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Abstract

neighborhood (ONA) designs, respectively.

Background: Inbreeding in seed orchards is expected to increase with the advancement of breeding cycles,
which results in the delivery of crops with suboptimal genetic gain, reduced genetic diversity, and lower seed set.
Here, a genetic distance-dependent method for clonal spatial deployment in seed orchards was developed and
demonstrated, which reduced the inbreeding levels. The method'’s main evaluation parameter of inbreeding is
the genetic distance among individuals and the deployment method used an improved adaptive parallel genetic
algorithm (IAPGA) based on Python language. Using inbreeding-prone Chinese Mongolian pine breeding
population material originating from a single natural population, the proposed method was compared to a
traditional orchard design and a distance-based design; namely, complete randomized block (RCB) and optimum

Results: With the advancement of selective breeding cycles, group separation among orchard related individuals
is expected to increase. Based on the genetic distance among individuals, the IAPGA design was superior in
significantly reducing the inbreeding level as compared to the two existing designs, confirming its suitability to
advanced-generation orchards where relatedness among parents is common. In the 1st, 2nd, and mixed generations
clonal deployment schemes, the IAPGA design produced lower inbreeding with 87.22%, 81.49%, and 87.23% of RCB,
and 92.78%, 91.30%, and 91.67% of ONA designs, respectively.

Conclusions: The IAPGA clonal deployment proposed in this study has the obvious advantage of controlling
inbreeding, and it is expected to be used in clonal deployment in seed orchards on a large-scale. Further studies are
needed to focus on the actual states of pollen dispersal and mating in seed orchards, and more assumptions should
be taken into account for the optimized deployment method.
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Background

Seed orchards bridge forest tree selective breeding
activities and reforestation/afforestation practices, which
rely on the production of genetically improved seed (El-
Kassaby 1992, El-Kassaby, 2000a, b). The term “seed or-
chard genetic efficiency” reflects the genetic superiority
and diversity of orchard crops, which resulted from the
selection and random mating of their parents (Adams
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1983; El-Kassaby et al. 1984). The maximum genetic effi-
ciency of seed orchards requires the fulfillment of several
biological factors like synchrony reproductive phenology
and output equality among their parental population
members along with minimal levels of inbreeding and
gene flow (Eriksson et al. 1973). However, seed orchard
research clearly showed that these factors are hardly met
and several seed crop management practices have been
proposed (e.g., bloom-delay (Silen and Keane 1969) and
supplemental mass pollination (Wakeley et al. 1966)),
which successfully implemented to minimize these devi-
ations from the ideal state and close to perfect popula-
tion expectations (El-Kassaby and Ritland 1986a, 1986b;
Fashler and El-Kassaby 1987; El-Kassaby and Davidson
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1990; El-Kassaby and Reynolds 1990; Reynolds and
Elkassaby, 1990; El-Kassaby and Cook 1994; Song et al.
2018). While the implemented seed orchard manage-
ment practices were effective in minimizing most of
these biological deviations, minimal inbreeding is still
strictly a function between the design of the orchard
(i.e., the spatial arrangement among related individuals)
and the degree of relatedness among the orchard paren-
tal population. Extensive studies have been conducted to
assess the mating system and pollination dynamics in
seed orchards (El-Kassaby and Ritland 1986a, 1986b; El-
Kassaby et al. 1988; El-Kassaby et al. 1989; El-Kassaby
and Davidson 1991; Song et al. 2018); however, the ex-
tent of inbreeding is difficult to determine, as it is a
function of the relatedness among the members of
parental population. Inbreeding of seed orchards is
expected to increase with the advancement of breeding
cycles due to the selection and inclusion of related indi-
viduals in new orchards (El-Kassaby and Ritland 19964,
El-Kassaby et al, 2011 1996b). For example, inbreeding
in the first generation (1st-Gen) clonal or seedling (i.e.,
open-pollinated (OP)) seed orchards is restricted to
selfing (within trees and among ramets of the same
clone) and sib-mating (among OP family members), re-
spectively (El-Kassaby, 2000a, b). However, in upgraded
(1.5-Gen) or advanced (2nd-Gen) generations and
rolling-front orchards (Borralho et al. 1998), the level of
inbreeding becomes more complex and is mainly deter-
mined by the pedigree of orchard population (e.g., as
several individuals with various degree of relatedness are
often selected and included), thus in addition to selfing,
multiple inbreeding forms are expected (e.g., selfing, sib-
mating, parent-offspring, etc.) (El-Kassaby, 2000a, b).
Mating among relatives in seed orchards often leads to
inbreeding depression, which results in the delivery of
crops with suboptimal genetic gain, reduced genetic di-
versity, and lower seed yield (Griffin and Lindgren 1985;
Woods and Heaman 1989; Williams and Savolainen
1996). Inbreeding depression mainly results from either
selfing or correlated mating (Jain 1976; Ritland 1989;
Keller and Waller 2002). Plant pollination dynamic
research has indicated that the majority of mating oc-
curred within a certain distance between individuals,
thus it is necessary to highlight the importance of separ-
ating related individuals beyond the effective pollen
dispersal distance (Levin and Kerster 1974; Adams and
Birkes 1991; Li et al. 2019; Zhang et al. 2019). The con-
cern over inbreeding build-up in seed orchard crops
necessitated the development of orchard designs aimed
at separating relatives (Giertych 1975). Multiple seed
orchard designs were developed ranging from those
utilizing systematic arrangement of parents placement
(Hodge and White 1993; El-Kassaby 2003; El-Kassaby
et al. 2007) to those relying on computer-based
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algorithms (Bell and Fletcher 1978). Additionally, in-
novative designs were developed to accommodate new
arrangements such as linear deployment (Lindgren et al.
2009). Finally, more sophisticated computer-assisted
designs suitable for advanced generation seed orchards
became necessary to ensure separating related individ-
uals. Such as the minimum inbreeding design (MI)
which controls inbreeding levels by effectively optimiz-
ing the spatial distance between related individuals (i.e.
the ramets of the same clone or half-siblings) in a
deployment scheme (LstibiRek and El-kassaby 2010),
and this design was optimized in subsequent studies for
accommodate advanced generation seed orchards
(Lstibarek et al. 2015). Similar to MI, the randomized,
replicated, staggered clonal-row design (R®SCR) focuses
on the spatial distance between related parents (El-Kas-
saby et al. 2014); and the optimum neighborhood design
(ONA) used a” trial-and-error” method to optimize
orchard’s arrangement and effective spatial deployment
among adjacent clones (Chaloupkovda et al. 2016).
Finally, the combination of ONA and MI design has
proven to be effective in parental allocation even in
irregular shape orchards making it suitable for modifying
existing seed orchard (Chaloupkova et al. 2019).

Mongolian pine or Hailar pine (Pinus sylvestris var.
mongolica) is a geographical variety of Scots pine (P.
sylvestris) (Zhu et al. 2006), which is one of the main
afforestation species in northern China with suitable
growth on barren soil due to its tolerance of cold and
drought (Zhao et al. 2007; Wu et al. 2019). The genetic
improvement of Mongolian pine started in China in the
1950s (Kang et al. 2004) and it is at the initial stage of
second-generation breeding cycle. The Honghuaerji
provenance, consisting of five natural stands, represents
a main source of Mongolian pine breeding program in
China. Additionally, the introduction trial was carried in
three geographically distant areas (Cuohai, Tailai, and
Yulin), which also contributed to the breeding material
of the species. The breeding program proceeded with se-
lection of the parental populations from these sources
and the establishment of the 1st-Gen seed orchard and
open-pollinated progeny test trials. It should be empha-
sized that selections for the 2nd-Gen seed orchard were
made from these open-pollinated tests, highlighting the
increased risk of inbreeding depression in these orchards
as the pedigree of these selections were unknown (Ye
1986; Mao et al. 1991; Zhang et al. 2012).

DNA markers can be effectively used to determine the
genetic distance and estimate kinship among individuals
as well as their inbreeding levels (Vaillancourt et al.
1998; Hardy 2003). The molecular marker-based genetic
distance estimation among individuals have been used
for pedigree reconstruction and paternity testing (Han
et al. 2017; Huang et al. 2018), and it was also used for
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determining the spatial arrangement of an orchard
population but only where the numbers of parents is
limited (Yuan et al. 2016). Here, we used SSR markers to
analyze the genetic distance among 224 clones of
Mongolian pine 1st-, 1.5-, and 2nd-generation seed
orchards. In turn, the estimated genetic distances were
used to deploy parents (clones in this case) by an
“improved adaptive parallel genetic algorithm” (IAPGA)
program (Wang et al. 2018). The aim of the developed
algorithm is to wuse the genetic distance among
Mongolian pine clones as a driver for minimizing the
effect of inbreeding depression through improved spatial
clonal deployment.

Materials and methods

Clonal source and genetic data collection

A total of 224 Mongolian pine parents (clones) were
used to populate three different seed orchard genera-
tions (Ist-, 1.5- and 2nd-Gen). The 1st generation seed
orchard parents were selected from five natural stands
Honghuaerji (LZJD), Toudaoqiao (TDQ), Baogenyuan
(BGY), Baritu (BA), and Honglinchang (HLC), each con-
tributing 57, 15, 11, 11 and 14 parents, respectively. The
1.5 generation seed orchard parental population con-
sisted of 28 superior trees selected from the 1st-Gen
seed orchard of Yulin (YL1.5). The 2nd generation seed
orchard parent clones were from Cuohai (CH2), Tailai
(TL2), and Yulin (YL2), with 34, 33, and 21 clones, re-
spectively. Genomic DNA was extracted from needles of
each individual using a modified CTAB method (Crow-
ley et al. 2003). We used 11 pre-selected polymorphic
simple sequence repeat (SSR) primers for PCR amplifica-
tion from previous study (Fang et al. 2014). The PCR
products were analyzed by capillary electrophoresis, and
genotyping was performed in GenemarkerV2.2.0 (Hulce
et al. 2011).

Data analysis

Fragments length information of all individuals were
used for genetic parameters calculation using Power-
MarkerV3.25 software (Liu et al. 2005) and pairwise gen-
etic distance was calculated as follows:

2,8

D=1-5" (1)

where D is “shared allele distance” that ranges from 0 to
1, S is the number of shared alleles summed over all loci,
and r is the number of marker loci (Kirst et al. 2005).

Dendrograms based on pairwise genetic distance
between individual clones were established by UPGMA
(unweighted pair-group method using arithmetic
averages) and viewed using MEGAV7.0.14 software
(Kumar et al. 2016).
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Mathematical model and optimization program

The deployment clones were divided into three groups:
1st- (n=108), 2nd- (n = 88), and mixed-generation (n =
224), which represent the parents of forward selection,
backward selection and overlapping generations, respect-
ively. The genetic distance of each group was used as
the raw data for clonal deployment. The orchard config-
uration was assumed to be a rectangle grid with uniform
landform. Minimizing the probability of inbreeding was
based on maintaining maximum distance between clones
with low values of genetic distance. Assuming the size of
the deployment is M x N, that is, the number of rows
and columns is M and N, respectively, and the serial
number of the first and last deployment spots (assigned
locations) on the orchard grid as 1 and M x N, respect-
ively (eq. (2)). The neighborhood of the deployment
spots located at the boundary of the matrix is incom-
plete, so 0 was used as a filler in the simulated clonal
deployment matrix, and set the genetic similarity be-
tween these zero-filled points and other points to 0 (ie,
there is no inbreeding between each other) to facilitate
the operation (eq. (2)).

0 0 0 0 0
0 1 2 N 0
0 N+1 N+2 2N 0
0 (M-1)xN+1 (M-1)xN+2 MxN 0
0 0 0 0 0
(2)
M,NeZ* (3)

where M is the total number of rows in the deployment
scheme; N is the total number of columns in the deploy-
ment scheme.

For each 3 x 3 matrix, the 8 external spots (clones)
surrounding a central deployment spot are considered as
its pollen source. Suppose x is any spot on the configur-
ation grid. These 8 spots are divided into two groups:
one is the adjacent position corresponding to the top,
bottom, left, and right (x - N, x+ N, x — 1, and x + 1)
and the other is the 4 diagonal position (x - N — 1, x —
N+1,x+N -1, x+ N+1). We set the spatial distance
of the directly adjacent and diagonal positions to 1 and
V2, respectively. Since the clone at the diagonal position
(ie., farther away from the center) has less influence,
thus we divide the genetic similarity (Eq. 6) by v/2 to
adjust the effect of distance when solving the influence
of the four oblique positions. Therefore, we propose the
following function to calculate inbreeding levels flx;):

flxi) = Z[(xhxj) + Z:l(xz‘79fk)/\/5 (4)
3

]

where
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i=(1,2,3, M x N)
x;—i,xeZ " 5
j={i+1,i-1,i+N,i-N} (5)
k={i+N+1,i+N-1,i-N +1,i-N-1}

where fis the inbreeding levels of each deployment spot,
x; is the central deployment spots in 3 x 3 matrix, x; is
the deployment spots parallel adjacent with x;, x; is the
deployment spots diagonally adjacent with x;, I is genetic
similarity, which was calculated as:

I(xi,xj) = l—D(xi,x,) orl(x;,x¢) = 1-D(x;,x¢)  (6)

where D is the pairwise genetic distance. In order to
minimize the total inbreeding levels of all seed orchard
individuals, we further propose the following objective
function:

MxN

Foin = minF = min Zf = min Z f(x:) (7)
i—1

where F is the sum of all clones’ inbreeding levels at
each deployment scheme, Fy,;, is the minimum of F, fis
the inbreeding levels of each clone calculated by Eq. (4).

Clones are deployed using an improved adaptive paral-
lel genetic algorithm (IAPGA) (Wang et al. 2018).
Following the genetic algorithm, the first step is to re-
assemble the deployment populations into multiple sub-
populations. Then the sub-populations are processed by
three steps; namely, selection, crossover, and mutation
in the genetic algorithm reaching the maximum-times
through an iterative calculation process to form several
deployment schemes. Finally, the genetic similarity of
the clones at each deployment point relative to the
surrounding 8 clones were calculated separately (Eq. 6),
and the inbreeding level values of the clones at each
deployment point were obtained (Eq. 4). The sum of the
inbreeding level of the clones of all the configuration
points on each deployment scheme was used as the basis
for judging, and the results with the lowest inbreeding
level were selected by Eq. (7).

Evaluation of clonal deployment results

In order to compare the different deployment methods
on inbreeding level (using parameter f in Eq. (4)), for
demonstration purposes, we assumed that there are 4
ramets of each clone in the deployment results. The
output of the IAPGA deployment algorithm is taken as a
single block. Within each block, one ramet of each clone
is included. Four replicas of the same block constituted
a complete IAPGA deployment result. At the same time,
the randomized complete block (RCB) design and
optimum neighborhood (ONA) design are used to ob-
tain the other two deployment results. The inbreeding
level of each deployment spot under different designs
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was calculated, and the control of the spatial distance of
individuals with close kinship is compared across the 3
different designs; then the inbreeding level of each de-
ployment spot is calculated.

Results

The similarity of parents in the orchards increased with
the advancement of breeding cycles

With the advancement of selective breeding cycles,
group separation (Dendrogram) among seed orchard
individuals is expected to increase. This is clearly
demonstrated by the genetic distance between individ-
uals in the three seed orchards (1st-, 1.5-, and 2nd-
generations) (Fig. 1). The results of dendrogram
showed that in the 1st genetic resource (n=108), the
“BA12” clone is separated from the remaining 107
clones at a genetic distance of 0.308, indicating that it
has significant genetic differences with the other
clones (Fig. 1a). The genetic separation of the genetic
resource representing the 1.5-Gen orchard (n=28) is
clearer than that of the 1st-Gen and the 28 clones
are roughly divided into two groups at the genetic
distance value of 0.2105 (Fig. 1b). Clones “SH1, SH65,
and SH34” which originated from the same genetic
source clustered in one group (blue in Fig. 2b), con-
firming their close genetic relatedness. The grouping
of third genetic resource representing the 2nd-Gen
orchard is the most striking among the three
populations and it is divided into 6 groups at the
genetic distance value of 0.1912 (Fig. 1c). Due to the
complex relationship between individuals, the propor-
tion of the population included in each group is also
different. For example, there are 26 clones in group II
(orange), including individuals from CH2, TL2, and
YL2, with 30.77% (8), 53.85% (14), and 15.38% (4), re-
spectively (Fig. 1c). There are 15 clones in group V
(purple), and the three groups represented 46.67% (7),
40.00% (6), and 13.33% (2), respectively (Fig. 1c). In
addition, there are 88 ramets in the 2nd-Gen orchard
representing 86 parents (ortets), with ramets “YL1417
and YL14117, “CH3 and CH10” representing the same
clone, respectively, which was most likely caused by
mistaken records.

IAPGA algorithm is effective in minimizing inbreeding in
clonal orchards deployment

The clonal deployment schemes by IAPGA design are
depicted in squares, which represent the 3 seed orchards
(Ist- (12x9), 2nd- (11 x8), and mixed- (16 x 14)
generations, respectively) with square color patches,
where each patch represents a clone planting position
and patch colors reflecting different inbreeding levels
(Fig. 2). The inbreeding level of the individuals at the
edge is lower as they have fewer neighbors compared to
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Fig. 1 The average un-weighted pair group method (UPGMA) dendrograms of the relationship among trees of the three Mongolian pine genetic
sources present in three seed orchards (1st- (a), 1.5- (b), and 2nd- (c) generations) according to pairwise genetic distance

YLi413
TL1419

CH24

those in the center. The inbreeding levels of each
planting position in each deployment scheme is under 5.
Clones with the lowest and highest inbreeding levels
across the 3 generation orchards were associated with
specific parents ((1st-: YL1420 and CH10 with inbreed-
ing levels of 1.51 and 4.38, respectively), (mixed-:
TL1427 and BAO30 with inbreeding levels of 1.51 and
4.55, respectively), and (2nd-: LZJD38 and HONG112
with inbreeding levels of 1.42 and 4.26, respectively))
(Fig. 2). With the same configuration algorithm parame-
ters, the deployment results gradually show non-uniform
phenomenon with the increase of the population size,
with noticeable lower inbreeding levels in the upper half
of the mixed-Gen orchard as compared to the corre-
sponding lower half.

IAPGA clonal deployment has obvious advantages over
the existing designs

For seed orchards’ design comparison, clones of three
Mongolian pine populations were deployed using: 1) the
genetic distance-based IAPGA design, 2) randomized
complete block design, and 3) optimum neighborhood
(ONA) design. The comparison clearly shows that the
IAPGA design can significantly reduce the total inbreed-
ing levels in the seed orchard compared to the trad-
itional RCB and ONA designs (Table 1). The IAPGA
design produced overall inbreeding levels (The sum of
the inbreeding levels of all deployment points) of
1565.760, 1221.900, and 3272.830 with averages of 3.624,
3471, and 3.652 for the 1st-, 2nd-, and mixed-
generation seed orchards, respectively (Table 1). The
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Fig. 2 The clonal deployment scheme of three-generation deployment groups. Note: where (a), (b), (c) is the clonal deployment scheme of 1st-,
2nd-, and mixed-generation seed orchard, respectively. Different background colors represent different degrees of inbreeding levels

- J
Table 1 Descriptive statistics of inbreeding level under the genetic distance-based IAPGA, RCB, and ONA designs for first (1st),
second (2nd), and mixed generation seed orchards
Statistics 1st gen SO 2nd gen SO Mixed gen SO

IAPGA RCB ONA IAPGA RCB ONA IAPGA RCB ONA
Mean 3.624 4.155 3.907 3471 4.260 3.802 3.652 4.187 3.984
Standard deviation (SD) 0.640 0.764 0.699 0.620 0.761 0.682 0.586 0.722 0.631
Variance 0409 0.584 0488 0.384 0.580 0465 0.343 0.521 0.398
Minimal value 1512 1.067 1.699 1434 1.584 1.643 1510 1.081 1.564
Maximum value 4.801 5575 5.001 4.821 5316 4.966 4.949 5.702 5464
Sum 1565.760 1795.040 1687.689 1221. 900 1499.350 1338368 3272.830 3751.960 3570.000
Coefficient of variation (CV) 0.1765 0.1839 0.1789 0.1786 0.1787 0.1793 0.1604 0.1723 0.1583
Relative percentage (%) - 87.22 92.78 - 8149 91.30 - 87.23 9167

IAPGA Improved adaptive parallel genetic algorithm; RCB Randomized complete block design; ONA Optimum neighborhood algorithm. Relative percentage
(RCB) = Sum (IAPGA)/Sum (RCB); Relative percentage (ONA) = Sum (IAPGA)/Sum (ONA)
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RCB design yielded 1795.040, 1499.350, and 3751.960
with averages of 4.155, 4.260, and 4.187 for the 1st-,
2nd-, and mixed-generation seed orchards, respectively
(Table 1). Finally, the ONA design produced overall
inbreeding levels of 1687.689, 1338.368, and 3570.000
with averages of 3.907, 3.802, and 3.984 for the 1st-,
2nd-, and mixed-generation seed orchards, respectively
(Table 1). Across the three clonal deployments, the RCB
design scheme produced the highest overall inbreeding
level followed by the ONA design, while the IAPGA de-
sign was the lowest (Table 1). For the IAPGA design,
the inbreeding levels in the 1st-, 2nd-, and mixed-Gen
orchards were 87.22%, 81.49%, and 87.23% for the RCB
design, respectively, while it resulted in 92.78%, 91.30%,
and 91.67% for the ONA design, respectively. The coeffi-
cient of variation (CV) indicates the change of inbreed-
ing levels of the deployment spots in each population. In
the 1st- and mixed-generation seed orchards the in-
breeding level CV of RCB design was the highest among
the three deployment designs; while no significant differ-
ence was observed in 2nd-Gen.

IAPGA design inbreeding level is relatively stable across
deployment spots

The improved deployment optimizes and controls the
overall inbreeding levels to a low degree and avoids the
occurrence of extreme inbreeding level values at the
deployment spots (Fig. 3). The IAPGA deployment re-
sults of the 1st- and 2nd-Gen seed orchard populations,
produced inbreeding probability extreme values at a
much lower level than the other two deployments (i.e.,
RCB and ONA designs). In the mixed-Gen deployment
population, the overall layout of the ONA and the RCB
designs was similar; however, the overall inbreeding
levels of the optimized IAPGA deployment is lower, yet
few extreme inbreeding level spots appeared in the
layout (Fig. 3).

The distribution and pattern of clonal inbreeding level
range substantially varied among the three deployment
schemes (IAPGA, RCB, and ONA designs) (Table 2). It
is noteworthy to highlight the close-to-normal distribu-
tion of the inbreeding level value ranges across the
IAPGA design as opposed to the steady increase of in-
breeding values in both the RCB and ONA (Table 2).
Additionally, whichever deployment methods were used,
the mixed-Gen seed orchard produced a higher inbreed-
ing levels as compared to the 1st- and 2nd-Gen orchards
(Table 2). Generally, there were no spots with inbreeding
value less than 1 in the three deployment methods. The
IAPGA deployment was the only design with no in-
breeding levels more than 5 while these values existed in
the RCB (44, 32, and 75 for the 1st-,2nd-, and mixed-
Gen seed orchards, respectively) and ONA (1, 0, and 10
for the 1st-, 2nd-, and mixed-Gen seed orchards,
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respectively) designs (Table 2). Finally, it is worth noting
that the IAPGA deployment results produced more in-
breeding level clones within the 0—4 range compared to
the RCB and ONA designs (Table 2).

Discussion

Genetic relationship among individuals in seed orchards
of different generations

Mating among relatives in seed orchard populations
often leads to reduced seed yield and performance of in-
breeding seedlings which persists throughout the tree
life (Woods and Heaman 1989; Woods et al. 2002; Wang
et al. 2004; Stoehr et al. 2015). Under the known genetic
control of seed germination (Chaisurisri et al. 1992; El-
Kassaby et al. 1992; El-Kassaby et al. 2008) coupled with
the commonly used non-competitive practices of seed-
ling production (El-Kassaby and Thomson 1995; El-
Kassaby, 2000a, b), this inbreeding passes undetected
and thus it cannot be ignored and must be managed in
seed orchards. Absolute control of inbreeding in seed or-
chards through deliberate controlled pollination to avoid
mating among relatives is exceedingly prohibitive and
generally is impractical on operational level. The genea-
logical relationship (i.e., pairwise kinship) among seed
orchard parents (clones) can be discerned with molecu-
lar markers (El-Kassaby et al. 2011). In the present study,
the 1st-, 1.5-, and 2nd-Gen seed orchards produced
drastically different patterns of phylogenetic tree (Fig. 1).
The 1st-Gen orchard produced an uniform distribution
indicating that none of the initial parent selection was
related in spite of their original single source
(Honghuaerji provenance) (Fig. 1). On the other hand,
the 1.5- and 2nd-Gen orchards produced 2 and 6 groups
in their respective phylogenetic trees, respectively, indi-
cating build-up of co-ancestry (Fig. 1). The observed
genetic clustering in the 1.5- and 2nd-Gen orchards is
the result of selection of several individuals with
common parentage, a situation frequently encountered
during selection after progeny testing as top rank per-
forming families often contribute more selected individ-
uals than their lower-performing counterparts. The
selection of several individuals from few top-ranking fam-
ilies for their incorporation in seed orchards leads to
reduced genetic diversity and build-up of co-ancestry, a
situation requiring innovative seed orchard designs for in-
breeding avoidance (El-Kassaby 1991; El-Kassaby 1995).

Genetic distance-based clonal deployment

Mating in seed orchard populations is a complex bio-
logical function and is influenced by many factors, in-
cluding spatial arrangements of parents (ramets), their
genetic relationship (genetic distance in the present
study), and reproductive output and phenology. In the
present study, we introduced the genetic distance-based
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Fig. 3 Inbreeding level Comparison among the improved adaptive parallel genetic algorithm (IAPGA), randomized complete block (RCB), and
optimum neighborhood (ONA) seed orchard designs (1st Gen IAPGA (a), RCB (b), ONA (c); 2nd Gen IAPGA (d), RCB (e),ONA (f); mixed Gen IAPGA
(9), (RCB (h), ONA (i))

Table 2 Inbreeding level for the IAPGA, complete randomized block (RCB), and optimum neighborhood (ONA) design for the 1st-,
2nd- mixed- Gen seed orchards

Inbreeding IAPGA RCB ONA

level range 1st Gen 2nd Gen mixed Gen 1st Gen 2nd Gen mixed Gen 1st Gen 2nd Gen mixed Gen
1-2 6 6 16 4 3 6 5 5 4

2-3 82 68 104 51 38 82 66 64 106

3-4 190 230 502 66 39 177 105 105 228

4-5 154 48 274 267 240 556 255 178 548

>5 0 0 0 44 32 75 1 0 10
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IAPGA algorithm for designing seed orchards and there-
fore the genetic distance among individuals is the only
constraint influencing clonal configuration on the seed
orchard grids. Unlike existing seed orchard designs,
where separation among related clones is implemented
through enforcing separation zones among clonal ramets
or among related clones and their ramets (El-Kassaby
et al. 2014), the collective use of genetic relationship
among parents has not been considered. The feasibility
of using the genetic relatedness among individuals has
been previously attempted in designing seed orchards
(LstibuRek and Elkassaby 2010; Lstibarek et al. 2015;
Chaloupkova et al. 2016; Chaloupkova et al. 2019) and
ex-situ  conservation plantations (Fernidndez and
Gonzalez-Martinez 2009). The basic principle of IAPGA
design proposed in this study is the same as that of
ONA design, that is, to match each clone in the config-
uration scheme with the optimum neighborhood, so as
to minimize the mating probability between related
parents. The difference is that we combine genetic
distance with the method of matching the optimum
neighborhood, and use this method to further reduce
the inbreeding, not only including self-mating. More-
over, the proposed genetic distance-based IAPGA
algorithm with its use of 3 x 3 neighborhood matrix (i.e.,
eight spots around each center deployment spot) and
correlating the genetic distance to clonal deployment is
exceedingly efficient and it is also not restricted to or-
chard size or configuration.

Advantages of the genetic distance-based IAPGA design

In the present study, we used pairwise genetic distance
as the original data, and the inbreeding level value (f) as
the evaluation parameter to analyze and compare the
IAPGA designs with the “traditional” randomized
complete block (RCB) design and new distance-based
optimum neighborhood (ONA) design. For the Ist-,
2nd-, and mixed-Gen seed orchards, the inbreeding level
value of IAPGA is approximately 87.22%, 81.49%, and
87.23% of the randomized complete block design, while
92.78%, 91.30%, and 91.67% of the ONA design, respect-
ively (Table 1), indicating that the IAPGA design
(include the inbreeding level values for the three or-
chards here) is able to effectively reduce the inbreeding
level of the studied deployments. At the same time, we
also noticed that the inbreeding levels of RCB design
were always higher than ONA design in different gener-
ation seed orchards. For the 1st-, 2nd-, and mixed-Gen
seed orchards, the sum of inbreeding values is 1795.040,
1499.350, and 3751.960 for RCB design, and 1687.689,
1338.368, and 3570.000 for ONA design, indicating that
the deployment of ramets in different blocks had a cer-
tain positive effect on inbreeding reduction which in this
case is only limited to selfing (Table 1). Overall, the
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clonal deployment layout of the IAPGA design produced
lower inbreeding levels than the two existing (RCB and
ONA) designs as there were no inbreeding levels lower
than 1 or higher than 5 present in the IAPGA, while
extreme inbreeding levels appeared in the traditional
designs (Table 2).

Finally, it should be pointed out that in the present
study, we used 8 positions around each central spot
(clone) and assumed that they will constitute the main
pollen source. However, in practice pollen, dispersal dis-
tance should differ based on wind direction and velocity
as well as parental reproductive phenology and output;
factors could cause some deviation between the assumed
conditions for the developed method and those of actual
situation. Additionally, we assumed the orchard’s site is
on flat terrain, an ideal situation that many seed or-
chards could deviate from, thus influencing our pollen
dispersal assumptions. Here, we combined the pairwise
genetic distance between parents with the Euclidean dis-
tance on the deployment matrix to evaluate the inbreed-
ing level, which is a preliminary attempt. In the case
where the progenies can be collected, gene flow (based
on paternity analysis) is expected to be an important
parameter evaluating inbreeding level and provides more
references for seed orchard deployment (Dow et al.
1998; Ishihama et al. 2005; Moriguchi et al. 2005).

Conclusion

Here, we presented a genetic distance-dependent
method for clonal deployment in a seed orchard. The
method relies on optimizing the genetic relationship
among individuals as the sole parameter in clonal
deployment and aims to reduce the risk of inbreeding
depression of seed orchard. The proposed method
(IAPGA design) was compared to two existing designs
(complete randomized block and optimum neighbor-
hood designs) and the results showed IAPGA design
superiority in significantly reducing the inbreeding level
and demonstrated its potential suitability to advanced-
generation seed orchards where relatedness among
parents is common.
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