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Abstract 

Generation of stable and realistic haptic feedback during mid-air gesture interactions have recently garnered sig-
nificant research interest. However, the limitations of the sensing technologies such as unstable tracking, range 
limitations, nonuniform sampling duration, self occlusions, and motion recognition faults significantly distort motion 
based haptic feedback to a large extent. In this paper, we propose and implement a hidden Markov model (HMM)-
based motion synthesis method to generate stable concurrent and terminal vibrotactile feedback. The system tracks 
human gestures during interaction and recreates smooth, synchronized motion data from detected HMM states. Four 
gestures—tapping, three-fingered zooming, vertical dragging, and horizontal dragging—were used in the study to 
evaluate the performance of the motion synthesis methodology. The reference motion curves and corresponding 
primitive motion elements to be synthesized for each gesture were obtained from multiple subjects at different inter-
action speeds by using a stable motion tracking sensor. Both objective and subjective evaluations were conducted 
to evaluate the performance of the motion synthesis model in controlling both concurrent and terminal vibrotactile 
feedback. Objective evaluation shows that synthesized motion data had a high correlation for shape and end-timings 
with the reference motion data compared to measured and moving average filtered data. The mean R2 values for 
synthesized motion data was always greater than 0.7 even under unstable tracking conditions. The experimental 
results of subjective evaluation from nine subjects showed significant improvement in perceived synchronization of 
vibrotactile feedback based on synthesized motion.
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interaction, Unstable tracking
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Introduction
The advent of affordable, small-sized motion tracking 
sensors such as Leap Motion1 and Kinect2, have made 
mid-air interactions viable in new application areas such 
as desktop computers, interactive tabletops, and inside 
cars. Portable virtual and augmented reality interfaces 
have also recently accelerated the use of mid-air inter-
actions as a human–computer interaction technique. 

Haptic feedback plays an import role in mid-air gesture 
interactions to give information about the physical pres-
ence of objects, which the users are interacting. Previous 
research has shown that delivering appropriate haptic 
cues to users during gesture input can help in gesture 
training [1] and task performance [2], as well as improve 
overall user experience [3].
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One of the main limitations affecting gesture-based 
haptic feedback generation is noisy and volatile motion 
data during mid-air interactions. The occlusion of the 
tracked motion and range limitations of motion track-
ing sensors deteriorate the haptic feedback based on 
mid-air fingertip motion [4, 5]. Conventional filtering 
approaches may not be able to provide stable motion 
data generation because human gestures and interac-
tions are highly arbitrary and do not have specific fre-
quency distinctions with anomalies. In this paper, we 
intend to propose a new method for generating sta-
ble and realistic haptic feedback even during unstable 
tracking conditions.

Two primary requirements for concurrent vibro-
tactile rendering [6] in mid-air interactions are the 
stability and real-time motion data control over the 
vibrotactile signals. Continuous motion data such as 
fingertip position, velocity, and acceleration data have 
been used as the control elements for physically-based 
vibrotactile rendering models [7, 8]. Thus, in the con-
text of real-time vibrotactile rendering, the mere rec-
ognition of gestures from erroneous motion patterns 
is insufficient. The recognized gestures may further be 
utilized to replicate stable and real-time motion data 
for controlling haptic feedback stimulation even “dur-
ing” the motion.

In this paper, a method for synthetic motion element 
synthesis for haptic rendering using hidden Markov 
models (HMM) is proposed. The proposed method was 
inspired by the embodied motion pattern generation for 
robots as detailed in [9, 10]. In the aforementioned work, 
the authors generated self-motion elements from rec-
ognized motion patterns in robots to replicate human 
motion patterns in robots. Here we use mimesis theory 
to recreate stable, real-time motion patterns for differ-
ent gestures. The unstable motion patterns are fed to an 
HMM-based gesture recognition algorithm which rec-
ognizes the hidden states corresponding to an identified 
gesture. Primitive motion elements associated with each 
states are synthesized to recreate the ideal motion paths 
associated with each gesture. An algorithm for adaptive 
modulation of primitive motion element compared with 
changes in the real-time execution speed by users is also 
proposed. An objective analysis of the comparative per-
formance of the synthesized motion data with the stable 
motion data obtained from a reference sensor is con-
ducted to estimate the viability of the proposed model. 
Further, a subjective evaluation of vibrotactile feedback 
based on the proposed model was conducted to confirm 
the performance of the proposed methodology.

The main contributions of this work are as follows.

•	 A method for real-time haptic feedback generation 
during mid-air interactions using motion synthesis 
even in the presence of unstable motion tracking is 
proposed.

•	 Estimation of the reference motion pattern of a ges-
ture and definition of primitive motion elements to 
be synthesized in real-time.

•	 Validation of the proposed method for four gestures 
namely—tapping, three-fingered zooming, vertical 
dragging and horizontal dragging.

Initial work in this regard was implemented in [11] 
wherein the proposed method was verified for tasks 
involving zoom. In this work, we improve the method 
and confirm its suitability for multiple gestures involving 
more participants.

Related works
Significant research has been conducted in both motion 
recognition and mid-air haptic feedback generation tech-
niques in recent past. However, to the best of our knowl-
edge no research effort focused on the use of unstable 
motion data to generate stable haptic feedback in mid-
air interactions have been conducted. Thus, we broadly 
classify the related works into two categories: Motion 
recognition in mid-air interactions and haptic feedback 
technologies for mid-air interactions.

Motion recognition
Multi-camera optical tracking systems and inertial meas-
urement units (IMU) have been used in the past to track 
the position and orientation of the human body during 
mid-air interactions. Optical tracking systems with a con-
stellation of cameras capable of tracking multiple mark-
ers attached to the human body [12] are used for accurate 
modeling and data acquisitions. The main limitations of 
such systems are their high cost and immobility of the 
test bed, thus making it an experimental reference test. 
Won et al. [13] presented a novel methodology based on 
one position sensor and an IMU to estimate position and 
orientation with the integration of filter tools. Though 
this method could obtain a relatively accurate position 
estimation, it needs extra assistance from several markers 
to get the 3D reference world coordinates of the tracking 
point.

Although depth cameras such as leap motion con-
trollers (LMC) and Kinect have been used extensively 
in mid-air interfaces recently, it has many limitations. 
As the current study uses LMC as the tracking sensor, 
a detailed review of the limitations of the commercial 
depth cameras was conducted. Kinect, which has two 
infrared cameras for depth detection and one stand-
ard visual-spectrum camera for image recognition, can 
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obtain the depth information and color images of the 
operator which are used to calculate the position and the 
orientation. The LMC also uses similar technology that 
is similar to Kinect but offers precise tracking of fingers 
using a built-in hand model. Breakthroughs were also 
made in predicting a self-occluded hand, e.g., [14]. Until 
recently, this was a severe obstacle for optical tracking 
devices. Unstable motion patterns are still prevalent in 
the case of multiple hand interactions with incorrect ini-
tialization of the human postures. Moreover, as reported 
in [4] LMCs have uneven sampling frequency which 
causes discontinuous motion capture data along the time 
frame with increasing drift as capture duration increases. 
To complicate the matter further, it was found that the 
instability in motion capture is a function of distance and 
field of view from that of the LMC [4]. Another limitation 
of LMC is the unstable orientation information collection 
procedure. This leads to an incorrect position estimation 
as position tracking inherently depends on orientation 
information.

Many researchers have used advanced filtering tech-
nologies and learning based methods to recognize hand 
motions using a single depth camera. One of the straight-
forward approaches for haptic rendering from measured 
data is to apply a low pass [15] or bandpass filter [16] on 
the measured data for haptic feedback rendering. The 
proposed approach works well for a master–slave sys-
tem of teleoperation and measured data based haptic 
feedback systems. However, the methodology may fail 
to have the desired effect in mid-air interactions as there 
are no definite frequency component differences between 
unstable and stable motion patterns. In [17] the authors 
used a Kalman filter to generate stable motion data from 
LMC to control robot motion. This methodology needs 
a precise mathematical model for each gesture, thereby 
requiring a heuristic approach for multiple gestures. Kes-
kin et al. [18] proposed a discriminative method using a 
multi-layered random-forest to predict hand parts and 
thereby to fit a simple skeleton. The system runs at 30 Hz 
on consumer CPU hardware but failed under occlusion. 
Xu et al. [19] estimated the global orientation and loca-
tion of the hand, and selected the correct posture by min-
imizing reconstruction error. The system ran at 12  Hz, 
and the lack of tracking occasionally led to noisy pose 
estimates occasionally.

Haptic feedback technologies
In the past, many haptic feedback methods with dif-
ferent form factors have been proposed in the past for 
mid-air virtual and augmented reality interactions. Pre-
vious works includes the finger-worn gloves with tac-
tile feedback applied at the fingertip [20, 21] and the 

real-time auditory and vibrotactile feedback [20]. In [22], 
the authors presented a wireless haptic ring (HapRing) 
for spatial interaction. This device provided vibrotac-
tile signals and vibration cues on a finger base using a 
haptic actuator. Novel techniques in the field, use ultra-
sonic transducers [23] and air vortex rings [24] to create 
focused haptic feedback in mid-air. Most recently, Lee 
et  al. [25] reported the feasibility of using indirect laser 
radiations for mid-air tactile rendering.

While most of the above mid-air haptic feedback tech-
nologies uses depth motion sensors for motion sens-
ing, the effects of specific research efforts were made 
to address unstable motion patterns on affecting haptic 
feedback have not been addressed. As is evident from 
the literature review, there is a gap to be addressed in 
linking the unstable motion patterns and real-time hap-
tic rendering. Therefore, this work will discuss the pro-
posed motion synthesis approach to address this critical 
research problem.

Motion synthesis model and primitive motion 
element synthesis using HMM
The proposed method uses a hidden Markov model to 
recognize the motion states and further synthesize cor-
responding motion profile, thus recreating actual motion 
pattern. Figure  1 shows the general outline of the pro-
posed approach. Motion synthesis-based haptic feedback 
generation have two phases, namely motion recognition 
phase and motion synthesis phase. The first three steps 
involve motion recognition phase, where motion data is 
acquired from tracked finger joints during gesture execu-
tion. HMM with multiple hidden states are selected in 
real-time from these observed motion data. Each gesture 
corresponds to a unique HMM with a unique number of 
states. Further primitive motion elements corresponding 
to each state are estimated based on reference motion 
data obtained from a stable motion sensor. These primi-
tive motion elements are stored in a lookup table and 
synthesized according to the recognized state as shown 
in step 4. With changes in execution speed of the gesture, 
the primitive motion elements are adaptively modulated 
by estimating the duration of HMM states. The synthe-
sized motion data is then used as the control function to 
modulate the vibrotactile waveform as shown in steps 5 
and 6. Finally, the vibrotactile feedback is finally fed to 
the users via a wrist band as shown in step 7.

We adopted discrete hidden Markov models (DHMMs) 
[26] to describe the relationship between the sequence 
of motion patterns and primitive symbols. DHMM is a 
stochastic process that generates time series data. Each 
gesture is modelled by a unique DHMM and the prob-
ability that a specific time series vector is generated 
by a DHMM can be calculated by recursive maximum 
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likelihood functions. Here finger position and velocity 
vectors obtained from depth camera sensor are treated as 
the time series data. For tapping and dragging gestures, 
the index finger distal phalange tip position was used as 
the motion data for HMMs. Both these gestures used a 
pointing gesture to start the gesture execution at the 
intended locations. For the zoom gesture, the radius from 
an imaginary circle connecting three finger joints namely, 
thumb distal phalange tip, index finger distal phalange tip 
and middle finger distal phalange tip positions were used 
as the motion data for HMM. These measured motion 
data vectors are normalised and discretised in real-time 
to obtain output symbols, oj(t) since DHMM generates 
discrete symbols at each time instant. An Expectation–
Maximisation algorithm is then used to train unique 
DHMMs for each gestures, to obtain the following three 
parameters unique for each gestures.

•	 A = aij is a states transition matrix. Here aij indicates 
a probability of transition from state qi to state qj.

•	 B = bij is an output probability matrix. bij indicates a 
probability of output symbol oj from state qi.

•	 π is a vector of probability vector describing the dis-
tribution of initial states.

Since the assumed HMM is a left-right model we initialise π 
as a constant value for each gesture. The number of hidden 
states in HMM for all the gestures were selected as four to 
optimize the gesture recognition accuracy. For training the 
HMM in each gesture, motion data from multiple subjects 
with different interaction speeds and positions were used 
to ensure high recognition rate. The trained HMM had an 
accuracy of 94.4%, 94.6%, 95.1% and 81.778% for horizontal 
drag, vertical drag, zoom and tapping gestures respectively. 
The model was tested by multiple participants, execut-
ing the gesture with different speeds and tracking stability 
conditions.

Primitive motion elements
The HMM-based motion synthesis model uses smooth 
primitive motion patterns stored in the lookup tables to 
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generate motion elements for haptic feedback control. The 
primitive motion elements are defined by a polynomial 
curve fit for each state of the HMM models. Therefore, we 
define the proto symbol P’s as follows.

The Viterbi algorithm calculates an ideal path of 
P(O|(A,B)) over a given time frame T of output motion 
sequences, O and selects the most suitable HMM state 
sequence in real time. It further renders the correspond-
ing primitive elements associated with each recognized 
state, after adjusting to the speed of gesture execution. 
Thus the determination of reference motion patterns for 
each gesture and the definition of primitive motion ele-
ments to be synthesized by the HMM states are detailed 
in the next section.

Determination of reference gesture motion 
patterns and primitive motion elements
Participants
The reference motion patterns are obtained from five 
subjects (three males and two females) with mean age of 
22.88 and SD: 2.56. None of them had prior experience 
using a haptic interface and were naive towards the goal 
of the study.

Gestures and reference motion elements
We analyzed four distinct dynamic gestures for motion 
pattern synthesis using the proposed approach. The ges-
tures were (1) horizontal drag, (2) vertical drag and (3) 
tapping using the index finger and (4) three-fingered 
zooming. Figure  2 shows the illustrative images of dif-
ferent gestures and the corresponding finger positions 
tracked. The above gestures were selected to analyze and 
validate the efficiency of motion synthesis to provide con-
tinuous and event-based haptic feedback triggering. Each 
subject repeated different gestures thirty times at differ-
ent interaction speeds. The reference motion patterns to 
be synthesized from each gesture for controlling haptic 
feedback (shown in Fig. 2 pictorially) are detailed here.

For tapping and dragging gestures, the finger joint posi-
tion of distal phalange tip was used. Both these gestures 
use a pointing gesture to start the gesture execution. 
The tapping distance (collision with the virtual surface) 
is defined as the reference motion element (shown by 
tapp_D in Fig. 2a) to control the haptic feedback. In the 
vertical and horizontal dragging gestures, the distance of 
dragging tasks (shown by hdrag_D and vdrag_D respec-
tively in Fig.  2c, d) is defined as the motion element to 
control haptic feedback.

(1)Pi = (Ai,Bi)

In the zoom gesture, the three finger joints namely, 
thumb distal phalange tip, index finger distal phalange 
tip and middle finger distal phalange tip position posi-
tions are used for obtaining the radius of an imaginary 
circle connecting three joints (shown as zoom_R in 
Fig. 2b). This virtual zoom radius is used as the motion 
element to control the haptic feedback. The z-axis data 
of each fingertip positions are neglected to obtain a pla-
nar circle approximation. Standard geometric equations 
shown in [27] we used in the calculation of zoom radius 
in real-time.

Experimental setup
We use a stable non-line-of-sight motion tracking 
system (Polhemus Liberty, USA) to obtain the refer-
ence gesture motion data. A fixed sampling interval of 
60  Hz is used to obtain steady motion data. The sub-
jects wore a head-mounted display (HMD) used in the 
case of VR/AR setups which displayed visual feedback 
of gesture execution. A unity application displayed the 
visual feedback while performing the task with actual 
fingertip position was rendered to the subjects to make 
the task easy. Care was taken to ensure the position of 
the subjects to be same every time to avoid improper 
tracking. Reference motion tracking is performed on a 
high definition PC with specifications of 32  GB RAM, 
4 MHz, I7 processor and GE Force M470 graphics card.

Results: Reference motion elements and defining primitive 
motion elements
Motion patterns for each gesture obtained from multi-
ple subjects are normalized in both time and amplitude 
to obtain a generic fitted curve. Figure 3a–d shows the 
normalized motion data obtained for horizontal drag, 
vertical drag, tapping, and zooming gestures respec-
tively. The unnecessary motion patterns obtained dur-
ing the experimentation are filtered out using a linear 
regression analysis where the R2 value of the mean 
motion element is correlated with each motion ele-
ment. Here the mean normalized curve of entire data 
set of motion curves for each gesture is calculated ini-
tially. Then the correlation between each curve in the 
data set and this mean curve is estimated using R2 
values. Here we treat the mean curve as the regressed 
curve and each curve in the data set as data points to 
be regressed or fitted to this mean curve. Thus, a per-
fect fitting will generate a correlation score of 1, while 
an imperfect fitting results in 0. All the motion patterns 
with R2 < Th are treated as outliers and are excluded 
from the analysis. This is indicated by the unshaded 
region in Fig.  3. The threshold Th is obtained by trial 
and error method for each gesture separately.
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The gestures are then divided into multiple states 
where each state has a primitive motion element given 
by the mean of the motion curve at each state. These 
primitive elements are synthesized from polynomial 
curves with the best fit in each state. The standard 
deviations due to variations between subjects at each 
state are also included in the primitive elements as 
shown in Fig.  3. Each of these states is recognized by 
the HMM detailed in the previous section and the cor-
responding primitive motion element is rendered in 
real time.

Evaluation method
Participants
Nine volunteers (two female and seven male, mean age 
22.88 and SD: 1.19) participated in the study. None of 
the volunteers reported any visual or tactile deficits. 
All of them were naive about the goal of the study and 
signed written consent forms approved by the Univer-
sity Ethics Committee.

Experimental setup
Figure 4a shows the experimental setup used to evaluate 
the proposed motion synthesis model. We used a Leap 
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Motion sensor to track hand motion in real-time and 
render haptic feedback to the subjects during gesture 
interactions. We used a non-line-of-sight electromag-
netic motion tracking system (Polhemus Liberty, USA) 
as the reference motion tracking system to ensure stable 
and accurate tracking during active gesture interaction. 
The system had a maximum update rate of 240  fps and 
delivers 6 DoF motion data with less than 4 ms latency. 
Stable motion data obtained from the reference motion 
tracking system was used to render visual feedback of 
fingertip positions to the subjects using a HMD (Oculus 
Rift, DK2). This ensured stable visual feedback irrespec-
tive of the gesture execution positions.

We use a voice coil actuator (VP2, Acouve, Japan) 
as the haptic feedback device. The voice actuator was 
placed in a 3D printed circular box of diameter 50 mm 
and height 15 mm and attached to a user’s wrist as shown 
in Fig. 4a. Wrist-based haptic feedback was selected for 

its commercial viability in current mid-air gesture inter-
action systems. We used pseudo-haptic vibrotactile rep-
resentations for haptic rendering with a processing loop 
of 1  kHz. These are described in detail in the following 
section.

Task, experimental conditions, and vibrotactile feedback
We analyzed the same four gestures (horizontal drag, 
vertical drag, tapp and zoom) described earlier for evalu-
ations. The 41-point moving average filtered motion data 
having a theoretical delay of 265 ms was also compared 
with the measured and synthesized motion data to assess 
its viability. The filtered motion data was used to com-
pare the horizontal drag and zoom gestures as both the 
gestures had concurrent vibrotactile feedback.

For each of the four gestures, the subjects executed 
the gesture in two positions. One position has unstable 
tracking and the other with stable tracking using the 
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Leap Motion sensor as shown in Fig. 4b. The instability in 
tracking occurs due to two factors, self-occlusion of the 
tracked position and sensor range limitations.

Self-occlusion of the fingertip is caused by the point-
ing posture in tapping and dragging gestures. In both 
of these gestures, a pointing pose is used, in which the 
index finger is extended and all other fingers are closed 
are used. Such a posture coupled with the Leap motion 
camera being placed in the VR headset causes self-occlu-
sion in which the camera cannot track the fingertip joint 
position but rather approximates the joint locations. In 
the zoom gesture, the tracking of three finger tip posi-
tions also causes self-occlusion since the tracked points 
are occluded by the user’s palm.

The Leap motion sensor has a maximum sensitivity at 
a range of 100–500 mm in a circular arc shape radius [5]. 
As the finger position which is being tracked goes beyond 
this level, the accuracy of tracking reduces at 250 mm 
from the centre of Leap motion [5]. The position of exe-
cution of different gestures are selected such that above-
mentioned instabilities arises as shown in Fig.  4b. Both 
occlusion and range limitations are selectively avoided by 

opting a closer position of location, Pos1 of execution of 
the gesture as shown in Fig. 4b.

This was used to evaluate the performance of the 
motion synthesis method under stable and unstable 
motion tracking conditions. The participants maintained 
their positions during gesture execution using a visually 
rendered cylinder.

In the horizontal and vertical drag gestures (shown 
in Fig.  2c, d), the participant’s task was to drag a box 
of size 5 cm × 5 cm × 5 cm horizontally and vertically 
from a start position to a stop position separated by a 
distance of 20 cm. Two boxes of size 4 cm × 4 cm × 4 
cm were rendered to indicate the start and stop posi-
tion. The color of the boxes changed to blue and red to 
indicate the start and stop time respectively. While exe-
cuting gestures, a continuous vibrotactile “spring-like” 
feedback [28] as shown in Fig.  5a was rendered to the 
subjects. Here, the amplitude of the sinusoidal wave-
form was modulated by the distance of the fingertip 
from the start position so that the participants could 
feel a virtual spring-like feeling as they drag the box. At 
the starting point of the dragging gesture, the transient 
vibration s(t) was defined as

where the amplitude M is the normalized distance of 
the fingertip from the start position. The frequency f is 
set to 180 Hz, which corresponds to the maximum sen-
sitivity of Pacinian corpuscles. On completion of the 
drag gesture, a vibrotactile inertial and viscous mode was 

(2)s(t) = M sin(2π ft),
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employed as the cue for task completion. The amplitude 
of the sinusoidal waveform depended on the velocity and 
acceleration of fingertip motion. A constant value for 
finger speed coupled with actual finger acceleration was 
used to provide feedback for a duration of 60  ms. This 
assignment was motivated by the findings reported in 
[8], where it was reported that during finger sliding, the 
acceleration and velocity of finger motion influenced the 
perception of two different physical parameters: mass 
and viscosity respectively.

During the tapping gesture (shown in Fig.  2a), an 
impulse feedback as shown in Fig. 5b was rendered when 
the finger contacted the interaction surface. The verti-
cal tapping distance was set at 15  cm and the color of 
the surface changed to red when the finger makes con-
tact with the surface. From the point of fingertip collision 
with surface, the transient vibration s(t) was defined as

The amplitude M is velocity at the point of impact and 
the decay constant N was set to 200. This generated 
vibrations lasting less than 40  ms. The frequency f was 
set to 300 Hz to give the sensation of a hard surface. The 
above parameters were chosen to optimize the user per-
ception of vibrotactile feedback based on the previous 
research [29].

During the zoom gesture (shown in Fig.  2b), the par-
ticipant’s task was to zoom the size of a sphere to three-
times its original size. They could repeat the gesture as 
many times as required to complete the task. The size 
of the sphere was controlled by the virtual radius of the 
three fingers during the zoom gesture. A spring-like 
vibrotactile feedback was fed back to the subjects con-
trolled by the zoom radius, similar to that of the drag ges-
ture. However, no terminal feedback was provided when 
the gesture was completed. Here the amplitude of the 
sinusoidal waveform was modulated by the zoom radius 
so that the participants could feel a virtual spring-like 
feeling as they execute the gesture.

Procedure
At each gesture execution position, the participants 
repeated the task ten times in blocks of 5 trials each. Tri-
als were performed for each experimental condition as 
described in previous section. The order of vibrotactile 
feedback (synthesized, measured, and filtered) was ran-
domly changed to avoid any training effect on the sub-
jects. Before the start of each gesture, a practice session 
was conducted. This allowed the positions of unstable 
and stable tracking of gestures to be recalibrated for each 
subject. Each gesture was completed in 30  min and the 
entire experiment, including rest time and the practice 

(3)s(t) = Me−Nt sin(2π ft),

session, required around 3 h. After each trial, the meas-
ured motion data from the depth camera sensor, filtered 
motion data, synthesized motion data, and the reference 
motion tracking data were recorded by the application. 
Only cases where the gesture was correctly recognized by 
the system was used in the analysis.

Objective analysis based on measured motion data
The following objective parameters were used to evaluate 
the effectiveness of the motion synthesis method.

•	 To evaluate the shape of the motion data compared 
to the reference motion, we use the R2 values of the 
measured, filtered, and synthesized motion data and 
compared them with the reference motion curve. The 
R2 values give the relative comparison of the shape of 
two motion curves on a scale of 0–1 after adjusting 
to the shift in time differences.

•	 To evaluate the time difference of endpoints of 
measured and synthesized motion data compared 
to that of the reference motion data, we define 
Tdiff  given by ( Endtimeref − Endtimemeasured and 
Endtimeref − Endtimesyn).

Subjective analysis based on user experience
We also asked the participants to rate the VR mid-air 
interaction system in each condition after every five tri-
als. The following three questions were answered by 
the participants on a 5-point Likert-type scale from 0 
(strongly disagree) to 4 (strongly agree) .

•	 Synchronization judgement: The haptic feedback was 
synchronized with my hand motion.

•	 Smoothness judgement: The haptic feedback was 
very smooth.

•	 Task completion judgement: The haptic feedback 
helped me in the task completion.

Statistical data analysis
A one-sample Kolmogorov–Smirnov test of subjective 
and objective data across all subjects suggested a nor-
mal distribution. Thus, all the statistical analysis reported 
henceforth are conducted using two-way repeated meas-
ures ANOVA followed by post host tests using Bonfer-
roni corrected two sample T-tests. The two-way repeated 
measures ANOVA estimated the main effects of tracking 
stability (stable and unstable) and the type of motion pro-
files used (measured, synthesized, and filtered) across all 
subjects.



Page 10 of 17Babu et al. Robomech J             (2019) 6:2 

Evaluation results
Figure 6 shows the comparative plot of reference motion 
data along with measured, moving average filtered and 
synthesized motion curves during horizontal drag ges-
ture for subject 8. From the figure, it is evident that while 
synthesized motion curve closely replicates the reference 
motion data, the measured motion data have instability 
at the tag end of the gesture. This instability occurs due to 
the poor tracking accuracy as the finger position moves 
away from the depth camera sensor. The moving aver-
age filtered data has a different shape and is significantly 
delayed compared to the reference motion data. This 
leads to a delayed vibrotactile feedback with diminished 
amplitude.

Objective evaluation results
The R2 values and Tdiff  of the four different gestures–
horizontal drag, vertical drag, tapping, and zooming—are 
shown in Fig. 7a–d respectively. Under poor tracking sta-
bility, we observed an improvement in R2 values and Tdiff  
for the synthesized motion data. Under high tracking 
stability, the performance of the measured and synthe-
sized motion data had similar objective evaluation scores. 
Moreover, the filtered motion data was significantly 
delayed in all the gesture conditions.

The synthesized motion data from the horizontal drag 
gesture had high correlation in shape and timing with 
the reference motion data when the tracking was unsta-
ble. When the tracking was stable, however, there was 
no difference between measured and synthesized data. 
The motion profile used had a statistically significant 
effect on R2 values given by ( F2,16 = 4.67, p = 0.0251 ) 
for the horizontal drag task as shown in Fig.  7a. The 

interaction between the main effects were also signifi-
cant ( F2,16  =  5.85, p = 0.0123 ). The effect of motion 
profiles had significant effects on Tdiff  ( F2,16  =  91.025, 
p < 0.00001 ), however tracking stability had no signifi-
cant effect on the horizontal drag gesture. This shows 
that Tdiff  had similar trends regardless of tracking stabil-
ity. The post hoc test showed significant differences in 
R2 values between different motion profiles. Synthesized 
motion profiles had higher R2 values compared to meas-
ured motion profiles (p = 0.0002) during unstable track-
ing. But there was no significant difference in R2 values 
between synthesized and measured motion profiles when 
the tracking was stable. The post hoc test on Tdiff  for 
both tracking conditions shows that the filtered motion 
data is significantly delayed compared to the measured 
and synthesized data for the horizontal drag gesture 
( p < 0.00005).

For the vertical drag gesture, the end timings from 
the synthesized motion data had a significantly better 
correlation with the reference motion data. The gen-
eral trend shows an increased performance of measured 
data under high tracking stability conditions and vice 
versa. There was no significant effect of tracking stabil-
ity or motion profiles on the R2 values, albeit R2 values 
from the measured motion profiles were lower. Signifi-
cant differences in Tdiff  were observed for both the track-
ing stability ( F2,16 = 8.18, p = 0.0211 ) and motion profiles 
( F2,16 = 8.71, p = 0.0184 ). A comparison of the meas-
ured data to the synthesized motion data under unsta-
ble tracking conditions shows that the end time from the 
measured data was significantly delayed ( p = 0.0408 ). 
Under stable tracking conditions, the end times of the 
measured motion profile were synchronized with the ref-
erence motion profiles while the synthesized motion data 
reached the end state much earlier than the actual ges-
ture ( p < 0.00005).

For the tapping gesture, there were no improvements 
in the shape and timing of the synthesized motion data 
compared to measured motion profile. While measured 
motion data had a higher correlation with the reference 
motion curve under stable tracking conditions, the per-
formance was similar when the tracking was unstable. 
Both the tracking stability ( F2,16 = 10.13, p = 0.0133 ) 
and motion profiles ( F2,16 = 21.6841, p = 0.0016 ) had 
significant effects on the R2 values. The R2 values were 
higher for measured data in both tracking conditions 
and we observed significantly higher R2 values under 
stable tracking conditions ( p = 0.0042 ) as shown by 
the post hoc test. The post hoc analysis showed that the 
increase in R2 values were not significant when track-
ing was unstable. The tracking stability had significant 
effects on Tdiff  ( F2,16 = 12.83, p = 0.0072 ) but there was 
no significant effect of type of motion profile (measured, 
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Fig. 6  Qualitative results. The comparative plot of different motion 
profiles during horizontal drag gesture execution under unstable 
tracking conditions. The synthesized motion data is smooth and best 
replicates the reference motion pattern. By comparison the measured 
motion data has high fluctuations making the vibrotactile feedback 
unrealistic and unpleasant
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synthesized or filtered). When tracking was stable, the 
end time difference between the reference motion curve 
and the measured data was significantly earlier compared 
to synthesized motion curve ( p = 0.003 ) as shown by the 
post hoc analysis. With unstable tracking, however, there 
was no difference in the end times of the motion profiles 
for the tapping gesture.

In the zoom gesture, the synthesized motion data had 
a high correlation in shape with the reference motion 
data under unstable tracking conditions. When the track-
ing was stable, however, there was no difference between 
the measured and synthesized data. The end-timing was 
not analyzed for zoom gesture as no terminal vibrotac-
tile feedback was provided at the end of gesture execu-
tion. The motion profiles had significant effects on R2 
values ( F2,16 = 3.43, p = 0.057 ) but tracking stability 
conditions had no significant effect. The interaction 
between the above main factors were statistically sig-
nificant ( F2,16 = 10.38, p = 0.0013 ). The R2 values were 
significantly higher for synthesized motion profiles com-
pared to filtered motion data during unstable tracking 
( p = 0.0004).

Subjective evaluation results
The box plot of three subjective scores for different ges-
tures is shown in Fig.  8. The general tendency was an 
improvement in subjective scores for synthesized motion 
data based on vibrotactile feedback, especially synchro-
nization judgement, when the tracking stability was poor. 
When the tracking stability was high, the user ratings of 
measured and synthesized motion data based on vibro-
tactile feedback had similar scores. Moreover, the vibro-
tactile feedback based on filtered motion data had lower 
user ratings compared to others in all cases.

In all three subjective scores, the synthesized motion 
curve based on vibrotactile feedback for horizontal 
dragging gesture (Fig.  8a) had higher scores compared 
to measured and filtered motion curves based on feed-
back under unstable tracking conditions. However, the 
same was not true for stable tracking. The synchroniza-
tion judgement rating scores were significantly higher 
for vibrotactile feedback based on synthesized motion 
data for tracking stability ( F2,16 = 10.74, p = 0.0112 ) and 
motion profiles ( F2,16 = 4.62, p = 0.00261 ). The two-way 
repeated Measures ANOVA gave statistically signifi-
cant higher scores with tracking stability changes for the 
smoothness judgement score ( F2,16 = 12.815, p = 0.0072 ) 
and task completion judgement score ( F2,16 = 18.89, 
p = 0.0025 ). Subjective scores on the effect of motion 
profiles was not statistically significant in these cases. The 
post hoc analysis gave statistically significant differences 
only between synthesized and filtered motion data in the 
synchronization judgement score ( p = 0.002).

The subjective evaluation scores of the vertical drag-
ging gesture with changes in tracking stabilities and 
motion profiles are shown in Fig.  8b respectively. There 
were statistically significant higher scores for synchro-
nization judgement with the two main factors. The two-
way repeated measures ANOVA applied to changes in 
the stability motion profiles returned values of ( F2,16 = 
18.185, p = 0.0027 ) and ( F2,16 = 11.636, p = 0.0092 ) 
respectively. However, the post hoc test only gave sta-
tistically significant higher ratings in synchronization 
judgment scores for synthesized motion curves based on 
vibrotactile feedback under unstable tracking conditions 
( p = 0.0037 ). For other subjective scores, the increase in 
ratings for synthesized motion curves based on vibrotac-
tile feedback was not statistically significant.

For tapping gesture (shown in Fig. 8c) there was statis-
tically significant changes in subjective rating for all the 
three judgement criteria with changes in tracking stabili-
ties given by ( F2,16 = 11.93, p = 0.0086 ), ( F2,16 = 10.388, 
p = 0.0122 ) and ( F2,16 = 6.4, p = 0.0353 ) respectively. 
However, the subsequent Bonferroni corrected paired 
T-test did not show any statistically significant increase in 
subjective rating scores when the tracking was unstable.

Figure  8d shows the subjective evaluation scores for 
the zoom gesture with changes in tracking stabilities and 
motion profiles. There were statistically significant higher 
scores for synchronization judgement with changes in 
motion profiles ( F2,16 = 3.636, p = 0.0427 ). There were 
also statistically significant interactions between motion 
profiles and changes in tracking stabilities on the subjec-
tive scores ( F2,16 = 5.724, p = 0.0133 ). Post hoc analy-
sis showed that the individual scores were significantly 
higher for the synthesized curve compared to the filtered 
motion curve when the motion tracking was unstable 
( p = 0.008 ). But when the tracking was stable, the scores 
were similar for both measured and synthesized curves. 
For smoothness and task completion judgments ratings, 
the improvement in scores for synthesized motion curves 
was not statistically significant compared to measured 
and filtered motion data.

Discussions
Objective evaluation
In general, the motion curve shape metric increased for 
synthesized data when the tracking was unstable. This is 
underlined by the significant increases in R2 values for 
horizontal drag and zoom gestures. The performance of 
different motion profiles was similar under stable track-
ing for all gestures. This shows that the proposed motion 
synthesis algorithm maintains the shape of the motion 
data during both stable and unstable tracking condi-
tions. One can observe small R2 values for filtered motion 
data. This shows that filtering of the motion data alters 
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the shape of the motion profiles. This change in shape of 
the motion data leads to diminished vibrotactile feed-
back based on the altered motion profile. The shape of 
the motion curve during gesture execution is significant 
for concurrent haptic feedback, where haptic feedback is 
fed continuously to the user from the start of the gesture 
until the endpoint.

Differences in endpoint timing are important for termi-
nal haptic feedback, where haptic feedback is fed to the 
users at the end of gesture execution. When the tracking 
was stable, the endpoints of the measured motion profiles 
during drag gestures were close to that of the reference 
motion curves. However, when tracking was unstable, 
the endpoints of measured motion profiles were delayed 
compared to the actual motion profile. One can observe 
a significant delay in the endpoints of the filtered motion 
profiles compared to the measured and synthesized data 
for the drag gesture.

The synthesized curves had endpoints earlier to the 
actual endpoints by 200 ms and 30 ms for dragging and 
tapping gestures respectively. This may be caused by 
two factors: the minimum time required to recognize a 
gesture and the modulation of motion primitives stored 
in the look-up table. The gesture recognition system 
requires some time duration to recognize each gesture 
in realtime. Additionally, the modulation of the motion 
primitives in real-time is implemented by estimating 
the duration in each state and comparing with the ideal 
motion pattern recorded previously. This method led to 
overcompensation and/or under compensation and may 
lead to changes in execution timings even though the 
shape of the curve is maintained.

Unlike other gestures, the R2 and Tdiff  values of the 
synthesized motion curves for the tapping gesture are 
not significantly improved. This can be explained by the 
duration of the tapping gesture as compared to dragging 
and zooming gestures. The average duration of the tap-
ping gesture was 0.35± 0.15 s compared to 1.26± 0.25 
and 0.88± 0.123 s for horizontal dragging and zoom ges-
tures respectively. Thus, the tracking instabilities have a 
smaller effect on the shape of motion curves and timing 
differences. Moreover, when the speed of gesture execu-
tion is fast, controlling the instability using changes in the 
position of gesture execution becomes less efficient.

Subjective evaluation
Out of the three judgment questions, the synchronization 
judgment scores showed a significant increase for vibro-
tactile feedback based on synthesized motion curves 
when the tracking stability was poor. End timing differ-
ences were easier to perceive compared to the continuous 
increase in the amplitude of the vibrotactile waveform. 
This can be explained by previous studies which show 

that terminal haptic feedback has prominent effects on 
user perception compared to concurrent haptic feedback 
[6]. Previous research by Jay et al. [30, 31] and Lee et al. 
[32] have also shown that the user interaction metrics 
such as task completion times and penetration depth will 
be significantly affected when the terminal haptic feed-
back is delayed by more 150 ms. The significantly lower 
user ratings of filtered motion data in the current study 
further reiterate the above findings.

Even though the task completion judgment scores 
increased for all subjects under unstable tracking condi-
tions, the increase in ratings was not statistically signifi-
cant when compared to synchronization judgment. This 
sheds light on the necessity of haptic feedback for task 
completion in mid-air gesture tasks. Although haptic 
feedback improves the pleasantness of virtual interac-
tions, participants used visual feedback as the primary 
cue for estimating the end of a gesture rather than haptic 
feedback. The above argument is in line with the previ-
ous studies conducted by Jay and Hubold [31] for 1 DoF 
tapping and target acquisition tasks. They concluded that 
the absolute essentiality of haptic feedback is a primary 
factor in task execution improvements.

The low rating score improvement of the tapping ges-
ture for the motion synthesized curve based on haptic 
feedback is consistent with the quantitative evaluation 
The R2 and Tdiff  values of tapping task had no signifi-
cant changes with the change in motion synthesized 
curves. Thus, when the haptic feedback was based on 
these curves, the changes in subjective ratings was also 
detrimental.

Advantages of the proposed methodology
The proposed method offers a more general and stable 
approach to generate haptic feedback for mid-air haptic 
interfaces compared to the conventional approaches. In 
the event of unstability in motion tracking, which fre-
quently occurs in mid-air interactions, the proposed 
motion synthesis maintains the stability of motion pro-
file and in turn the haptic feedback, there by improving 
overall user satisfaction and task performance. Moreo-
ver, it has been shown by our previous studies [33] that 
addition of realistic tactile feedback changes the human 
motion profile as well, making it more streamlined and 
predictable. This increased stability of human motion 
pattern, in turn increases the recognition accuracy and 
thereby the stability of the tactile feedback as a result 
[33]. The conventional studies for haptic feedback based 
motion correction and training does not take into con-
sideration this unstability in motion tracking.

The motion synthesis method can be used to increase 
the frame rate of the motion data. The current com-
mercially available depth cameras have an update rate 
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of 50–60 Hz with variable frame rates depending on the 
computational load. The motion synthesis method can be 
used to increase and stabilize the frame rate as motion 
data is synthesized by a separate thread once the gesture 
is recognized.

The proposed method could be extended for other 
feedback modalities of virtual interactions as well. In the 
mid-air interactions, controlling one’s motion profile to 
be the ideal is hard especially when interactions involve 
motion based feedback. In the current study, we used the 
motion synthesis method to reproduce this ideal motion 
curves irrespective of the errors in the user’s gesture 
execution. Although the synthesized motion data is used 
only for haptic feedback generation in the current study, 
the proposed method can be extended to other feedback 
modalities such as visual and audio feedback as well. If 
the visual feedback is also stabilized using the proposed 
method, user satisfaction of the virtual multimodal inter-
actions can be significantly improved as human percep-
tion is dominated substantially by visual feedback when 
judging size, position or shape [34]. This may ensure that 
users do not make any mistakes during the intended ges-
ture execution even in the presence of unstable motion 
tracking. Moreover, the target applications in the envi-
ronment can be customised, thereby allowing the HMM 
to recognize the suitable gesture in real-time quickly. 
Thus a predefined environment with known applica-
tions and corresponding positions can greatly improve 
the recognition of the HMM and accuracy of user motion 
execution.

Multiplicity in definition of tactile feedback
The proposed method allows multiplicity in the defini-
tion of haptic feedback signals. For e.g. a velocity curve 
based haptic rendering for dragging gesture can be 
achieved by applying a derivative of the dragging distance 
stored in the look-up table instead of the distance vec-
tor itself. Similar approaches can be extended to other 
gestures such as tapping, zooming etc also where veloc-
ity and acceleration curves can be obtained in real-time 
from the reference motion curves by applying derivates in 
real-time. Moreover, for applications requiring a specific 
velocity rendering curve, the recognition phase remains 
the same, but the reference motion curve and the cor-
responding the primitive motion elements stored in the 
look-up table only changes. This allows for easy modu-
lation of the proposed approach with the changes in the 
definition of the haptic feedback controlling motion ele-
ments for each gesture.

Scalability
The proposed method incorporates a scalable archi-
tecture for extending to other gesture applications. For 

the addition of a new gesture, a new HMM should be 
trained corresponding to the gesture. Also, a reference 
motion curve corresponding to the new gesture has 
to be stored in the look-up table as well. For example, 
for a circular motion gesture, first a visual set up ena-
bling the corresponding task is set up first. The defini-
tion of an adequate visual set up will avoid unwanted 
user motions, thereby reducing the occurrences of false 
positives during gesture recognition process. The refer-
ence motion curve to be synthesized (in this case will 
be a circle) is stored in the memory as a look up table. 
Next, an HMM model for circular motion gesture rec-
ognition having multiple underlying states is trained 
with different user hand or finger motion features such 
as position, velocity profiles of hand palm etc. With the 
change in the size of the circle, a simple scaling of the 
radius of the circle and corresponding arcs in look-up 
table will suffice. Moreover, in the proposed approach, 
the primitive motion elements stored in the look-up 
table are adaptively modulated according to the real-
time execution changes by the participants such as 
speed of execution. This allows changing the reference 
motion pattern in real-time according to the changes in 
user gesture execution characteristics.

Implications of the current study
Only basic gestures have been analyzed in the current 
study. Thus the recognition rate of the HMM is more 
than 90% in all cases in the current study. However as the 
number of gestures increases, the recognition accuracy 
of HMM may get strained which can adversely affect the 
synthesized curve profiles.

Simple gestures were used in the current study because 
it enabled a direct mapping between user’s performance/
satisfaction with that of the haptic feedback generated 
by the proposed method for both stable and unstable 
tracking conditions. A comparative analysis of subjective 
judgement scores (synchronization, smoothness and task 
completion) and objective scores (shape, timing of the 
motion profile) was possible for simple gestures. In case 
of complex gestures, multiple external factors affected 
user performance, thereby making the experimental set 
up difficult to standardize. For example, consider the case 
of a virtual driving application, in which the haptic feed-
back is controlled by the rotation of the steering wheel 
by both hands of the user. The quantification of stability/
instability conditions for motion curves during driving is 
difficult to achieve for all participants as each participant 
have different driving patterns. Any differences between 
the participants with regards to stability would render 
the quantitative discussions involving subjective and 
objective parameters irrelevant.
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Furthermore, previous studies of the authors [33] have 
shown that the use of proper vibrotactile feedback for 
mid air gestures such virtual mid air writing and tap-
ping tasks improved user performances. The importance 
of timing of haptic feedback in pointing tasks have been 
widely reported by other researchers as well [30–32]. 
Studies conducted by Jay et al. [30, 31] showed that task 
performance decreased when delay between haptic and 
visual feedback exceeded 150 ms for pointing tasks. 
These studies underlines the viability of the proposed 
method for not only more complex gestures but also for 
simple gesture interactions as well.

Conclusion
In this paper, we proposed a motion synthesis method 
for real-time, stable haptic feedback generation dur-
ing mid-air interactions. The proposed method uses an 
HMM to recognize the gestures. Motion elements were 
synthesized based on recognized gestures to control 
the vibrotactile feedback. Four gestures (tapping, three-
fingered zooming, vertical dragging, and horizontal 
dragging) were used in the study to evaluate the perfor-
mance of the motion synthesis method.

The ideal motion curves and corresponding primi-
tive motion elements to be synthesized for each gesture 
were obtained from multiple subjects in different con-
ditions using a reference motion tracking sensor. An 
adaptive control algorithm was implemented to modu-
late the primitive motion elements based on the user’s 
actual gesture execution speed. Separate HMM models 
were trained for each gesture and motion patterns were 
synthesized in real time in spite of changes in speed 
and tracking irregularities. The shape and timing of 
the synthesized, measured, and moving average filtered 
motion data were compared with the reference motion 
curve obtained from a stable sensor. Moreover, user 
satisfaction levels for concurrent and terminal vibrotac-
tile feedback based on different motion data were com-
pared by a subjective evaluation using a questionnaire.

Both objective and subjective evaluation results 
showed improvements with motion synthesis method. 
The objective evaluation results showed a significant 
increase in shape and end timing performance of the 
synthesized motion curves for different gestures in 
unstable tracking environments. The subjective evalu-
ation results also supported the viability of motion 
synthesis based on haptic feedback when tracking sta-
bility was poor. When the executed gesture was fast, as 
is the case in tapping, the effect of tracking instability 
was minimal, and motion synthesis had no significant 
improvements in objective and subjective scores. The 
subjective evaluation results showed that participants 
could better perceive synchronization of vibrotactile 

feedback with hand motion when synthesized motion 
data was used.

The proposed method ensures scalability for multi-
ple gestures and sensing platforms making it a general 
approach. In the future, we intend to extend the motion 
synthesis to other feedback modalities also so that a more 
stable VR environment can be synthesized.
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