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Abstract

We describe an algorithm which finds binomials in a given ideal I ⊂ Q[x1, . . . , xn] and
in particular decides whether binomials exist in I at all. Binomials in polynomial ideals
can be well hidden. For example, the lowest degree of a binomial cannot be bounded
as a function of the number of indeterminates, the degree of the generators, or the
Castelnuovo–Mumford regularity. We approach the detection problem by reduction to
the Artinian case using tropical geometry. The Artinian case is solved with algorithms
from computational number theory.
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1 Background
The goal of this paper is to prove the following result.

Theorem 1 There is a deterministic algorithm that, given generators, decides whether an
ideal in the polynomial ring Q[x1, . . . , xn] contains nonzero binomials.

Theorem 1 answers a fundamental question in computational algebra, but we envision
that it will also be useful for applications. To name just a few, when implementing meso-
primary decomposition of binomial ideals [11], a test for binomials is necessary. In the
theory of retractions of polytopal algebras, [3, Conjecture B] is connected to the existence
of binomials andmonomials in the kernels of certainmaps (albeit after a graded automor-
phism of the ambient ring). In [20], Sontag argues that polynomials with few terms in an
ideal yield the best restrictions on the possible sign patterns of changes that a steady state
of a chemical reaction network can undergo under perturbation. Theorem 1 can also be
seen as a first step to the broader problem of deciding whether an ideal contains a sparse
polynomial, or finding the sparsest polynomial. For example, JürgenHerzog suggested the
problem of determining the length of the shortest polynomial in a standard determinantal
ideal.
It does not seem possible to prove Theorem 1 by standard arguments using Gröbner

bases. For example, the ideal 〈x2 + x + 1〉 ⊂ Q[x] contains x3 − 1, but its generator,
trivially, is a universal Gröbner basis. Moreover, the lowest degree binomials in an ideal
need not satisfy a general upper degree bound in terms of common invariants such as
Castelnuovo–Mumford regularity or primary decomposition.
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Example 2 For any n ∈ N, let I = 〈(x − z)2, nx − y − (n − 1)z)〉 ⊂ Q[x, y, z]. The
Castelnuovo–Mumford regularity of I is 2 and it is primary over 〈x − z, y − z〉. The
binomial xn − yzn−1 is contained in I because an elementary computation shows that

xn − yzn−1 =
n−2∑

k=0
(n − k − 1)xkzn−k−2(x − z)2 + zn−1(nx − y − (n − 1)z) ∈ I.

There is no binomial of degree less than n in I . To see this, consider the differential
operators D1 = ∂x + n∂y and D2 = (1 − n)∂y + ∂z . Any element f ∈ I satisfies f (1, 1, 1) =
0, (D1f )(1, 1, 1) = 0 and (D2f )(1, 1, 1) = 0 as both generators have this property. Assume
that I contains the binomial f = xu −λyv . First, note that f (1, 1, 1) = 0 implies that λ = 1.
Further, (D1f )(1, 1, 1) = 0 and (D2f )(1, 1, 1) = 0 give two linear conditions on the vector
u − v, which imply that u − v = m(n,−1, 1 − n) for somem ∈ Z. By exchanging u and v
we may assume thatm > 0, so it follows that f = xmn − ymzm(n−1). In particular, there is
no binomial of degree less than n in I .

Our approach to Theorem 1 can be summarized as follows. Given an ideal I ⊂
Q[x1, . . . , xn], we pass to its Laurent extension J = IQ[x±

1 , . . . , x±
n ], which contains bino-

mials if and only if I contains binomials (Lemma 5). We then show in Section 3 that there
exists an ideal J ′ ⊆ Q[y±

1 , . . . , y±
m] such that Q[y±

1 , . . . , y±
m]/J ′ is Artinian, and the sets of

binomials in J and J ′ can easily be computed from each other (Proposition 12 and Theo-
rem 13). This reduction is achieved by means of tropical geometry. The Artinian case is
easier since the (images of the) indeterminates y1, . . . , ym inQ[y±

1 , . . . , y±
m]/J ′ have matrix

representations that commute. This leads to the constructive membership problem for
commutative matrix (semi)groups [1], which is already solved (see [9] for a survey). The
completed algorithm appears as Algorithm 22 in Section 5.

Related work and variations of the problem

The question whether an ideal is a binomial ideal, that is, whether it can be generated
by binomials alone, can be decided by computing a reduced Gröbner basis [6, Corol-
lary 1.2]. In the case of a homogeneous ideal one can even do it with linear algebra only [5,
Proposition 3.7].
Moreover, deciding for given monomials xu and xv whether there exists some scalar λ

such that xu −λxv is contained in a given ideal I is also not too difficult. For this problem,
it suffices to compute the unique normal forms of xu and xv modulo a Gröbner basis of
I and check whether they are scalar multiples of each other. Using this observation, one
can decide whether I contains a binomial of a given degree by brute force. However, this
approach cannot be used to prove Theorem 1, because there is no a priori degree bound
on a binomial in I (cf. Example 2).
It appears that primary decomposition is not helpful for the problem at hand. For

example, the ideal 〈(x − y)(z −w)〉 = 〈x − y〉 ∩ 〈z −w〉 does not contain a binomial, even
though its minimal primes are generated by binomials.
Finally, the detection of monomials in a polynomial ideal is quite simple using ideal

quotients: an ideal I ⊂ Q[x1, . . . , xn] contains a monomial if and only if ((· · · (I : x∞
1 ) · · ·) :

x∞
n ) = (I : (x1 · · · xn)∞) = Q[x1, . . . , xn]. The colon ideals (I : x∞

i ) can readily be com-
putedwithGröbner bases [8, Section 1.8.9]. It was discovered several times that extensions
of this yield all monomials (see [17], [19, Algorithm 4.4.2], or [13, Tutorial 50]).
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2 Binomials in ideals
As in the case of binomial ideals, it is more convenient to work not only with the binomials
in an ideal, but with the entire subspace they generate. Throughout this section, let K be
any fixed field and denote by S = K[x1, . . . , xn] the polynomial ring in n indeterminates
with coefficients inK.Weoccasionally use the notationxa := ∏

i x
ai
i fora = (a1, . . . , an) ∈

Nn.

Definition 3 Let I ⊂ S be an ideal. The binomial part Bin(I) of I is the K-subspace of I
spanned by all binomials in I .

Proposition 4 The binomial part of any ideal is a binomial ideal.

Proof Let I ⊂ S be an ideal and B ⊂ I its binomial part. Then every element b ∈ B
is a linear combination of binomials. Multiplying it with an arbitrary f ∈ S yields some
linear combination of monomial multiples of the binomials in b. Since I is an ideal, those
monomial multiples are contained in B too and so is fb. Thus, B is an ideal. Moreover, the
ideal B is binomial, since an ideal is in particular generated by any set that generates it as
a vector space. 
�

By the same argument, a binomial ideal is as a vector space spanned by the binomials it
contains. In particular, a binomial ideal equals its binomial part.
We now discuss ring extensions in this context. Denote by T = K[x±

1 , . . . , x±
n ] the

Laurent polynomial ring corresponding to S. We extend the notion of Bin(I) to this ring
in the natural way.

Lemma 5 For any ideal I ⊂ S, it holds that Bin(IT ) = Bin(I)T. In particular, I contains
a binomial if and only if the extension of I to T contains a binomial. Moreover, if (I :
x1 · · · xn) = I , then Bin(I) = Bin(IT ) ∩ S.

Proof The inclusion “⊇” is clear because I ⊂ IT . For the other inclusion, note that any
binomial in IT can be multiplied with a monomial to obtain a binomial in I . The last
statement follows from the fact the hypothesis implies that I = IT ∩ S.

The binomial part of a proper ideal I ⊂ T is determined by a lattice L ⊂ Zn and
a homomorphism φ : L → K× (called a partial character in [6]). According to [6,
Theorem 2.1], the binomial part of I is the binomial ideal 〈xm − φ(m) : m ∈ L〉.

Remark 6 For ideals in polynomial rings, a partial character is not a sufficient data struc-
ture to store all binomials, for there typically exist associated primes containing indeter-
minates. When passing to the Laurent ring, these associated primes are annihilated and
many new binomials may be created. For example, 〈x − y, x2, xy, y2〉 ⊂ K[x, y] extends to
the entire Laurent ring K[x±, y±], while for

〈x2 − y2, x3 − x2y〉
the information about the index two lattice of binomials of degree two is lost by the
appearance of x−y, which generates the extension to the Laurent ring. However, Lemma 5
guarantees that the extension to the Laurent ring only yields new binomials if binomials
are present in the original ideal.
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Lemma 7 LetK′/K be any field extension and T ′ := T ⊗K K′ be the Laurent polynomial
ring over K′. Then, for any ideal I ⊂ T, it holds that

Bin(IT ′) = Bin(I)T ′.

In particular,

• I contains a binomial if and only if IT ′ contains a binomial, and
• Bin(I) = Bin(IT ′) ∩ T.

Proof As above, the inclusion “⊇” is clear because I ⊂ IT ′. Moreover, the claim is clear if
IT ′ = T ′, so we may assume that I is a proper ideal. Suppose now that IT ′ contains the
binomial xu − λxv with u, v ∈ Zn\{0}, λ ∈ K′. Then there exists an expression

xu − λxv =
∑

i
λixvi fi (2.1)

with vi ∈ Zn, λi ∈ K′ and fi ∈ I . When u, v, vi and fi are fixed, (2.1) can be interpreted as a
system of linear equations in the unknowns λ and λi. This system has a solution over K′,
and because its coefficients are inK, it also has a solution overK. Moreover, there is only
one value possible for λ, because otherwise xv ∈ IT ′ and thus IT ′ = T ′. Hence, λ ∈ K and
xu − λxv ∈ I . Every element of Bin(I) can be written as a linear combination of binomials
of this form, and the claim follows.
For the last claim, we only need to show the inclusion Bin(I) ⊇ Bin(IT ′) ∩ T . Choose

a K-basis B of Bin(I). By the argument above, it is also a K′-basis of Bin(IT ′), and thus,
every binomial b ∈ Bin(IT ′) has a unique expansion in this basis. Hence, b lies in T if and
only if its coefficients in this expansion lie in K. But the latter implies that b ∈ Bin(I). 
�

Remark 8 Let I ⊂ Q[x±
1 , . . . , x±

n ] be an ideal. Our algorithms usually construct the bino-
mial part of the extension IK[x±

1 , . . . , x±
n ] to the Laurent ring with coefficients in a finite

extension K of Q. Lemma 7 guarantees that this yields a determination of the binomial
part of an ideal I ⊂ Q[x±

1 , . . . , x±
n ], because

Bin(I) = Bin(IK[x±
1 , . . . , x

±
n ]) ∩ Q[x±

1 , . . . , x
±
n ].

Example 9 Remark 8 shows that the binomial part is preserved when extending the coef-
ficient field and then contracting back. It is not generally true that binomial parts sur-
vive contraction followed by extension. For example, 〈x − √

2〉 ⊂ Q(
√
2)[x] contracts to

〈x2 − 2〉 ⊂ Q[x] which in turn extends to 〈x2 − 2〉 ⊂ Q(
√
2)[x] by Lemma 7.

3 Reducing to the Artinian case via tropical geometry
Our eventual goal it to compute Bin(I) for arbitrary ideals I ⊂ Q[x1, . . . , xn]. In this
section, we use tropical geometry which means that we have to work with the extension
of I to the Laurent polynomial ring. By Lemma 5, this is sufficient to determine whether
Bin(I) is empty or not. Moreover, if (I : x1 · · · xn) = I then our methods determine all
of Bin(I).
If I is a prime ideal over an algebraically closed field, then tropical geometry yields a

complete answer: the ideal contains binomials if andonly if the tropical variety is contained
in a tropical hypersurface of a binomial, i.e., in an ordinary hyperplane (Corollary 14).
In fact, one implication is immediate from the following definitions. The algebraically
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closedness assumption is easy to relax, but if the ideal is not prime the tropical variety
alone does not reveal binomial containment as the following example demonstrates.

Example 10 The principal ideal 〈(x− 1)(x− 2)〉 ⊂ C[x] has tropical variety {0}. It cannot
contain a binomial, since such binomial would have roots with different moduli, which
binomials cannot have.

However, expanding on the idea from the prime case we can use tropical geometry
to reduce binomial detection to the case of ideals with Artinian quotients, which we call
Artinian ideals for short. The results in this section hold formore general coefficient fields
thanQ. To this end, letK be a field andK its algebraic closure. The reader interested only
in Theorem 1 can mentally replace K by Q. It is notationally convenient to understand
the Laurent ring K[x±

1 , . . . , x±
n ] as the group ring K[Zn]. This is the ambient ring for this

section.

Definition 11 Let L be an integer lattice, M the dual lattice and I ⊂ K[L] an ideal. For
ω ∈ Q ⊗ M the initial form inω(f ) of a polynomial f = ∑

v cvxv is the sum of terms cvxv

for which 〈ω, v〉 is maximal. For an ideal I ⊂ K[L], the initial ideal of I with respect to ω

is inω(I) = 〈inω(f ) : f ∈ I〉. The tropical variety of I is
T (I) = {ω ∈ Q ⊗ M : inω(I) �= K[L]}.

If L = Zn and I is homogeneous, the definition can be stated in terms of initial ideals
of homogeneous ideals in a polynomial ring. Then T (I) is the support of a subfan of the
Gröbner fan of I ∩K[Nn], a fan inQn that has one cone for each initial ideal of I ∩K[Nn].
Since inω(I) �= K[L] can be decided by Gröbner bases, the definition can be turned into
an algorithm computing tropical varieties [2].
If a polynomial f is a binomial, then T (〈f 〉) is a hyperplane (or empty) and the Newton

polytope of f is a line segment orthogonal to T (〈f 〉). The inclusion T (〈f 〉) ⊃ T (I) for
f ∈ I implies that if I contains a binomial f , then the Newton polytope of f must be
perpendicular to T (I). Thus, if I contains a binomial then also I ∩ K[T (I)⊥ ∩ L] contains
a binomial. The following proposition extends this to all of Bin(I).

Proposition 12 Let L be a lattice and I ⊂ K[L] an ideal. Then

Bin(I) = Bin(I ∩ K[T (I)⊥ ∩ L])K[L].

Proof Let f ∈ I be a binomial generator of the left-hand side. Then the Newton polytope
of f is perpendicular to T (I), meaning that xuf ∈ I ∩ K[T (I)⊥ ∩ L] for some u ∈ L.
Hence, f = xuf x−u ∈ Bin(I ∩ K[T (I)⊥ ∩ L])K[L]. The other containment is clear since
I ∩ K[T (I)⊥ ∩ L] ⊂ I . 
�
The latticeT (I)⊥∩L is a saturated lattice inL, and therefore, after amultiplicative change

of coordinates, we may assume that (T (I)⊥ ∩ L) × {0}n−m = Zm × {0}n−m ⊂ Zn = L
with m = dim(T (I)⊥). Generators for I ∩ K[T (I)⊥ ∩ L] can then be computed by the
elimination I ∩ K[x±

1 , . . . , x±
m]. This can be reduced to a Gröbner basis computation in

the polynomial ring by first passing to the saturation (I : (xm+1 · · · xn)∞). The following
theorem reduces the problem of deciding whether an ideal contains a binomial to the case
of Artinian ideals.
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Theorem 13 Let K be any field, L an integer lattice and I ⊂ K[L] an ideal. Then I ∩
K[T (I)⊥ ∩ L] is an Artinian ideal in K[T (I)⊥ ∩ L].

Proof Let L′ ⊆ L be a saturated sublattice of L, and let ι : L′ ↪→ L denote the inclusion
map. It gives rise to a ring homomorphism K[ι] : K[L′] → K[L], as well as to a dual map
ι∗
Q
: L∗ ⊗ Q → (L′)∗ ⊗ Q. We claim that

ι∗
Q
(T (I)) = T (K[ι]−1(I)).

To see this, note that K[ι] induces a map φ : (K×)n → (K×)d of tori, where n = rank(L)
and d = rank(L′). This map is monomial, because K[ι] came from a map of lattices.
Hence, [15, Corollary 3.2.13] implies that ι∗

Q
(T (I)) = T (φ(V (I))). On the other hand, by

classical elimination theory it holds that φ(V (I)) = V (K[ι]−1(I)), so taking the tropical
variety yields the claim.
Now we turn to the proof of the theorem. For this, choose L′ := T (I)⊥ ∩ L. Then

ι∗
Q
(T (I)) = {0}, because restricting a linear map to its kernel yields zero. On the other

hand, it clearly holds that K[ι]−1(I) = I ∩ K[L′], because K[ι] is an inclusion. It follows
that dimT (I ∩K[L′]) = 0. Finally, by the Bieri–Groves theorem [15, Theorem 3.3.5], this
is also the dimension of the variety of I ∩ K[L′], and hence, this ideal is Artinian. 
�

That our definition of tropical varieties is compatible with that in [15] follows from
the Fundamental Theorem of Tropical Geometry [15, Theorem 3.2.3]. We employ [15,
Corollary 3.2.13] when K is not algebraically closed, which is possible since extending
the field does not affect the tropical varieties as they are defined via initial ideals that
are computable via Gröbner bases. Similarly, if the field does not come with a non-trivial
valuation (which is the case here), one may extend it to the field of generalized Puiseux
series which has a non-trivial valuation. See also [15, Theorem 3.1.3].
The preceding theorem allows us to determine when a prime ideal contains a binomial.

Corollary 14 Let L be an integer lattice and I ⊂ K[L] an ideal. If the extension IK[L] ⊂
K[L] of I to the algebraic closure is prime, then I contains a binomial if and only if T (I) is
contained in a hyperplane, i.e., T (I)⊥ �= {0}.

Proof By Lemma 7 wemay assume thatK = K. Moreover, by Proposition 12 we can con-
sider I ′ := I∩K[T (I)⊥∩L] instead of I . Now, ifT (I)⊥ = {0}, then I ′ = 〈0〉does not contain
a binomial. On the other hand, if T (I)⊥ �= {0}, then I ′ is a proper Artinian ideal. Hence,
after choosing an identification K[T (I)⊥ ∩ L] = K[y±

1 , . . . , y±
m], I ′ contains non-constant

univariate Laurent polynomials in each of the yi and in particular a Laurent polyno-
mial f ∈ K[y±

1 ]. Because K is algebraically closed, we can factor f as f = cya1
∏

j(y1 − λj)
with c, λj ∈ K and a ∈ Z. One factor is contained both in K[T (I)⊥ ∩ L] and in I (because
I is prime) and hence in I ′. Thus, Bin(I ′) �= {0}. 
�

The intention is to apply Theorem 13 and Proposition 12 to reduce the computation of
Bin(I) to the Artinian case for arbitrary I ⊂ K[L]. To proceed, wemust be able to compute
the latticeT (I)⊥ ∩L.We formulate the following algorithms in the Laurent ring, but using
saturations the necessary computations can be carried out in a polynomial ring.
It is possible to either compute the entire Gröbner fan or to apply the traversal strategy

of [2] even if I is not homogeneous to findT (I), but both strategies have several drawbacks;
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a problematic one being that T (I) can easily consist of millions of polyhedral cones. For
this reason we offer an approach to directly compute span(T (I)) ⊆ Qn. We will make the
assumption that we have an algorithm with the following specification.

Algorithm 15 (Tropical Curve)
Input: Generators for an ideal I ⊂ K[L] defining T (I) of dimension 1.
Output: The rays of T (I).

One such algorithm relying on tropical bases is presented in [2]. Another one rely-
ing on projections and elimination can be found in Andrew Chan’s thesis [4]. We use
Algorithm 15 to find a non-trivial vector in T (I) as follows:

Algorithm 16
Input: Generators for an ideal I ⊂ K[L] with d = dim(I) > 0.
Output: A primitive vector in T (I)\{0}.
1. Choose d − 1 polynomials u1, . . . , ud−1 ∈ span

K
{1, x1, . . . , xn} so that

dim(I + 〈u1, . . . , ud−1〉) = 1.
2. Compute T (I + 〈u1, . . . , ud−1〉) using Algorithm 15.
3. Return a primitive generator for one of the rays of T (I + 〈u1, . . . , ud−1〉).

The returned vector is indeed contained in T (I), because T (I + 〈u1, . . . , ud−1〉) ⊆ T (I).

Remark 17 The dimension condition in the first step holds for a Zariski open subset of
span

K
{1, x1, . . . , xn}. Therefore, these polynomials could be picked at randomand checked

to satisfy the dimension condition. There is also a deterministic way using stable inter-
sections and rational functions as coefficients. Building on techniques similar to [10,
Lemma 3.3], one can always find suitable univariate linear polynomials.

We can now state the algorithm to compute span(T (I)).

Algorithm 18
Input: Generators for an ideal I ⊂ K[x±

1 , . . . , x±
n ].

Output: A vector space basis of span(T (I)).

1. Let d := dim(I).
2. If dim(I) = 0, then return the basis ∅ for {0}.
3. Compute a primitive vector v ∈ T (I) using Algorithm 16.
4. Compute an invertible matrix M ∈ Zn×n such that Mv = (0, . . . , 0, 1).
5. Compute generators of the ideal I ′ = φ(I) where φ : K[x±

1 , . . . , x±
n ] → K[y±

1 , . . . , y±
n ]

is the multiplicative coordinate change induced by yi = ∏n
j=1 x

Mij
j .

6. Compute J ′ = I ′ ∩ K[y±
1 , . . . , y

±
n−1].

7. Recursively compute generators U for span(T (J ′)) ⊆ Qn−1.
8. Return {v} ∪ {M−1(u ⊕ (0)) : u ∈ U}.

4 The Artinian case
The proof of Theorem 1 is finished once we describe how to compute ideal genera-
tors for the binomial part Bin(I) of an ideal I ⊂ T with Artinian quotient T/I , where
T = Q[y±

1 , . . . , y±
m] as above. For 1 ≤ i ≤ m, let Mi : T/I → T/I denote the lin-
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ear endomorphism induced by multiplication with yi. With � = dimQ T/I let K be the
finite extension of Q which contains the �th roots of the determinants of the Mi. Define
M′

i = Mi/
�
√
detMi. By Remark 8, it suffices to determine the binomial part of the exten-

sion IK[y±
1 , . . . , y±

m]. This computation can be translated into a membership problem in
the multiplicative group generated by theMi.

Proposition 19 Let e ∈ Zm. There exists a λ ∈ K such that ye − λ ∈ I if and only if

m∏

i=1
(M′

i)
ei = IdT/I . (4.1)

Proof The binomial ye − λ is contained in I if and only if
∏

i(Mi)ei = λ IdT/I . Taking
determinants of both sides yields that in this case λ� = ∏

i(detMi)ei . So the claim follows
from the definition of theM′

i . 
�

The matrices M′
i commute, are invertible and have entries in a finite extension of Q.

In this situation, [1, Theorem 1.2, Section 6.4] gives an algorithm that, for any matrices
M′

1, . . . ,M′
m with entries in a number field, computes a basis for the lattice of exponents

e ∈ Zm satisfying (4.1). A more general version is [14, Algorithm 8.3]. Both rely on the
LLL lattice basis reduction algorithm.

Remark 20 The commutativity of the matrices is key for algorithmic treatment. For gen-
eral matrix semigroups, several problems are known to be algorithmically undecidable
(see, for example, the table in the end of [9]). In particular, there is no Turing machine
program that can decide whether there is a relation among given (3 × 3) matrices [12]. It
is also undecidable if a semigroup generated by eight (3× 3) integer matrices contains the
zeromatrix [18]. This result of Paterson is an important tool to prove other undecidability
results. For invertible matrices, group membership is unsolvable for matrices of format
(4 × 4) and larger [16]. Our methods are therefore not directly applicable to polynomials
in non-commutative variables.

Finally, the binomial part of the radical of an Artinian ideal I ⊂ K[y±
1 , . . . , y±

m] can be
computed without first computing the radical itself.

Proposition 21 For e ∈ Zm, there exists a λ ∈ K such that ye − λ ∈ √
I if and only

if
∏m

i=1(Mi)ei has only one eigenvalue over the algebraic closure K. In this case, λ =∏
i(detMi)ei/�.

Proof Let M = ∏m
i=1(Mi)ei . Some power of ye − λ lies in I if and only if M − λ IdT/I is

nilpotent. Choose a basis such thatM is upper triangular. ThenM−λ IdT/I is nilpotent if
and only if all entries on the main diagonal ofM equal λ. This equivalent toM having λ as
its sole eigenvalue. Computing the determinant of M then yields the claimed expression
for λ. 
�

Let V ⊆ T/I be the direct sum of all eigenspaces of M1. Then the restriction M1|V
of M1 to V is diagonalizable. Since the Mi commute, the same holds for all other Mi|V .
Moreover, the set of eigenvalues ofMi|V equals the set of eigenvalues ofMi for each i.
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As above, set M′
i = Mi/

�
√
detMi, where � = dimQ T/I . Let L ⊆ Zm be the lattice of

exponents e that satisfy

m∏

i=1
(M′

i |V )ei = IdV .

Then L can be computed with the algorithm in [1]. It is clear from the observation above
that for each e ∈ L, the matrix

∏
i(Mi)ei has only one eigenvalue. So L contains precisely

the exponents of the binomials in the radical of I .

5 Algorithm
To facilitate an implementation of the methods in this paper, we formulate the complete
algorithm. In this formulation, the algorithm returns generators of the Laurent exten-
sion Bin(I)Q[x±

1 , . . . , x±
n ] which, by means of Lemma 5, yields the desired algorithm for

Theorem 1.

Algorithm 22
Input: Generators f1, . . . , fs for an ideal I ⊂ Q[x1, . . . , xn]
Output: Generators of Bin(I)Q[x±

1 , . . . , x±
n ].

1. Let J = 〈f1, . . . , fs〉 ⊂ Q[x±
1 , . . . , x±

n ] be the Laurent extension of I .
2. Compute the orthogonal complementT (J )⊥ of the tropical variety of J byAlgorithm18.
3. Computeabasis {b(1), . . . , b(m)}of the integer latticeL = T (J )⊥∩Zn. LetQ[y±

1 , . . . , y±
m]

with yj = xb(j) be the resulting Laurent polynomial subring of Q[x±
1 , . . . , x±

n ].
4. Compute K = J ∩ Q[L] ⊂ Q[y±

1 , . . . , y±
m] as the preimage of J under the inclusion of

Q-algebras Q[y±
1 , . . . , y±

m] → Q[x±
1 , . . . , x±

n ].
5. Pick a basis of the finite-dimensional Q-algebra Q[y±

1 , . . . , y±
m]/K and compute the

matrix representations Mi of the linear maps given by multiplication with yi.
6. Construct a number field K that contains all �th roots of the determinants of the Mi,

where � := dimQQ[y±
1 , . . . , y±

m]/K. Compute M′
i = Mi/

�
√
detMi

7. Compute a basis {c(1), . . . , c(t)} of the lattice E ⊂ Zm of exponents satisfying (4.1), for
example using the algorithm given in [1].

8. For each i = 1, . . . , t, compute λi, such that yc(i) − λi ∈ K, for example, by using
∏

j(Mj)c
(i)
j = λi Id. Then Bin(K ) = 〈yc(1) − λ1, . . . , yc

(t) − λt〉 ⊂ Q[y±
1 , . . . , y±

m].
9. Return generators of Bin(J ) by substituting xb(j) for yj in the generators of Bin(K ).
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