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Abstract

Background: In patients with differentiated thyroid cancer (DTC), serial 124I PET/CT
imaging is, for instance, used to assess the absorbed (radiation) dose to lesions.
Frequently, the lesions are located in the neck and they are close to or surrounded by
different tissue types. In contrast to PET/CT, MR-based attenuation correction in PET/MR
may be therefore challenging in the neck region. The aim of this retrospective study
was to assess the quantitative performance of 124I PET/MRI of neck lesions by
comparing the MR-based and CT-based 124I activity concentrations (ACs). Sixteen DTC
patients underwent PET/CT scans at 24 and 120 h after administration of about 25 MBq
124I. Approximately 1 h before or after PET/CT examination, each patient additionally
received a 24-h PET/MR scan and sometimes a 120-h PET/MR scan. PET images were
reconstructed using the respective attenuation correction approach. Appropriate
reconstruction parameters and corrections were used to harmonize the reconstructed
PET images to provide, for instance, similar spatial resolution. For each lesion, two types
of ACs were ascertained: the maximum AC (max-AC) and an average AC (avg-AC). The
avg-AC is the average activity concentration obtained within a spherical volume of
interest with a diameter of 7 mm, equaling the PET scanner resolution. For each type of
AC, the percentage AC difference between MR-based and CT-based ACs was determined
and Lin’s concordance correlation analysis was applied. Quantitative performance was
considered acceptable if the standard deviation was ± 25% (precision), and the mean
value was within ± 10% (accuracy).

Results: The avg-ACs (max-ACs within parentheses) of 74 lesions ranged from 0.20 (0.33)
to 657 (733) kBq/mL. Excluding two lesions with ACs of approximately 1 kBq/mL, the
mean (median) ± standard deviation (range) was − 4% (− 5%) ± 14% (− 28 to 29%) for the
avg-AC and − 9% (− 11%) ± 14% (− 33 to 33%) for the max-AC. Lin’s concordance
correlation coefficients were ≥ 0.97, indicating substantial AC agreement.

Conclusions: Quantification of lesions in the neck region using 124I PET/MR showed
acceptable quantitation performance to 124I PET/CT for AC above 1 kBq/mL. The PET/
MRI-based 124I ACs in the neck region can be therefore reliably used in pre-therapy
dosimetry planning.

Keywords: PET/MR, PET/CT, Iodine-124, Differentiated thyroid cancer

EJNMMI Physics

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

Jentzen et al. EJNMMI Physics  (2018) 5:13 
https://doi.org/10.1186/s40658-018-0214-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s40658-018-0214-y&domain=pdf
http://orcid.org/0000-0002-3555-0809
mailto:james.nagarajah@uk-essen.de
mailto:james.nagarajah@uk-essen.de
http://creativecommons.org/licenses/by/4.0/


Background
Positron emission tomography (PET) in combination with magnetic resonance imaging

(MR) is becoming an emerging tool for cancer imaging [1, 2]. Although a high number

of PET/MR studies have been published in the last years, no clear clinical indications

have been established yet. This is mainly associated with the lack of proper prospective

studies and with misquantification of PET activity concentrations (ACs) of target

lesions requiring proper attenuation correction. Despite many different approaches, a

widely accepted robust attenuation correction technique for PET/MR remains

challenging [3].

Moreover, some clinical studies published so far indicated, on average, discrepant

results regarding the ACs or, equivalently, the standard uptake values of corresponding

lesions in PET/MR compared to PET/computer tomography (CT) [4, 5]. Those studies

assumed that the observed differences are mainly due to radiopharmacokinetic

properties of the PET tracers used, mainly bound to the short-living radionuclides
18F and 68Ga. In addition, those authors probably did not “harmonize” PET imaging

reconstruction parameters such as voxel size, smoothing level, and the number of

effective iterations.

To reduce the influence of the radiopharmacokinetics, we analyzed the ACs of 124I in

thyroid cancer patients. 124I has slower kinetics in thyroid tissue or metastases

compared to the kinetics of 18F-FDG-accumulating tissues or metastases, and most

importantly, 124I exhibits a notably longer physical half-life of approximately 4 days.

Specifically, 124I PET/CT has been used to perform lesion dosimetry prior to

radioiodine treatment in patients with differentiated thyroid cancer (DTC) [6–9]. A

reliable quantification is crucial for (radiation) absorbed dose estimations in lesions.

Frequently, the lesions in DTC patients are located in the neck area and close to or

surrounded by different types of tissues like trachea, muscles, salivary glands, and

bones, which contribute differently to the attenuation correction; therefore, MR-based

attenuation correction in PET/MR may be impaired. Additionally, in the present study,

PET reconstruction parameters were harmonized for both scanner systems for a more

reliable AC comparison between PET/MR and PET/CT.

The aim of this retrospective study was to compare the MR-based 124I ACs of lesions

located in the neck area in thyroid cancer patients with the respective CT-based 124I

ACs serving as reference standard.

Methods
Patients and lesions

The local ethics research committee approved the study. The study included 16 high-

risk patients (7 women, 9 men) prior to their first radioiodine therapy. All patients

underwent total thyroidectomy and had histologically confirmed advanced DTC (papil-

lary in 13 and follicular in 3 cases). Mean ± standard deviation (SD) age was 54 ±

21 years. The thyroid-stimulating hormone (TSH) stimulation was achieved by with-

drawal of thyroid hormone in 15 cases for about 4 weeks and by injection of recombin-

ant human TSH (Thyrogen, Genzyme, GmbH, Frankfurt, Germany) in 1 case; the

mean ± SD of TSH level before imaging was 74.2 ± 57.4 IU/mL. All patients followed a

low-iodine diet for 4 weeks prior to 124I PET examination, and iodine contamination
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was excluded by urine testing. The patients were administered an activity of

approximately 25 MBq 124I.

As we acquired one-bed PET/MR scans of the neck, we included only lesions located

within this region in this quantitative performance study. The lesions were clearly con-

spicuous and unambiguously identified on both PET/CT and PET/MR images. More-

over, all lesions were classified as either lymph node metastasis or thyroid remnant

tissue using localization criteria. In addition, to study the effect of possible missegmen-

tation of soft tissue as, for instance, “air” or “lung tissue” in the attenuation correction

approach, and the lesions were categorized in two groups in terms of their distance

measurement from the trachea surface, that is, adjacent (distance ≤ 5 mm) or distant

(distance > 5 mm).

PET/CT imaging

Imaging was performed on two PET/CT scanners, Biograph mCT PET/CT and

Biograph Duo PET/CT (Siemens Healthcare, Erlangen, Germany). The whole-body

PET/CT scans were conducted in the context of 124I lesion dosimetry. In particular,

each patient received either serial PET/CT scans on the Biograph mCT PET/CT system

or on the Biograph Duo PET/CT system. The PET/CT scans were acquired

approximately at 24 and 120 h. This two-point protocol was used as it is a reliable sim-

plification of a comprehensive five-point protocol to estimate the time-integrated activ-

ity (TIA) coefficients (erstwhile known as residence times) [10]. The examinations

included PET/CT scans from head to thigh using 5–8 bed positions. During PET/CT

acquisition, the patient’s arms were positioned above the head. CT imaging was per-

formed without iodine-containing contrast agent to avoid interference with radioiodine

uptake. For both PET/CT systems, the scans started with a CT in low-dose technique.

Standard corrections for random coincidence, scatter, and dead time were performed.

Images were corrected for attenuation with a CT-based attenuation correction method.

The two scanners were cross-calibrated with 18F using a dose calibrator Isomed 2100

(MED Nuklear-Medizintechnik, Dresden GmbH, Germany).

Image acquisition and image reconstruction differed among the PET/CT scans

(detailed information available in Table 1. For the Biograph mCT PET/CT system, a

total of 8 PET images were analyzed, each was acquired with an emission time of

2 min per bed position. A three-dimensional (3D) ordinary Poisson ordered-subset ex-

pectation maximization (OP-OSEM) algorithm was used. Sinogram-based correction of

prompt-gamma coincidences was performed for 124I using the standard manufacturer’s

reconstruction software [11]. For lesion dosimetry, the image reconstruction parameters

were 6 iterations and 12 subsets and a 3D Gaussian smoothing filter of 4 mm was applied.

The estimated reconstructed PET spatial resolution (expressed as the full width at half

maximum) was 6.8 mm. Six images were reconstructed with a reconstructed voxel size of

1.5 × 1.5 × 1.5 mm3 (2.1 × 2.1 × 2.4 mm3). The respective CT images were reconstructed

using the standard reconstruction kernel B40s with a voxel size of 1.0 × 1.0 × 2.4 mm3

(1.5 × 1.5 × 1.50 mm3).

For the Biograph Duo PET/CT, a total of 18 PET images were analyzed (detailed in-

formation available in Table 1). The emission time was 3.5 min per bed position. After

Fourier-rebinning, an attenuation-weighted ordered-subset expectation maximization
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(AW-OSEM) algorithm was used. Sinogram-based correction of prompt-gamma coin-

cidences was not available for this system. The standard image reconstruction parame-

ters for lesion dosimetry were 4 iterations and 16 subsets. No Gaussian smoothing

filter was applied, resulting in a PET spatial resolution of 6.6 mm. Ten images (8 images

within parenthesis) were reconstructed with a reconstructed voxel size of 1.7 × 1.7 ×

2.4 mm3 (1.5 × 1.5 × 2.4 mm3). The CT images were reconstructed using the

standard reconstruction kernel B40s with a voxel size of 1.0 × 1.0 × 2.4 mm3.

PET/MR imaging

In the context of detecting and categorizing cervical iodine-positive lesions, the Biograph

mMR PET/MR (Magnetom Biograph mMR; Siemens Healthcare, Erlangen, Germany)

was performed 24 h after 124I administration (16 images), and a 120-h PET/MR was add-

itionally acquired in 10 cases, resulting in a total of 26 images. The one-bed scans of the

neck were acquired at approximately 1 h before or after the PET/CT scans. The patient’s

arms were positioned alongside of the body. MR was performed simultaneously before

and after administration of contrast medium (0.2 mL/kg body weight Dotarem; Guerbet

GmbH, Sulzbach, Germany) using a head-and-neck coil. Attenuation correction was

based on an automatically generated four-compartment model attenuation map (μ-map)

derived from a two-point T1-W Dixon VIBE (volumetric interpolated breath-hold exam-

ination) sequence [12]. Standard corrections for random coincidence, scatter, and dead

time were performed. Sinogram-based correction of prompt-gamma coincidences was

performed for 124I [11] (detailed image reconstruction parameters are given in Table 1).

Specifically, PET image was reconstructed using an OP-OSEM algorithm (3 iterations, 21

subsets). Twelve images had a voxel size of 2.1 × 2.1 × 2.0 mm3 and were smoothed with a

5-mm 3D Gaussian filter, resulting in an estimated spatial resolution of 7.0 mm. Nine

images (5 images within parenthesis) were reconstructed with a reconstructed voxel size

of 2.1 × 2.1 × 2.0 mm3 (1.7 × 1.7 × 2.0 mm3); the Gaussian smoothing filter was 4 mm for

the 14 images, resulting in an estimated spatial resolution of 6.3 mm. The MR images had

a voxel size identical with the respective PET images. The PET/MR scanner was cross-

calibrated with 18F using the same dose calibrator as for the PET/CT scanners.

Image harmonization and prompt-gamma coincidence scaling for improving quantitative

comparability

To improve quantitative comparability in this retrospective study, two corrections were

applied to match the different PET systems. First, as the PET images were recon-

structed with different image reconstruction parameters (see Table 1), the reconstructed

images were largely harmonized using reconstruction parameters that revealed almost

similar PET spatial resolution of 7.0 mm (by selecting an appropriate 3D Gaussian filter

for each system) and equivalent voxels size of 2.1 × 2.1 × 2.4 mm3 (by means of trilinear

interpolation). This correction is termed image harmonization. Note that the number

of iterations and subsets was unaltered with respect to the non-harmonized standard

reconstructions as effective iterations were similar, that is, 64 (4 × 16), 72 (6 × 12), and

63 (3 × 21) for the Biograph Duo, Biograph mCT, and Biograph mMR, respectively. Of

note, the different emission times among the PET scanners, resulting in different

signal-to-noise ratios, could not be corrected for.
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Second, 124I is a non-pure positron emitting radionuclide and exhibits a complicated

decay scheme [13]. Specifically, approximately 12% of 124I decay are associated with a

605-keV prompt-gamma emission occurring subsequently with the emission of a posi-

tron. As its energy falls within the PET energy window and the prompt gammas correl-

ate in time with the annihilation photons, prompt-gamma coincidences (PGCs) are

produced. Thus, the quantification is impaired by PGCs [13] and its level of impair-

ment is scanner-dependent. Consequently, algorithms are necessary to correct for

PGCs. Comprehensive sphere phantom measurements with 124I under conditions

typically observed in clinical thyroid cancer 124I PET imaging demonstrated that the

imaged 124I AC is underestimated by 20% for the Biograph Duo PET/CT and by 10%

for the Biograph mCT PET/CT [13] and Biograph mMR PET/MR [14], even though

the two newest PET systems (mCT and mMR) included a PGC correction approach in

their image reconstruction software. To improve quantitative comparability, a PGC

scaling factor of 0.8 for the Biograph Duo PET/CT system and a factor of 0.9 for both

the Biograph mCT PET/CT and the Biograph mMR PET/MR systems were applied. In

the following, this correction is termed PGC scaling. Due to the minor effect of the

magnetic field on the path of the positrons in PET/MR systems, particularly in clinical

setting, this effect was not considered in this study.

Quantitative performance metrics and the acceptance criteria

The quantitative performance of the PET/MR was assessed using the percentage deviation

between MR-based and CT-based 124I ACs of each lesion and Lin’s concordance

correlation (CC) coefficient. Two types of ACs and their percentage deviations were

determined. In detail, a volume of interest (VOI) was drawn to determine the maximum

AC (max-AC) and the average AC (avg-AC). The avg-AC is the average activity concen-

tration obtained within a spherical VOI with a diameter of 7 mm, equaling the PET scan-

ner resolutions [13]. The center of the spherical VOI was located at the voxel position of

the maximum AC. Lin’s CC coefficient along with the two-sided lower and upper 95%

confidence interval (CI) was used to assess the strength of AC agreement. We applied the

commonly used McBride’s criteria [15], which designates Lin’s CC coefficient > 0.99 as

almost perfect and 0.95 to 0.99 as substantial.

Quantitative performance was considered acceptable if the SD of the percentage

differences was ± 25% (measure of precision) and the mean value was within ± 10%

(measure of accuracy). Lin’s CC coefficient assesses both the measurement of precision

(a Pearson correlation coefficient) and of accuracy (a bias correction factor, which

measures the level of the deviation from a 45° line through the origin).

Simulation-based assessment of the implication of varying performance levels on the

precision of the lesion dosimetry

Using the MIRD concept, the TIAC is, inter alia, required to estimate absorbed dose to

lesions. In recent thyroid dosimetry studies [6–9], we applied a two-point approach to

estimate the TIACs for metastases and thyroid remnants: an early 124I AC (24 h) and a

late 124I AC (120 h) to estimate the absorbed dose to lesions after projection to the

therapeutic radioiodine nuclide 131I.
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In the simulation, we estimated the uncertainty of the 131I TIAC contribution between

24 and 120 h or, in other words, the “area under the curve” of the (projected) 131I uptake

curve between the two measured points. A mono-exponential function was used to esti-

mate the 131I TIAC contribution (for a lesion of known volume). The simulation

approach consisted of two parts. In the first part, the reference 131I TIAC was determined.

More precisely, a reference 124I ACs at 24 h after administration was selected (first input

parameter); the reference 124I ACs at 120 h was calculated using an assumed effective 124I

half-life (second input parameter). In the second part, we applied identical relative uncer-

tainties for the two 124I ACs as a first-order estimate. The AC uncertainty was expressed

in a form of a percentage SD (third input parameter). Assuming a normal distribution for

the 124I ACs allowed us to simulate the 131I TIAC distribution of the percentage

difference from the reference 131I TIAC for different levels of relative SD of 124I AC for

each 124I effective half-life. Similarly, the percentage SD of 131I TIAC derived from the

simulated TIAC distribution served as relative uncertainty in the TIAC determination.

A plot was created from the simulation results to illustrate the effect of different per-

centage SDs of the 124I AC for a given effective 124I half-life on the percentage SD in

the 131I TIAC contribution. Note that the percentage SD in the TIAC correlates with

the percentage SD in absorbed dose.

Statistics

The descriptive statistics included the mean, the median, the SD, the minimum, and

the maximum, which are provided in the following form: mean (median) ± SD (mini-

mum to maximum). Differences among the groups were evaluated by Mann-Whitney

U test (non-parametric test). A significance level (P value) of less than 5% was consid-

ered statistically significant.

Results
The 16 patients had a total of 47 different lesions. Based on the lesion location within

the neck area, 8 lymph node metastases and 39 thyroid remnants were univocally iden-

tified. Per patient, at least 1 lesion and up to 8 lesions were included. The statistics of

the PET start time difference between PET/MR and PET/CT scans was 0.55 h (0.98) ±

1.24 h (− 2.1 to 2.5 h). For each type of AC, 74 ACs were determined; the avg-ACs

(max-ACs within parentheses) ranged from 0.25 (0.39) to 842 (8723) kBq/mL. Figure 1a,

b illustrates the percentage difference between PET/MR and PET/CT as a function of

the CT-based ACs. As shown in Fig. 1, 2 thyroid remnants (marked with arrows)

observed in the same patient had ACs of approximately 1 kBq/mL and exhibited a large

deviation range (40 to 86%). Excluding these 2 lesions, the mean (median) ± SD (range)

of the percentage AC difference was − 4% (− 5%) ± 14% (− 28 to 29%) for the avg-AC

and–9% (− 11%) ± 14% (− 33 to 33%) for the max-AC (Table 2). Lin’s CC plots are

shown in Fig. 2a, b for the max-AC and avg-AC, respectively. Lin’s CC coefficients were

0.98 (95% CI, 0.97 to 0.99) and 0.97 (95% CI, 0.95 to 0.98) for the avg-AC and

max-AC, respectively, demonstrating substantial AC agreement. According to the

acceptance criteria, 124I PET/MR showed acceptable quantitation performance to 124I

PET/CT: the SD was within ± 25%, and the mean value was within ± 10%.
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For comparison purposes, we also determined the ACs without image harmonization

and PGC scaling. In Table 2, an overview of the statistics of the percentage difference

between MR-based and CT-based AC for different corrections (none, PGC scaling,

image harmonization) are listed. The corresponding percentage difference without any

corrections is shown in Fig. 1c, d. Likewise, excluding 2 lesions, the mean (median) ±

SD (range) of the percentage AC difference was considerably larger, that is, 26% (27%)

± 21% (− 22 to 79%) for the avg-AC and 15% (12%) ± 18% (− 31 to 56%) for the max-

Table 2 Statistics of the percentage difference between MR-based and CT-based AC for different
correction approaches (excluding two lesions considered as outliers)

Correction Avg-AC Max-AC

None 27% (26%) ± 21% (− 22 to 79%) 12% (15%) ± 18% (− 31 to 56%)

PGC scaling 18% (18%) ± 17% (− 23 to 60%) 11% (12%) ± 18% (− 33 to 51%)

Image harmonization 3% (1%) ± 19% (− 27 to 44%) – 8% (− 10%) ± 16% (− 33 to 37%)

PGC scaling + image
harmonization

– 4% (− 5%) ± 14% (− 28 to 29%) – 9% (−11%) ± 14% (− 33 to 33%)

Statistics included the mean, the median, the SD, the minimum, and the maximum, which are provided in the following form:
mean (median) ± SD (minimum to maximum). None means without any corrections. PGC scaling refers to only application of
scaling factors. Image harmonization refers to only corrections pertaining to image reconstruction parameters. PGC scaling +
image harmonization means application of both corrections, PGC scaling and image harmonization

Fig. 1 Percentage deviations between MR-based and CT-based ACs as a function of the CT-based max-AC
and avg-AC with (a, b) and without corrections (c, d). Two outliers are marked with arrows. In panel d, the
deviations of the outliers (98 and 142%) are beyond the axis scale and are not shown. Solid (dashed) lines
represent the zero (± 25%) percentage deviations
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AC. Without image harmonization and PGC scaling, quantitative performance was

inacceptable primarily because of accuracy, that is, the mean MR-based AC was sys-

tematically overestimated by 26% for the avg-AC and 15% for the max-AC. Of note,

the AC agreement primarily failed because of not performing image harmonization,

Fig. 2 Lin’s CC plots of the max-AC (a) and avg-AC (b). Lines of identity (45° line) are shown by solid lines
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whereas PGC scaling did not produce a dominant contribution in obtaining a better

AC agreement.

The percentage differences of lesions adjacent to (11 lesions) and distant from the

trachea surface (63 lesions) are shown in Fig. 3. Excluding the 2 outliers, the mean

(median) ± SD (range) of the percentage difference for the group of adjacent lesions

was 1% (− 0%) ± 11% (− 19 to 20%) for the avg-AC and − 5% (− 7%) ± 13% (− 28 to 20%)

for the max-AC. The statistics of the group of distant lesions was − 5% (− 7%) ± 14%

(− 28 to 29%) for the avg-AC and − 10% (− 14%) ± 14% (− 33 to 32%) for the max-AC.

No statistical significance in the AC differences for the respective type of AC was

observed for the two lesion groups (P > 0.12).

Figure 4 illustrates the simulated relative uncertainties of the 131I TIAC contribution

at different effective 124I half-lives as a function of the simulated relative 124I AC

uncertainties. The relative SD of 131I TIAC remains below the ± 20% limit for relative

SD of 124I AC of approximately 25%.

Discussion
In this retrospective study, we compared the MR-based 124I ACs of lesions located in

the neck area in thyroid cancer patients with the respective CT-based 124I ACs (as

reference). We found that after image harmonization and PGC scaling, MR-based 124I

ACs agreed well with the CT-based 124I ACs, that is, the mean percentage AC

difference ± SD was− 4% ± 14% for the avg-ACs and − 9 ± 14% for max-ACs (Table 2

and Fig. 1) and the Lin’s CC plot exhibited substantial AC agreement (Lin’s CC coeffi-

cients were ≥ 0.97, Fig. 2).

Fig. 3 Percentage deviation between MR-based and CT-based ACs for lesions that are adjacent to (distance
≤ 5 mm) or distant from the trachea surface (distance > 5 mm). Outliers are marked with arrows. Solid
(dashed) lines represent the zero (± 20%) percentage deviations
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Many authors [16, 17] raised concerns that image segmentation in MR-based

attenuation correction with Dixon sequences is not reliable in regions, where differ-

ent tissue types (soft tissue, bone, air) are in close proximity such as in the neck area.

Even for lesions in the proximity of trachea, where the segmentation may influence

the quantification, we could not observe any notable AC differences between lesions

that are adjacent to (distance ≤ 5 mm) or distant from the trachea surface (distance

> 5 mm) (Fig. 3), indicating that image segmentation did not contribute to a notable

variation in ACs.

In addition, several authors [4, 5, 18] proposed pharmacokinetics as a source of the

quantification differences. Heusch et al. [4] reported, on average, a significantly higher

max-SUV and mean-SUV for PET/MRI compared to PET/CT of 13–21% (7.39 ± 6.7 vs.

6.09 ± 6.5 for max-SUV and 3.73 ± 2.9 vs. 3.3 ± 2.9 for mean-SUV; P < 0.001 each). A

discrepant finding was observed by Wiesmüller et al. [5]. In contrast to Heusch et al.

[4], they found, on average, lower values for max-SUV and mean-SUV for PET/MRI

compared to PET/CT of 11–21% (13.91 ± 13.00 vs. 17.61 ± 15.50 for max-SUV and 5.6

± 3.63 vs. 6.27 ± 3.88 for mean-SUV, each P < 0.01). Unfortunately, both studies did not

consider image harmonization. Two factors may explain the discrepant findings: (i)

pharmacokinetics of tracers with short half-lives in combination with a fast biokinetics

and (ii) different PET image reconstruction parameters.

Both factors were considered in our study. The first factor was minimized using 124I

PET images from thyroid cancer patients. Specifically, 124I has a long physical half-life

of 4.2 days and the lesions exhibit a slow radioiodine biokinetics. In contrast, the

importance of the second factor becomes obvious when considering the avg-ACs, for

Fig. 4 Simulated relative SDs of 131I TIAC contribution as a function of relative SD of 124I ACs. Dashed
vertical line represents the accepted relative SD of ± 25% for 124I AC
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example. The avg-AC percentage difference after image harmonization was consider-

ably reduced down to 3% (Table 2). Therefore, we conclude that image harmonization

plays a crucial role.

Several issues have to be mentioned. Image harmonization could not be completely

performed. The different emission times per bed position could not be harmonized as

this is a retrospective study. Nevertheless, the AC differences are still acceptable in clin-

ical settings. In addition, from Table 2, it can be concluded that PGC scaling appears to

have a minor impact on AC quantification. Also, in our cohort, two outliers exhibited

large percentage differences of about 45−90%. We suggest that this is mainly related to

the low max-AC of approximately 1 kBq/mL (Fig. 1).

To understand the impact of the different levels of AC uncertainties on absorbed

dose calculations, we performed a simulation study (see “Methods” section). As shown

in Fig. 4, a SD of ± 15% in the 124I AC translated into an “absorbed dose distribution”

of ± 12%, even a SD of ± 25% produced “absorbed dose distribution” of ± 20%. Thus,

considering factors involved in the absorbed dose calculations, the authors deem that

the ± 20% absorbed dose distribution is still acceptable. On the ground of these

findings, we infer that protocols including PET/MR alone or in combination with PET/

CT imaging for lesions located in the neck region are reliably applicable for dosimetry

purposes. Finally, our results clearly substantiate that the “harmonization” of the

scanning parameters is a critical step for a quantitative comparison between different

PET systems.

Conclusions
After image harmonization, quantification of lesions in the neck region using 124I PET/

MR showed acceptable performance to 124I PET/CT. The MR-based 124I ACs in the

neck region can be therefore reliably used in pre-therapy dosimetry planning.
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