p contains
the corresponding surface normal information. For exam-
ple, if the ith pixel is at the occluding boundary, Fi,i = 1
and gi = ni, where gi and ni correspond to the ith col-
umn vectors of G and N, respectively. For non-occluding
boundary pixels, Fj,j = 0 and gj = 0. With these nota-
tions, the occluding boundary constraint can be written as

NF − G → 0. (4)

Unit norm constraint. Another important constraint is a
unit norm constraint for surface normal vectors. Namely,
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the norm of a surface normal vector ni ∈ R
3, corre-

sponding to a column vector of N
(= [

n1, . . . ,np
])

needs
to satisfy

‖ni‖2 = 1, ∀i ∈ {1, . . . , p}. (5)

In addition, we are interested in surface normals that are
visible from a camera; thus, an additional constraint 0 ≤
nz can be placed.
In the original formulation [13], the smoothness con-

straint (3) is regarded as an objective function tominimize
while the rest are treated as hard constraints as

minimize
N

1
2
||ND||2F

subject to l�N − m� = 0,NF − G = 0,
‖ni‖22 = 1, 0 ≤ niz, ∀i ∈ {1 . . . p}.

(6)

This problem is a non-convex QCQP (quadratically
constrained quadratic program) due to the non-convex
constraint ‖ni‖22 = 1 and understood as a NP-hard prob-
lem. In other words, the computational difficulty arises
solely due to the unit norm constraint ‖ni‖22 = 1. The
original paper [13] tackled the problem essentially by iter-
atively solving a relaxed subproblem without the norm
constraint. This paper revisits this problem and stud-
ies possible relaxations of the norm constraint and their
effects.

3 Relaxations and solutionmethods
In the original formulation (6), the unit norm constraint
for surface normal is a non-convex quadratic equality,
which is the source of the non-convexity of the overall
problem. This section describes convex relaxation strate-
gies for shape-from-shading and their solution methods.
We consider the following three types of convex relax-
ations in addition to the original non-convex problem:

ORIGINAL (non-convex) ‖ni‖22 = 1, 0 ≤ niz
INSIDE ‖ni‖22 ≤ 1, 0 ≤ niz
BOX − 1 ≤ nix, niy ≤ 1, 0 ≤ niz
OPEN 0 ≤ niz
Figure 1 shows feasible regions of the original unit

norm constraint and the relaxed constraints. The “ORIG-
INAL” constraint says that the norm of surface normal

must be on the hemisphere formed by ‖ni‖22 = 1 and
nz ≥ 0. The “INSIDE” relaxation is a convex surrogate
for the unit norm constraint, turning the original con-
straint into a quadratic inequality constraint. The “BOX”
relaxation uses a looser convex approximation to the orig-
inal constraint to form linear inequality constraints that
correspond to ranges of each elements of surface nor-
mal. Finally, the “OPEN” relaxation fully removes the unit
norm constraint and allows solutions anywhere in the
half-space nz ≥ 0. Aside from the ORIGINAL constraint,
the three relaxed constraints are all convex, and thus, they
turn the whole problem into convex. In what follows, we
discuss solution methods for these settings.

3.1 ORIGINAL constraint
Because the feasible region of the original unit norm
constraint is non-convex, deriving its exact solution is
generally difficult. To make it computationally tractable,
the original problem can be approximated to either
Lagrangian relaxation or semidefinite programming
(SDP) relaxation [1, 7]. In general, the SDP relaxation,
which becomes a convex problem, better approximates
the original problem unless the weighting factors for
Lagrangian relaxation is carefully chosen and yields higher
accuracy. However, linearization in SDP relaxation gen-
erates a huge dense matrix vec(N)�vec(N)

(∈ R
3p×3p),

which prohibits the method to work only with small
images as pointed out in [7]. We now discuss the
Lagrangian relaxation of the original problem (6) with
weight parameters λ1, λ2, and λ3:

minimize
N

1
2
||ND||2F + λ1||l�N − m�||22

+ λ2||NF − G||2F + λ3
∑

i∈{1...p}

(||ni||22 − 1
)2

subject to 0 ≤ niz.
(7)

For convenience of later discussion, we vectorize N as
x = vec(N)=

[
n�
1 , . . . ,n�

p

]�
and reformulate the problem

(7) as:

Fig. 1 Feasible regions of the unit norm constraint (ORIGINAL) and its relaxations (INSIDE, BOX, and OPEN)
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minimize
x

1
2
||D⊗x||22 + λ1||L⊗x − m�||22

+ λ2||F⊗x − g||22 + λ3
∑

i∈{1...p}

(||ni||22 − 1
)2

subject to 0 ≤ niz,
(8)

where
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L⊗ = Ip ⊗ l�
(∈ R

p×3p)

D⊗ = D ⊗ I3
(∈ R

3p×3p)

F⊗ = F ⊗ I3
(∈ R

3p×3p)

g = vec(G),

with ⊗ representing the Kronecker product operator and
I3 being a 3 × 3 identity matrix.
While the problem (8) is a non-convex nonlinear least-

squares problem with boundary conditions 0 ≤ niz, we
can apply a variant of Levenberg-Marquardt algorithm
[24, 26] that is designed for (convex) constrained problems
[16] to seek a local minima. The updating formula from x
at iteration k denoted by x(k) to x(k+1) is given as:

x(k+1) = xk + dk . (9)

The parameter d(k) (∈ R
3p) indicates the search direc-

tion of Levenberg-Marquardt algorithm and is deter-
mined by solving the subproblem described in Appendix 1.
Lagrangian relaxation yields a good approximate solu-

tion to the original problem when λ1, λ2, and λ3 are
available and if we could solve the problem by overcom-
ing the non-convexity. However, due to the non-convexity,
the Levenberg-Marquardt method (or any other convex
optimization methods) may be trapped in local minima
depending on the initial guess x0. In addition, the best
choice of λ1, λ2, and λ3 depends on the target image, and
unfortunately, the ideal values are generally inaccessible.

3.2 INSIDE relaxation
The INSIDE relaxation of the problem is formulated as:

minimize
x

1
2
‖D⊗x‖22

subject to L⊗x − m� = 0,
F⊗x − g = 0,
0 ≤ s�i x, ∀i ∈ {3, 6, . . . , 3p},
x�Kix ≤ 1, ∀i ∈ {1, . . . , p},

where si
(∈ R

3p) are single-entry vectors with one in row
i and zero elsewhere, and Ki is a block diagonal matrix:

Ki =

⎡

⎢⎢⎢⎢
⎣

K1i 0 · · · 0

0 K2i
...

...
. . . 0

0 · · · Kpi

⎤

⎥⎥⎥⎥
⎦
, Kji =

[
I3 (if i = j)
0 (otherwise) .

The relaxed problem is convex QCQP, which can be
solved as a second-order cone program (SOCP) [25]. The
details of the solution method are described in Appendix
2. While this SOCP problem can be solved more effi-
ciently than the SDP relaxation to the original problem, it
is still computationally demanding when the size of input
image is large.

3.3 BOX relaxation
The Box relaxation problem, in which the unit norm con-
straint is replaced by range constraints of surface normal
elements, can be written as:

minimize
x

1
2
‖D⊗x‖22

subject to L⊗x − m� = 0,
F⊗x − g = 0,
0 ≤ s�j x ≤ 1, ∀j ∈ {3, 6, . . . 3p},
− 1 ≤ s�i x ≤ 1, ∀i ∈ {i 
= j}.

This problem is a linear constrained quadratic program-
ming (LCQP) and also can be solved by the primal-dual
interior point method [40]. Because the Karush-Kuhn-
Tucker (KKT) conditions for the BOX relaxation involve
less quadratic terms than those for the INSIDE relaxation,
the KKT equations for this case can be efficiently solved
by a standard Newton’s method (Appendix 3).

3.4 OPEN relaxation
The case for OPEN relaxation is rather straightforward.
The problem in this case can be written in the form of
LCQP as

minimize
x

1
2
‖D⊗x‖22

subject to L⊗x − m� = 0,
F⊗x − g = 0,
0 ≤ s�i x, ∀i ∈ {3, 6, . . . , 3p},

and, again, it can be efficiently solved by a primal-dual
interior point method [40].

3.5 Piecewise solution method
While the INSIDE relaxation approach shows higher
accuracy than other relaxation strategies that are
described above, its computational complexity rapidly
grows along with the image size. Motivated by propaga-
tion approaches in shape-from-shading (see Section 2.2 of
[45]), we develop an efficient piecewise solution strategy.
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The proposed method splits the image into small
patches having some overlaps to the neighbors and
estimates surface normal using the INSIDE relaxation
starting from the most reliable patch. The reliability is
determined by the number of the occluding boundary
constraints in a patch; the more the constraints are pro-
vided, the better surface normal estimate is expected.
Once the surface normal map x̂ for the most reliable patch
is determined by the INSIDE relaxation method, the nor-
mal maps x of its neighbors are estimated by taking the
surface normal estimates x̂ of the overlapped pixels as
new constraints. Namely, the following additional con-
straint between x̂ and x is further enforced to the INSIDE
relaxation setting:

R(x − x̂) → 0,

where R is a matrix that selects pixel locations where the
surface normal estimates x̂ is available in the overlapped
regions, i.e., R = diag

[
r0, . . . , rp

]
, and ri = 1 if the pixel

location i has the estimated normal x̂ and ri = 0 oth-
erwise. Since the surface normal estimates x̂ are subject
to error, putting them as hard constraints has a chance
of making the problem infeasible. Therefore, we treat the
new constraints as a soft constraint with a positive weight
parameter λ. The procedure for a target patch is written as

minimize
x

1
2
‖D⊗x‖22 + λR(x − x̂)

subject to L⊗x − m� = 0,
F⊗x − g = 0,
0 ≤ s�i x, ∀i ∈ {3, 6, . . . 3p},
x�Kix ≤ 1, ∀i ∈ {1 . . . p}.

Since solving the INSIDE relaxation setting by SOCP
requires O(n3) computational complexity, where n is the
number of unknowns (3p in our case), this patch splitting
strategy makes the problem significantly more efficient
at the cost of degradation of the accuracy. For example,
when the patch size is set 1/10 of the entire image size, it
becomes 100 times faster (1/103 computation is repeated
10 times).
As described, the solution method is sequential, i.e., if

the initial estimate fails, the error may propagate to the
rest of the estimation. However, by starting with the most
reliable patch, this effect is alleviated, and in practice, we
found the strategy is sufficiently reliable.

4 Experiments
This section shows experimental results using both syn-
thetic and real-world images for the various settings for
the unit norm constraint. The performance of the ORIG-
INAL problem and INSIDE, BOX, and OPEN relaxations
are examined in terms of their accuracy and computation
times. We also evaluate the effectiveness of the piecewise

solution method described in Section 3.5. In addition,
we compare these strategies with the original numerical
shape-from-shading algorithm proposed by Ikeuchi and
Horn [13] (labeled “ITERATIVE” hereafter), a polyno-
mial shape-from-shading method proposed by Ecker and
Jepson [7] (labeled “P-SFS”), and local shape prediction
method proposed by Xiong et al. [43] (labeled “XIONG”).
For the ITERATIVE method [13], following the original

method’s procedure, we repeat the Newton step for the
following problem for a few times (set to 5 in this evalua-
tion based on our empirical test) starting from the initial
guess n = (0, 0, 1)�:

minimize
N

1
2
||ND||2F+λ1||l�N−m�||22 + λ2||NF − G||2F

subject to 0 ≤ niz ,
(10)

and normalize the current estimate of the surface normal
to ‖ni‖2 = 1. As such, it iteratively optimizes without the
unit norm constraint, and during the iterations, it enforces
the surface normal to have the unit norm by normaliza-
tion. In the work of the P-SFS method [7], they propose an
iterative procedure with exact line search, which is inher-
ently non-convex, and its convex SDP relaxation. Since
their method does not require boundary conditions, we
align the setting to their setting and compare the perfor-
mance with their SDP relaxation method. We use Gurobi
Optimizer2 as a solver for SDP problems. XIONGmethod
[43] assumes the quadratic representation of local shape
and infers the local shape for each small image patches
separately. We use their implementation that is publicly
available3 and their default parameters for our experi-
ment. In our all experiments, the feasibility tolerance for
constraints of LCQP, QCQP, and SDP is set to 1×10−6 and
the tolerance for the stopping criteria is set to 1 × 10−6.

4.1 Synthetic scenes
In this section, we show some experiments on syn-
thetic dataset [15]. The dataset consists of ten objects,
which have a smooth shape, and the dataset contains ide-
ally complete 3D shape data. There is another dataset
for evaluating the shape-from-shading or photometric
stereo method ([9, 33]), but [15] is designed for syn-
thetic evaluation and suits our evaluation. We show the
results of five objects among them, labeled “blob01”
to “blob05,” rendered under a directional light source
l = (0, 0, 1)�. Figure 2 summarizes the results of vari-
ous settings: (a) ORIGINAL setting with the Lagrangian
relaxation, (b) INSIDE relaxation, (c) BOX relaxation,
(d) OPEN relaxation, (e) PIECEWISE solution method
described in Section 3.5, and (f ) ITERATIVE method
of [10]. For each scene, top row shows the estimated



Santo et al. IPSJ Transactions on Computer Vision and Applications  (2018) 10:8 Page 6 of 12

Fig. 2 Results on Blobby dataset [15]. From left to right, surface normal and angular error maps are shown for (a) ORIGINAL, (b) INSIDE, (c) BOX, (d)
OPEN, (e) PIECEWISE, and (f) ITERATIVE methods. GT indicates the ground truth normal maps, and the values represent corresponding MAEs

surface normal, and the bottom row depicts the angu-
lar error map and corresponding mean angular error
(MAE). For the ORIGINAL method with Lagrangian
relaxation, we carefully picked the weight parameters
(λ1, λ2, λ3) = (512, 2048, 32) with numerical simulation
based on ground truth. It shows that aside from theORIG-
INAL method, the INSIDE relaxation tends to yield favor-
able result compared to BOX and OPEN relaxations. The
trend is inherited in the PIECEWISE method that uses
the INSIDE relaxation in a sequential manner. The ITER-
ATIVE method also shows higher accuracy compared
to BOX and OPEN relaxations. The ORIGINAL setting

shows the highest accuracy in two scenes, but the
weight (hyper) parameters of the Lagrangian relax-
ation have been carefully chosen for producing the
results.

Discussion on Lagrangian relaxation for ORIGINAL.
The Lagrangian relaxation of the ORIGINAL setting has
two obvious issues. One is the non-convexity of the prob-
lem, which implies that the solution may depend on
the initial guess. The other is that the hyper parame-
ters λ1, λ2, and λ3 of [8] need to be properly chosen
for expecting accurate estimates; however, unfortunately,
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Fig. 3 Variation of mean angular errors (MAEs) with respect to the initial guess of surface normal using the Lagrangian relaxation of the ORIGINAL
setting for blob01 (left) and blob02 (right) scenes. The initial guess of normal vectors are uniformly sampled from the hemisphere in the spherical
coordinates (θ ,φ). The star markers in the figure represent the best initial guesses

the optimal hyper parameters are generally unknown and
scene-dependent.
Figure 3 shows the plot of MAEs that are obtained by

changing the initial guess of the surface normal for the
blob01 and blob02 scenes using the Lagrangian relaxation
of theORIGINAL setting. In the figures, x- and y-axes cor-
respond to the azimuth θ and polar φ angles of the initial
guess of the surface normal. The MAE drastically varies
with the small variations of initial guess for the surface
normal, and the variation has dependency on the scene.
To see the effect of the choice of hyper parameters, we

altered the hyper parameters λ1, λ2, and λ3 of [8] and
observed the resulting MAEs. One of the results using the
blob03 scene is shown in Fig. 4, in which the hyper param-
eters are set to λ1 = λ2 = λ3 ∈ {1, 10, 100, 1000, 10000}.
The MAE varies significantly depending on the choice
of the parameters, and it illustrates the difficulty of
applying the Lagrangian relaxation of the ORIGINAL
problem.

Comparison to existing methods. We compared our
method with P-SFS and XIONG. While our method
requires the boundary conditions to work properly, in
order to compare with the P-SFS and XIONG methods
that do not require them, we eliminate the boundary
condition from the INSIDE relaxation. As a result, there
remains a rotation ambiguity in the solution. Therefore,
we applied rotation alignment of the estimated normal
map for the purpose of comparison. We determine
the rotation matrix R ∈ R

3×3 by solving the following
problem:

minimize
R

||N∗ − RN̂||2F
subject to RR� = I,

(11)

where N∗ and N̂ are the ground truth and estimated
normal maps, respectively. This problem is known as
the orthogonal Procrustes problem [12], and the solution
method is proposed in [32]. XIONG directly estimates the
depth rather than surface normal; therefore, to compare
with other methods in the space of surface normal, we
compute the normal map from the estimated depth map.
Figure 5 shows one of the representative results. From
left to right, it shows the ground truth normal map, (a)
result of the INSIDE relaxation with boundary conditions,
(b) INSIDE relaxation without boundary conditions, (c) P-
SFS method , and (d) XIONG method. “(b) - aligned” and
“(c) - aligned” are the rotation aligned results of (b) and (c).
While the result of (a) is convincing, (b) and (c) are rather
far from the ground truth due to that the surface normals
are not anchored by boundary conditions, containing the
rotation ambiguity. Also, compared with (d), (a) achieves
the better estimation.

0
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1 10 100 1000 10000

].ged[ rorr
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A nae
M

Fig. 4 Variation of mean angular errors (MAEs) with respect to the
hyper parameters λ1, λ2, and λ3 for blob03 scene. λ1 = λ2 = λ3 = λ,
where λ ∈ {1, 10, 100, 1000, 10000}
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GT (a) (b) (c)

12.1 25.9 44.2MAE [deg.]: 16.7

(d)(b) - aligned (c) - aligned 

27.625.9

Fig. 5 Comparison of INSIDE relaxation with P-SFS and XIONG. From left to right, the surface normal maps of the ground truth, (a) INSIDE with
boundary conditions, (b) INSIDE without boundary conditions, (c) P-SFS method , and (d) XIONG method are shown. “(b) - aligned” and “(c) -
aligned” are the results of (b) and (c) aligned to the ground truth. Resulting mean angular errors are shown in the bottom

Speed and accuracy. Figure 6 summarizes the compu-
tation times and accuracies of various methods applied
to blob01–blob05 datasets. The x- and y-axes represent
the log-scale processing time and MAE respectively. The
mean scores of MAEs are plotted by circle, and their
minimum and maximum time/accuracy are indicated by
the associated bars. It can be seen that the PIECEWISE
method significantly reduces the computation time com-
pared to the INSIDE relaxation with retaining the accu-
racy. OPEN and BOX relaxations are faster; however, they
suffer from inaccuracy due to the loose relaxation. The
ORIGINAL method with Lagrangian relaxation shows
a good trade-off as we have carefully selected a good
set of hyper parameters. The MAE may significantly
vary depending on the selection of hyper parameters as
discussed earlier. The ITERATIVE method is the most
efficient one among them, while MAEs were consis-
tently larger than PIECEWISE, INSIDE, and ORIGINAL
methods.

4.2 Real-world data
Real-world data contains observations that deviate from
the assumed image formation model. Namely, there
are two major factors: non-uniform diffuse albedos
and non-Lambertian surface reflectances. Due to these
unmodelled errors, the brightness [2] and boundary [4]
constraints can conflict, resulting in no feasible solutions.

For the real-world data experiment, we therefore relax
these hard constraints as soft ones as:
INSIDE relaxation:

minimize
N

1
2
||ND||2F+λ1||NF−G||2F + λ2||l�N − m�||22

subject to ||ni||22 ≤ 1, 0 ≤ niz, ∀i ∈ {1 . . . p}.
BOX relaxation:

minimize
N

1
2
||ND||2F+λ1||NF−G||2F + λ2||l�N − m�||22

subject to −1≤nix, niy≤1, 0≤niz≤1, ∀i ∈ {1, . . . , p}.
The results are summarized in Fig. 7. In the figure,

“cat” data is from DiLiGenT [33] dataset, in which the
ground truth is taken by the laser sensor. We picked up
“cat” in DiLiGenT because it is the most Lambertian-like
object. For other data, we have obtained the ground truth
by a conventional least-squares photometric stereo [39]
using 16 light sources. We selected these four objects:
“wall-paper,” “coin,” and “logo,” which have diffuse sur-
faces. From left to right, it shows the estimated sur-
face normal and angular error maps of (a) ORIGINAL
with Lagrangian relaxation, (b) INSIDE, (c) BOX, (d)
OPEN, (e) PIECEWISE, and (f ) ITERATIVE methods.
Although the surface details are smoothed out due to
the smoothness constraint, overall structures can be bet-
ter observed by properly accounting for the unit norm

Fig. 6 Computation time (x-axis) and mean angular error (y-axis) for various settings assessed using blob01–blob05
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M GT (a) (b) (c) (d) (e)

cat

wall-
paper

coin

logo

(f)

32.6 33.7 34.6 35.0 34.939.2MAE [deg.]:

18.8 19.1 19.1 28.0 34.940.9MAE [deg.]:

16.3 16.3 16.3 19.9 21.827.6MAE [deg.]:

36.2 36.6 36.6 45.2 47.152.2MAE [deg.]:

0

180

0

180

0

180

0

180

Fig. 7 Results on the real-world data. “cat” data is from DiLiGenT [33],
and “wall-paper,” “coin,” and “logo” are recorded by ourselves. “GT” is
the ground truth normal map, and for our own data, they are
computed by photometric stereo. From left to right, surface normal
maps and angular error maps of (a) ORIGINAL, (b) INSIDE, (c) BOX, (d)
OPEN, (e) PIECEWISE, and (f) ITERATIVE are shown. The values show
corresponding MAEs

constraint with a tight relaxation by (b) compared to the
result of (a) and (f ). The PIECEWISE method in (e) also
yields lower accuracy as well in this case but still pro-
ducing results closer to the ground truth compared to
(a) and (f ).

Discussions on Lagrangian relaxation for the real-
world data We examine Lagrangian relaxations of
INSIDE, BOX, and OPEN methods using the real-world

data for assessing their capabilities of handling unmod-
elled errors. The formulations are all convex problems;
therefore, the solution does not depend on the initial
guess. Here, we discuss the effect of the choice of hyper
parameters λ1 and λ2.
We alter the hyper parameters λ1 and λ2 and observe the

resulting mean angular errors (MAEs) . The results using
the “cat,” “wall-paper,” “coin,” and “logo” scenes are sum-
marized in Fig. 8, in which the hyper parameters are set to
λ1 = λ2 = λ ∈ {1, 100, 10000}.
While this result shows that the choice of hyper param-

eters has little effect on overall MAEs, it still locally
affects surface normal estimates. For example, errors near
ear and forefoot of “cat” are decreased with large hyper
parameters in Fig. 9. Because the areas of ear and fore-
foot are not smooth, surface normal can be correctly
estimated by emphasizing on the brightness and occlud-
ing boundary constraints rather than the smoothness
constraint.

5 Discussion
This paper studied the unit norm constraint that appears
in general shape-from-shading problems. We showed
various convex relaxation strategies for the unit norm
constraint, as well as a non-convex relaxation of the
original problem using a Lagrangian relaxation. It has
been shown that the INSIDE relaxation, which gives a
tight convex surrogate for the original unit norm con-
straint, yields favorable results, and we developed a
piecewise solution method for accelerating the shape
estimation.
It has been shown that with carefully selected hyper-

parameters, Lagrangian relaxation works well in terms
of its speed and accuracy. However, unfortunately, such
a priori knowledge is generally unavailable in real-
world situations. For shape-from-shading to work with
real-world applications, the INSIDE relaxation appears
to be a favorable option when dealing with the unit
norm constraint. With advanced convex optimization

a b c

Fig. 8 Variation of mean angular errors (MAEs) with respect to the hyper parameters λ1 and λ2. λ1 = λ2 = λ,∈ [1, 100, 10000]. The MAEs of
a INSIDE, b BOX, and c OPEN for four scenes (“cat,” “wall-paper,” “coin,” and “logo”) are shown
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λ=1 λ=100 λ=10000

Error map

0

-30

30

Difference map

Fig. 9 Error map and difference map of INSIDE method for “cat” scene

techniques and mature linear algebra packages, the
computation of shape-from-shading is made signifi-
cantly more efficient. We are interested in fusing this
basic study into other recent works that use other
prior knowledge for making shape-from-shading further
applicable.
As a practical issue, the proposed method needs the

annotation of the occluding boundary. In a controlled set-
ting, this annotation could be semi-automated by sophis-
ticated segmentation tools, such as [10, 14, 21], and we
consider that this information is somewhat accessible in
practice as various previous shape-from-shading works
assumed.

Endnotes
1 The non-convexity of the problem discussed in this

paper is different from the concave/convex ambiguity that
inherently appears in shape-from-shading problems.

2Gurobi Optimizer: http://www.gurobi.com/products/
gurobi-optimizer

3 http://vision.seas.harvard.edu/qsfs/

Appendix 1. Lagrange relaxation subproblem
Search direction d(k) for the Levenberg-Marquardt algo-
rithm is determined by solving the following subproblem:

minimize ‖f
(
x(k)

)
+ f ′ (x(k)

)
d(k)‖22 + κk‖d(k)‖22

subject to 0 ≤ niz . (12)

A positive parameter κk is used to control regularization
by ‖d(k)‖22. f

(
x(k)) and f ′ (x(k)) are given by

f (x) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1√
2‖D⊗x‖2√

λ1‖L⊗x − m�‖2√
λ2‖F⊗x − g‖2√
λ3(‖n1‖22 − 1)

...√
λ3(‖np‖22 − 1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

∈ R
p+3 ,

f ′(x) = ∂f (x)
∂x

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

x�D�⊗D⊗√
2‖D⊗x‖2√

λ1(x�L�⊗−m)L⊗
‖L⊗x−m�‖2√

λ2(x�F�⊗−g�)F⊗
‖F⊗x−g‖2

2
√

λ3n�
1 0

. . .
0 2

√
λ3n�

p

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

The subproblem [12] is a convex quadratic program-
ming problem and thus has a unique solution for d(k).

Appendix 2: SOCP for INSIDE relaxation
The SOCP minimizes u for the upper bound of 1

2‖D⊗x‖22
as

minimize
u,x

u

subject to L⊗x − m� = 0,
F⊗x − g = 0,
0 ≤ s�i x, (i = 3, 6, . . . , 3p),
∥∥∥
[ 1
2u − 1 x�D⊗

]�∥∥∥
2

2
≤ 1

2
u + 1,

∥∥∥
[ −1 x�Ki

]�∥∥∥
2

2
≤ 1, (i = 1, . . . , p).

SOCP can be efficiently solved by a primal-dual interior-
point method, which solves the following modified KKT
(Karush-Kuhn-Tucker) conditions [17, 22] with letting y
denote y = [

u, x�]�:

rt(y,μ, ν) =
⎡

⎣
∇yu + (DH(y))�μ + A�ν

−diag(μ)H(y) − 1
t 1

Ay − b

⎤

⎦ = 0, (13)

where μ ∈ R
2p+1 and ν ∈ R

6p are Lagrange multipliers
and t is a parameter to control approximation in the bar-
rier method. Parameters ∇yu, H(y), DH(y), A, and b are
given by

http://www.gurobi.com/products/gurobi-optimizer
http://www.gurobi.com/products/gurobi-optimizer
http://vision.seas.harvard.edu/qsfs/
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∇yu = [
1 0 . . . 0

]�

H(y) =
⎡

⎢
⎣

h1(y)
...

h2p+1(y)

⎤

⎥
⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−s�3 x
...

−s�3px∥∥∥
[ 1
2u − 1 x�D⊗

]�∥∥∥
2

2∥∥∥
[ −1 x�K1

]�∥∥∥
2

2
...∥∥∥

[ −1 x�Kp
]�∥∥∥

2

2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

DH(y) =
⎡

⎢
⎣

∇yh�
1 (y)
...

∇yh�
2p+1(y)

⎤

⎥
⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 −s�3
...

...
0 −s�3p

2y�P�P + 2c�P
2y�Q�

1 Q1 + 2c�Q1
...

2y�Q�
p Qp + 2c�Qp

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

A =
[
0 L⊗
0 F⊗

]
, and b =

[
m�
g

]
,

where

P =
[
1/2 0
0 D⊗

]
, Qi =

[
0 0
0 Ki

]
,

c = [ −1 0 . . . 0
]� (∈ R

3p+1) .

The modified KKT equations can be solved by Newton’s
method that changes y, μ, and ν by Newton steps�y, �μ,
and�ν. The newton step is characterized by the following
linear equations [4]

rt(y+�y,μ+�μ, ν + �ν) ∼ Drt(y,μ, ν)
[
�y,�μ,�ν

]�,

which results in a system of linear equations

⎡

⎣

∑2p+1
i=1 μi∇2hi(y) DH�(y) A�

−diag(λ)DH�(y) −diag(H(y)) 0
A 0 0

⎤

⎦

⎡

⎣
�y
�μ

�ν

⎤

⎦=−
⎡

⎣
rdual
rcent
rpri

⎤

⎦ ,

where rdual, rcent, and rpri are residuals that are evalu-
ated on the first, second, and third row block matrices in
the KKT Eq. (13), respectively, after the previous Newton
step.

Appendix 3: KKT for Box relaxation
The KKT conditions for the BOX relaxation case are:

rt(y,μ, ν)=
⎡

⎣
1
2∇x‖D⊗x‖22+(DE(x))�μ+C�ν

−diag(μ)E(x) − 1
t 1

Cx − b

⎤

⎦=0, (14)

where

E(x) =
⎡

⎢
⎣

e1(x)
...

e6p(x)

⎤

⎥
⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−s�1 x − 1
−s�2 x − 1

−s�3 x
...

−s�3px
s�1 x − 1

...
s�3px − 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

DE(x) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−s�1
...

−s�3p
s�1
...

s�3p

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, C =
[
L⊗
F⊗

]
.

The Newton steps �y, �μ, and �ν are derived by
solving the following equations

⎡

⎣
D2⊗ + ∑6p

i=1 μi∇2ei(x) DE�(x) C�
−diag(λ)DE�(x) −diag(E(x)) 0

C 0 0

⎤

⎦

⎡

⎣
�y
�μ

�ν

⎤

⎦=−
⎡

⎣
rdual
rcent
rpri

⎤

⎦,

where D2⊗ = D�⊗D⊗, and rdual, rcent , and rpri are residu-
als that are respectively evaluated on the first, second, and
third row block matrices in the modified KKT Eq. (14)
after the previous Newton step.
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