
Matsushima ﻿Earth, Planets and Space          (2020) 72:180  
https://doi.org/10.1186/s40623-020-01269-0

FULL PAPER

Effect of core electrical conductivity on core 
surface flow models
Masaki Matsushima* 

Abstract 

The electrical conductivity of the Earth’s core is an important physical parameter that controls the core dynamics and 
the thermal evolution of the Earth. In this study, the effect of core electrical conductivity on core surface flow mod‑
els is investigated. Core surface flow is derived from a geomagnetic field model on the presumption that a viscous 
boundary layer forms at the core–mantle boundary. Inside the boundary layer, where the viscous force plays an 
important role in force balance, temporal variations of the magnetic field are caused by magnetic diffusion as well as 
motional induction. Below the boundary layer, where core flow is assumed to be in tangentially geostrophic balance 
or tangentially magnetostrophic balance, contributions of magnetic diffusion to temporal variation of the magnetic 
field are neglected. Under the constraint that the core flow is tangentially geostrophic beneath the boundary layer, 
the core electrical conductivity in the range from 105 S m−1 to 107 S m−1 has less significant effect on the core flow. 
Under the constraint that the core flow is tangentially magnetostrophic beneath the boundary layer, the influence of 
electrical conductivity on the core flow models can be clearly recognized; the magnitude of the mean toroidal flow 
does not increase or decrease, but that of the mean poloidal flow increases with an increase in core electrical conduc‑
tivity. This difference arises from the Lorentz force, which can be stronger than the Coriolis force, for higher electrical 
conductivity, since the Lorentz force is proportional to the electrical conductivity. In other words, the Elsasser number, 
which represents the ratio of the Lorentz force to the Coriolis force, has an influence on the difference. The result 
implies that the ratio of toroidal to poloidal flow magnitudes has been changing in accordance with secular changes 
of rotation rate of the Earth and of core electrical conductivity due to a decrease in core temperature throughout the 
thermal evolution of the Earth.
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Introduction
The intrinsic magnetic field of the Earth is generated by 
dynamo action due to electromagnetic fluid motion in 
the outer core, the main components of which are iron 
and nickel. It is essential that the motional induction 
overcomes the magnetic diffusion through Ohmic dis­
sipation to maintain the geomagnetic field. The mag­
netic diffusivity, η , is given as η = (µ0σ)

−1 , where µ0 
and σ are the magnetic permeability of a vacuum and 

core electrical conductivity, respectively. Therefore, 
higher electrical conductivity of core fluid is preferred 
for easier generation of the geomagnetic field against 
the magnetic diffusion. Higher electrical conductiv­
ity means higher thermal conductivity, k , of the metal­
lic core, as both electrical and thermal conduction are 
dominated by the electron contribution. This can also be  
found from the Wiedemann–Franz law, k = LoTσ , where  
Lo = 2.44 × 10−8 W � K−2 and T  are the Lorentz num­
ber and temperature, respectively. Excessive thermal con­
ductivity indicates that no thermal convection in the core 
is required to release heat from the core to the mantle 
(e.g., Pozzo et al. 2012). This does not necessarily mean 

Open Access

*Correspondence:  masaki.matsushima@eps.sci.titech.ac.jp
Department of Earth and Planetary Sciences, Tokyo Institute 
of Technology, 2‑12‑1 Ookayama, Meguro, Tokyo 152‑8551, Japan

http://orcid.org/0000-0001-8198-343X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40623-020-01269-0&domain=pdf


Page 2 of 11Matsushima ﻿Earth, Planets and Space          (2020) 72:180 

that another type of convection, such as compositional 
convection, does not occur. In reality, the Earth has pos­
sessed its intrinsic magnetic field generated by the geo­
dynamo since around 3.45 Ga (Tarduno et al. 2010).

An assessment of the convective motions generating 
the geomagnetic field has been advanced by numeri­
cal simulations of the geodynamo. Noticeable columnar 
convective structures parallel to the rotational axis of the 
Earth are found to explain the generation mechanism of 
the axial dipole magnetic field (e.g., Kageyama and Sato 
1997; Olson et  al. 1999). Furthermore, numerical geo­
dynamo models have succeeded in explaining certain 
properties of the geomagnetic field, such as the domi­
nance of the dipole field, and secular variations includ­
ing polarity reversals (e.g., Christensen and Wicht 2015). 
However, the convective motions produced by numerical 
simulations do not necessarily show proper core dynam­
ics, mainly because the parameters adopted in numerical 
simulations are far from the real ones.

Useful information on core dynamics, features of the 
core–mantle boundary (CMB), and core–mantle cou­
pling, for example, can be provided by realistic fluid 
motion in the core of the Earth. This core fluid motion 
can be estimated from spatial and temporal distributions 
of the geomagnetic field (e.g., Holme 2015). Most core 
surface flow models rely on the frozen-flux approxima­
tion (Roberts and Scott 1965), in which the magnetic dif­
fusion is neglected. However, a viscous boundary layer is 
present at the CMB, where the magnetic diffusion plays 
an important role in secular variations of the geomagnetic 
field (Takahashi et al. 2001). Therefore, a new approach to 
estimate fluid flow near the core surface has been devised 
by Matsushima (2015). In this approach, the magnetic dif­
fusion is explicitly incorporated within the viscous bound­
ary layer at the CMB, whereas it is neglected below the 
boundary layer. Moreover, the fluid flow below the bound­
ary layer is presumed to be tangentially geostrophic. A 
core flow model inside and below the viscous boundary 
layer at the CMB can then be derived from a geomagnetic 
field model.

In this method, core electrical conductivity can play a 
role in estimating core surface flows. The temporal varia­
tions in the radial component of the magnetic field, Br , at 
the CMB are caused only by magnetic diffusion because 
of the no-slip condition for core flows there. The second 
partial derivative of Br with respect to the radius is thus 
related to core electrical conductivity. This suggests that 
core electrical conductivity can be influential in inferring 
Br inside the core. It should be noted that core electrical 
conductivity can also be crucial in the estimation of core 
flow, because the Lorentz force in the equation of motion 
depends on the electrical current density proportional to 
electrical conductivity.

Hence, in this paper, the effects of core electrical con­
ductivity on core surface flow models are investigated 
for various values of core electrical conductivity that are 
still controversial (e.g., Ohta et al. 2016; Konôpková et al. 
2016; Xu et  al. 2018). First, the method of Matsushima 
(2015), in which core flow is presumed to be tangen­
tially geostrophic below a viscous boundary layer at the 
core surface, is recalled. The method is then developed to 
include not only the effect of the Coriolis force, but also 
that of the Lorentz force. To investigate the effect of core 
electrical conductivity, this value is varied as a parameter. 
These results are discussed and summarized.

Theory
Matsushima (2015) gave a method for estimating fluid 
flow near the core surface with magnetic diffusion in a 
viscous boundary layer. Here this theory is recalled in 
brief, and the method is extended to include not only the 
effect of the Coriolis force for a tangentially geostrophic 
flow, but also that of the Lorentz force for a tangentially 
magnetostrophic flow. The radial component, which is 
denoted by subscript r, of the induction equation is given 
as

where B is the magnetic field, V  the velocity of incom­
pressible core fluid, and δij the Kronecker delta. A dot 
denotes partial differentiation with respect to time, t . 
The other subscript, i , indicates the depth to be consid­
ered: i = 0 at the CMB (assumed to be a spherical surface 
with radius r = r0 = 3480 km), i = 1 inside the boundary 
layer ( r = r1 = r0 − ξ1 ) at a depth of ξ1 from the CMB, 
and i = 2 below the boundary layer ( r = r2 = r0 − ξ2 ) at 
a depth of ξ2 . For i = 0 , where the core flow relative to 
a reference frame rotating with the mantle must vanish 
under the no-slip condition, the first and second terms of 
the right-hand side of Eq. (1) must also vanish, and only 
the third term, or magnetic diffusion term, remains; that 
is, temporal variations of the magnetic field at the CMB 
arise from the magnetic diffusion only. For i = 1 , all three 
right-hand-side terms contribute to temporal variation of 
the geomagnetic field. For i = 2 , the magnetic diffusion 
term is presupposed to be negligible, although the thick­
ness of the magnetic boundary layer would be thicker 
than that of the viscous boundary layer (e.g., Chulliat and 
Olsen 2010), because contribution of the motional induc­
tion to temporal variations in the magnetic field is likely 
to be much larger than that of the magnetic diffusion, as 
in the frozen-flux approximation (e.g., Holme 2015).

(1)

Ḃri = {−(V i · ∇)Bri + (Bi · ∇)Vri}(δi1 + δi2)

+ η

ri
∇2(riBri)(δi0 + δi1),
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Core flow is assumed to be tangentially geostrophic 
below the boundary layer, while the viscous force is pre­
sumed to play an important role inside the boundary 
layer. Therefore, core flow V 1 and V 2 should satisfy Eqs. 
(2a) and (2b), respectively:

where � denotes the angular velocity vector of the man­
tle, r̂ the radial unit vector, and νedd the eddy kinematic 
viscosity. The typical length scale parallel to the bound­
ary layer is likely to be much larger than the thickness 
of the boundary layer. The horizontal flow, VH , near the 
core surface is then expressed as in classical Ekman layer 
theory (e.g., Pedlosky 1987),

where sgn is the signum function, δE = (νedd/�|cos θ |)1/2 
with � = |�| = 7.29× 10−5 rad s−1 , and θ is the colati­
tude in the spherical coordinates (r, θ ,φ). The tangen­
tially geostrophic flow, VH , significantly below the 
viscous boundary layer should satisfy Eq.  (4) obtained 
from Eq. (2b):

where ∇H is the horizontal gradient, and V r is signifi­
cantly smaller than |VH | and can be neglected. For the 
case of tangentially geostrophic flow, core electrical con­
ductivity σ has an effect on the magnetic diffusion alone, 
which leads to second partial derivatives of Br at r = r0 
with respect to the radius.

To examine the effect of σ on a core flow model, core 
flow is next assumed to be tangentially magnetostrophic 
below the boundary layer, which is an Ekman–Hartmann 
layer in this case. Therefore, core flow V 1 and V 2 should 
satisfy Eqs. (5a) and (5b), respectively:

where ρ and J  denote the mass density of the core fluid 
and the electric current density, respectively. In this 
study, as mentioned in Appendix, contribution of the 
electric field to the current density is ignored (e.g., 
Shimizu 2006), and Jr is likely to be much smaller than 
|JH | near the mantle, which is assumed to be an electrical 

(2a)r̂ · ∇ × (−2�× V 1 + νedd∇2V 1) = 0,

(2b)r̂ · ∇ × (−2�× V 2) = 0,

(3)

VH = VH

{

1− exp

(

− ξ

δE

)

cos

(

ξ

δE

)}

+ (sgncos θ)r̂ × VHexp

(

− ξ

δE

)

sin

(

ξ

δE

)

,

(4)∇H · (cos θ VH ) = 0,

(5a)
r̂ · ∇ × (−2�× V 1 + ρ−1J 1 × B1 + ν∇2V 1) = 0,

(5b)r̂ · ∇ × (−2�× V 2 + ρ−1J 2 × B2) = 0,

insulator (Benton and Muth 1979). The horizontal com­
ponent of current density is then given as

The horizontal flow, VH , near the core surface is 
expressed as

and the tangentially magnetostrophic flow, VH , signifi­
cantly below the viscous boundary layer satisfies

Here, δ+EH and δ−EH are given by

(double sign correspondence), and

is the Elsasser number. For the case of tangentially mag­
netostrophic flow, core electrical conductivity σ has an 
effect not only on the magnetic diffusion, but also on the 
magnetostrophy through the Lorentz force.

The horizontal geostrophic (or magnetostrophic) 
velocity can be expressed in terms of poloidal and toroi­
dal constituents as

where Pm
l   is a Schmidt-normalized associated Legendre 

function of degree l  and order m , L  is the truncation 
level, r is a position vector, and U  and W  are poloidal 
and toroidal scalar functions, respectively.

(6)JH = σ(V × B)H ≈ σBrVH × r̂.

(7)

VH = VH

{

1− exp

(

− ξ

δ+
EH

)

cos

(

ξ

δ−
EH

)}

+ (sgn cos θ)r̂ × VHexp

(

− ξ

δ+
EH

)

sin

(

ξ

δ−
EH

)

,

(8)∇H · (2�cos θVH + ρ−1σB2
r2VH × r̂) = 0.

(9)δ±EH = δE

{
(

1+�2/4
)1/2 ±�/2}

1/2

(10)� = σB2
r

ρ�|cos θ |

(11)VH = r∇HU + ∇ × (rW ),

(12a)

U(θ ,φ, t) =

L
∑

l=1

l
∑

m=0

{

U
mc

l (t)cosmφ +U
ms

l (t)sin mφ
}

P
m

l
(cos θ),

(12b)

W (θ ,φ, t) =

L
∑

l=1

l
∑

m=0

{

W
mc

l (t)cosmφ +W
ms

l (t)sin mφ
}

P
m

l
(cos θ),
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Method
To obtain a core surface flow model for a long duration, 
a geomagnetic field model, COV-OBS. x1 (Gillet et  al. 
2015), ranging from 1840 to 2015, is adopted. It should 
be noted that the period 1840–1880 in the COV-OBS.
x1 model may contain a problem (Metman et  al. 2018). 
Therefore, means and standard deviations are calculated 
in the range from 1880 to 2015 in this study. The mag­
netic field at the CMB is derived through downward con­
tinuation of a geomagnetic potential field by assuming 
the mantle to be an electrical insulator as

where re = 6371 km is the mean radius of the Earth, and 
gml  and hml are the Gauss coefficients given by the COV-
OBS.x1 model. The truncation level of spherical har­
monic coefficients is set at degree L = 14.

The radial component of the geomagnetic field shallow 
inside the core, Br1 and Br2 , can be estimated using a Tay­
lor expansion at r = r0 as

where the second term of the right-hand side of Eq. (14) 
can be obtained from ∇ · B = 0 , and the third term from 
Eq.  (1) at r = r0 (Matsushima 2015). Their time deriva­
tives, Ḃr1 and Ḃr2 , can be derived from ∇ · Ḃ = 0 and 
B̈r0 = (η/r0)∇2(r0Ḃr0) . Then, Eq. (1) at r = r1 and r = r2 
with a constraint Eq. (4) or Eq. (8) are solved in physical 
space, at grid points (θk ,φk) as

where d1 and d2 contain Ḃr1(θk ,φk) and Ḃr2(θk ,φk) , 
respectively; A1 and A2 are matrices that contain 
Br1(θk ,φk) and Br2(θk ,φk) , respectively, as well as their 
horizontal derivatives; Ag is a matrix derived from Eq. (4) 
or Eq.  (8); α is a parameter that controls the weight of 
tangential geostrophy or tangential magnetostrophy; and 
g contains Umc

l  , Ums
l  , Wmc

l  , and Wms
l .

The number of unknowns for poloidal and toroi­
dal scalars expanded into spherical harmonics is 
2L(L+ 2) = 448 . The number of grid points on spherical 
surfaces at r = r1 and r = r2 is 45 in the θ-direction and 
90 in the φ-direction. The linear Eq. (15) is solved using 
a Householder method. The parameter α is determined 

(13)

Br0(θ ,φ, t) =

L
∑

l=1

(l + 1)

(

re

ro

)l+2

l
∑

m=0

{

gml (t)cosmφ + hml (t)sin mφ
}

Pm
l (cos θ),

(14)Bri = Br0 − ξi
∂Br0

∂r
+ ξ2i

2

∂2Br0

∂r2
(i = 1, 2),

(15)





d1

d2

0



 =





A1

A2

αAg



 · g ,

from a trade-off relationship between the tangentially 
geostrophic or tangentially magnetostrophic constraint 
and correlation of Ḃmod

r  due to estimated flow to Ḃobs
r  

obtained from geomagnetic field data, or a relative misfit 
defined as

where 
∫

dSi is an integral over a spherical surface of 
radius r = ri.

To solve the linear equation, two physical parameters, 
eddy kinematic viscosity and electrical conductivity of 
the Earth’s core, must be given. Various values of eddy 
kinematic viscosity were proposed, e.g., νedd ∼ 3 m2 s−1 
(Braginsky 1991) and νedd ∼ 7 m2 s−1 (Davis and Whaler 
1997). Matsushima (2015) adopted their average, 
νedd ∼ 5 m2 s−1 , corresponding to an Ekman number, 
E = νedd/�r20 ∼ 6× 10−9 . In this paper, the same value 
of eddy kinematic viscosity is used.

The thickness of the viscous boundary layer, δE or 
δEH , contains |cos θ | in the denominator. The value of 
|cos θ | in the range between θ = 5π/12 and θ = 7π/12 
is set at |cos(5π/12)| to avoid a singularity of δE at 
θ = π/2 (Matsushima 2015). Even for another range 
between θ = 17π/36 and θ = 19π/36 , correlation coef­
ficients between the resultant core flow model and the 
one by Matsushima (2015) are found to be more than 
0.99. This indicates that the procedure to avoid a sin­
gularity at θ = π/2 does not have a severe influence 
on the core flow modeling. Thus, δE ∼ 270− 540 m , 
ξ1 = 0.2 km < δE , and ξ2 = 2 km ≫ δE are adopted in 
this paper. As found from Eq.  (9), δ+EH ∼ 174 − 348 m 
even for � = 2.

Regarding the other physical parameter, core elec­
trical conductivity, Matsushima (2015) adopted 
σ = 3× 105 S m−1 (Stacey 1992). However, 
recent first-principles calculations and high-pres­
sure high-temperature experiments suggest that 
core electrical conductivity can be higher than 
σ = 3× 105 S m−1 . For example, Pozzo et  al. (2012) 
obtained σ = 1.11× 106 S m−1 at the CMB from first-
principle calculations. From high-pressure high-tem­
perature experiments, Ohta et  al. (2016) estimated 
σ ∼ 1× 106 S m−1 for liquid Fe67.5Ni10Si22.5 at the CMB. 
It should be noted, however, that Konôpková et al. (2016) 
obtained a rather low value, σ ∼ 2.7× 105 S m−1 , from 
experiments. In this paper, core electrical conductiv­
ity, as a parameter, is investigated in the range from 
σ = 1× 105 S m−1 to σ = 1× 107 S m−1.

(16)Mi =

√

√

√

√

√

√

∫

(

Ḃmod
ri − Ḃobs

ri

)2
dSi

∫

(

Ḃobs
ri

)2
dSi

,
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Results
First, the effect of core electrical conductivity on tangen­
tially geostrophic core flow below the viscous boundary 
layer at the CMB is investigated. Table 1 shows the mean 
velocity over spherical surfaces at r = r1 and at r = r2 for 
core electrical conductivity between σ = 1× 105 S m−1 
and σ = 1× 107 S m−1 . It is found that differences 
among mean velocity are 0.5% at most. Table 1 also lists 
correlation coefficients of ∇H · VHi and   r̂ · ∇ × VHi for 
σ = 1× 106 S m−1 and for another σ . The former and 
the latter correspond to the correlation coefficients for 
the poloidal and the toroidal components, respectively. It 
is found that the correlation coefficients are at least 0.98. 
The core electrical conductivity is related to the diffusion 
term in the induction equation. That is, ∂2Br/∂r

2 depends 

on σ , and it is used to estimate Br1 and Br2 through the 
Taylor expansion. The result implies that core electri­
cal conductivity has a limited effect on core flow models 
through the magnetic diffusion term under the tangen­
tially geostrophic constraint.

It is worth noting, however, that the tangentially 
geostrophic constraint is known to be too strong, in 
particular, near the geographic equator; the θ-component 
of core flow, Vθ , at the equator must vanish under the 
constraint. Therefore, the geomagnetic secular variation 
around the equator is not well explained by such 
tangentially geostrophic flows (Wardinski et  al. 2008). 
In other words, ageostrophic flows crossing the equator 
are necessary to explain the secular variation there. Such 
ageostrophic flows can be regarded as deviations from 
tangentially geostrophic flows, and they can be estimated 
by relaxing the tangentially geostrophic constraint (Pais 
et  al. 2004; Asari and Lesur 2011). In their approach, 
a parameter, which corresponds to the controlling 
parameter, α , in Eq. (15) in the present study, is changed 
so as to relax the constraint. The ageostrophic flows thus 
obtained are considered to result from the Lorentz force.

Hence, secondly, the effect of core electrical conduc­
tivity on tangentially magnetostrophic flow below the 
boundary layer is investigated. Under the tangentially 
magnetostrophic constraint, the core electrical conduc­
tivity is related not only to the magnetic diffusion, but 
also to the Lorentz force. Figure 1a–c show fluid motions 
near the CMB at r = r1 and r = r2 for σ = 1× 105 S m−1 , 
σ = 1× 106 S m−1 , and σ = 1× 107 S m−1 , respectively, 

Table 1  Mean velocity and  correlation coefficients 
for  the  respective electrical conductivity values 
under the tangentially geostrophic constraint in 2010

Correlation coefficients of the horizontal divergence and the radial vorticity are 
computed between the one for σ = 1× 10

6
S m

−1 and that for another σ

σ
[

S m
−1

]

1× 10
5

3× 10
5

1× 10
6

3× 10
6 1× 10

7

V1 mean [km yr−1] 4.087 4.086 4.084 4.080 4.076

V2 mean [km yr−1] 7.519 7.518 7.512 7.498 7.474

∇H · VH1 0.9999 0.9999 − 0.9996 0.9910

∇H · VH2 0.9998 0.9999 − 0.9990 0.9803

r̂ · ∇ × VH1 0.9999 0.9999 − 0.9996 0.9924

r̂ · ∇ × VH2 0.9999 0.9999 − 0.9995 0.9900

Fig. 1  Fluid motions near the core–mantle boundary under the tangentially magnetostrophic constraint. Upper and lower figures show fluid 
motions at r = r1 and at r = r2 , respectively, for a σ = 1× 105 S m−1 , b σ = 1× 106 S m−1 , and c σ = 1× 107 S m−1 at the epoch of 2010. 
Arrows show the horizontal flows, and color contours denote upwellings and downwellings given by ∇H · VH . For ρ = 1.1× 104 kg m−3 , 
� = 7.29× 10−5 rad s−1 , and a root-mean-square value of the radial magnetic field at the CMB, Br ≈ 0.2 mT , � = σB2r /ρ� ≈ 0.005 for 
σ = 105 S m−1 , � ≈ 0.05 for σ = 106 S m−1 , and � ≈ 0.5 for σ = 107 S m−1
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at the epoch of 2010. Core flows for σ = 1× 105 S m−1 
are found to be similar to those for σ = 1× 106 S m−1 , 
whereas those for σ = 1× 107 S m−1 are clearly differ­
ent from those for σ = 1× 106 S m−1 . In fact, the twist 
of horizontal flows seen in an Ekman layer at r = r1 and 
r = r2 is similarly found in Fig. 1a and b, but horizontal 
flows at r = r1 and r = r2 in Fig. 1c for large � are found 
to be much more parallel. The flow velocity averaged over 
spherical surfaces at r = r2 decreases with an increase of 
σ , as listed in Table 2. It should be noted, however, that 
the horizontal divergence for σ = 1× 107 S m−1 appears 
larger than that for σ = 1× 106 S m−1 . This dependence 
of poloidal and toroidal mean-flow magnitudes on the 
core electrical conductivity is obviously found in Fig.  2. 
The mean velocity for the toroidal component does not 
increase or decrease with increasing core electrical con­
ductivity. In contrast, the mean velocity for the poloi­
dal component increases with increasing core electrical 
conductivity, as found from larger horizontal divergence 
for higher electrical conductivity. The reason why poloi­
dal flow is larger for higher core electrical conductivity is 
likely to result from the Lorentz force on the tangentially 
magnetostrophic constraint, because tangentially geos­
trophic core flows are found not to be influenced by core 
electrical conductivity. The Coriolis force can be rela­
tively unimportant for very high σ , as found in Eq. (8).

Discussion
To determine the cause, mean flow velocity is investi­
gated under the tangentially geostrophic and tangentially 
magnetostrophic constraints. Equation  (4) for the tan­
gentially geostrophic flow can be given as

 The solutions of Eq. (17) are non-unique and underdeter­
mined, although the number of unknowns is decreased 
as found in a basis for the tangentially geostrophic flow 
determined from the selection rule of the Gaunt integral 
(Le Mouël et al. 1985). Equation (17) has m-dependence 
in the φ-direction as found from the selection rule, and it 
is possible to consider cosmφ terms only from orthogo­
nality of cosine and sine functions. Equation (17) can be 
reduced to

(17)

L
∑

l=1

l
∑

m=0

[l(l + 1)cos θ
{

U
mc

l cosmφ +U
ms

l sin mφ
}

P
m

l
(cos θ)

+ sin θ
{

U
mc

l cosmφ +U
ms

l sin mφ
}dP

m

l

dθ

+m
{

−W
mc

l sin mφ +W
ms

l cosmφ
}

P
m

l
(cos θ)] = 0.

Table 2  Mean velocity and  correlation coefficients 
for  the  respective electrical conductivity values 
under  the  tangentially magnetostrophic constraint 
in 2010

Correlation coefficients of the horizontal divergence and the radial vorticity are 
computed between the one for σ = 1× 10

6
S m

−1 and that for another σ

σ
[

S m
−1

]

1× 10
5

3× 10
5

1× 10
6

3× 10
6 1× 10

7

V1 mean [km yr−1] 4.131 4.145 4.114 3.892 4.342

V2 mean [km yr−1] 7.680 7.710 7.612 7.604 7.319

∇H · VH1 0.9869 0.9923 − 0.9698 0.8756

∇H · VH2 0.9916 0.9944 − 0.9769 0.9229

r̂ · ∇ × VH1 0.9738 0.9837 − 0.9625 0.8563

r̂ · ∇ × VH2 0.9845 0.9896 − 0.9765 0.8961

Fig. 2  Mean toroidal and poloidal velocity with respect to the core 
electrical conductivity. Circles and error bars represent means and ± 
standard deviations, respectively, obtained for COV-OBS. x1 ranging 
from 1880 to 2015, at a r = r1 and b r = r2

(18)

{

l(l + 1)cos θPm

l
+ sin θ

dP
m

l

dθ

}

U
mc

l +

{

(l + 2)(l + 3)cos θPm

l+2 + sin θ
dP

m

l+2

dθ

}

U
mc

l+2+mP
m

l+1W
ms

l+1 = 0 (l = m,m+2,m+4, · · · )
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.
As mentioned above, the problem is underdetermined. 

In this study, therefore, a constraint

 or

is added, where 
∫

dS denotes a surface integral over a 
unit sphere. Hence, Umc

l = 1 is given, and the other terms 
are computed as relative values by minimizing the follow­
ing function, �g:

where αg is a controlling parameter. Figure  3 shows the 
ratio of magnitude of mean toroidal flow to that of mean 
poloidal flow for m = 1 to m = 6 with respect to αg . The 

∫

{

(

V θ2

)2 +
(

V φ2

)2
}

dS → min,

(19)

m+2j+1≤L
∑

j=0

(m+ 2j)(m+ 2j + 1)

2
(

m+ 2j
)

+ 1

{

(

U
mc

m+2j

)2

+
(

W
ms

m+2j+1

)2
}

→ min

(20)

�g =
[

∇H ·
(

cos θVH

)]2 + αg

∫

{

(

V θ2

)2 +
(

V φ2

)2
}

dS,

truncation level for the spherical harmonics is increased 
from L = 14 to L = 19 , to keep the number of toroidal 
components and poloidal components the same. The 
ratio of the magnitude of mean toroidal flow to that of 
mean poloidal flow is found to be approximately 2. To 
confirm the effect of the truncation level, the ratio of the 
magnitude of mean toroidal flow to that of mean poloi­
dal flow is computed for various values of L , as listed in 
Table 3. The result suggests that the effect of L is not very 
significant. 

Next, mean flow velocity under the tangentially mag­
netostrophic constraint is investigated. Using the 
same method as for the tangentially geostrophic flow, 
unknowns Umc

l  , Ums
l  , Wmc

l  , and Wms
l  relative to the pro­

vided W 0
1 = 1 are computed by minimizing the function, 

�m:

where αm is a controlling parameter. Figure 4 shows the 
αm-dependence of the ratio of the magnitude of mean 
toroidal flow to that of mean poloidal flow in 2010 for 
σ = 105 S m−1 , 106 S m−1 , and 107 S m−1 . The ratio 

(21)

�m =
[

∇H ·
(

2�cos θVH + ρ−1σB2
r2VH × r̂

)]2

+ αm

∫

{

(

V θ2

)2 +
(

V φ2

)2
}

dS,

Fig. 3  Control parameter, αg , dependence of toroidal and poloidal 
mean flow ratios. Circles represent the ratio of the mean toroidal 
flow to the mean poloidal flow magnitudes at r = r2 under the 
tangentially geostrophic constraint, for spherical harmonic order 
m = 1 to m = 6

Table 3  Mean toroidal flow to poloidal flow ratio for different truncation levels of spherical harmonics

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

L Ratio L Ratio L Ratio L Ratio L Ratio L Ratio

14 2.268 15 2.025 16 1.970 17 1.960 18 1.966 19 1.978

24 2.268 25 2.025 26 1.969 27 1.959 28 1.963 29 1.973

36 2.268 37 2.025 38 1.969 39 1.959 40 1.963 41 1.972

48 2.268 49 2.025 50 1.969 51 1.959 52 1.963 53 1.972

Fig. 4  Control parameter, αm , dependence of toroidal to poloidal 
mean flow ratios. Circles represent the ratio of the mean toroidal 
to that of the mean poloidal flow magnitudes at r = r2 under the 
tangentially magnetostrophic constraint, for σ = 1× 105 S m−1 , 
σ = 1× 106 S m−1 , and σ = 1× 107 S m−1 at the epoch of 2010
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clearly decreases with increasing σ . It is likely that this 
result arises from the effect of the Lorentz force propor­
tional to σ . This tendency is invariable for other epochs. 
It should be noted that these ratios are not necessarily 
equal to those obtained from a core flow model, simply 
because core flows are derived from geomagnetic field 
data including secular variations under the tangentially 
magnetostrophic constraint.

Asari and Lesur (2011) attempted to compare the tan­
gentially geostrophic and the tangentially magnetos­
trophic constraints by examining the resolution matrix. 
They found that the tangentially geostrophic constraint 
mainly influences the poloidal flow. On the other hand, 
they pointed out that the tangentially magnetostrophic 
constraint rather mitigates the poloidal flow. This may 
be related with the present result that the mean poloidal 
flow magnitude increases with increasing core electrical 
conductivity.

Driscoll and Du (2019) derived a phase diagram of 
the dynamo regime determined from core electrical 
conductivity and temperature. To maintain dynamo 
action driven by thermal convection, higher heat flux at 
the CMB is required for higher electrical conductivity, 
which implies higher thermal conductivity. The core 
electrical conductivity is likely to have been increasing, as 
the core temperature has been decreasing. This suggests 
that a thermally driven dynamo was converted into a 
compositionally driven dynamo by way of a thermally 
and compositionally driven dynamo. A similar transition 
of core dynamics due to the thermal history of the Earth 
is discussed later.

To this point, focus has been on core electrical conduc­
tivity for investigation of core flow estimation. However, 
as demonstrated in Eq.  (8), the tangentially magnetos­
trophic constraint does not depend on core electrical con­
ductivity alone. The relative importance of the Lorentz 
force to the Coriolis force can be measured by the Elsasser 
number, � , as given by Eq.  (10). The Elsasser number 
employed in the present study can be defined as the tra­
ditional form appropriate for steady imposed magnetic 
fields. This was shown by Soderlund et  al. (2012, 2015), 
who found that the dynamic Elsasser number, �d , rep­
resents the ratio of the Lorentz to Coriolis forces better 
than the traditional one. However, it should be indicated 
that �d is obtained from the magnetic field strength aver­
aged over the core. In contrast, � , as used in this paper, is 
locally defined at respective points on a spherical surface. 
In this sense, the traditional form of the Elsasser number 
is likely to be more appropriate for use in this study.

It is known that the rotation rate of the Earth has been 
decreasing due to tidal friction with the Moon. It is cur­
rently approximately 24 h, but it could have been as lit­
tle as 4–6  h immediately after the Moon formed (e.g., 

Goldreich 1966; Mignard 1982). It follows that � was 
approximately six to four times larger than the present 
value. Thus, the denominator of � = σB2

r /ρ�|cos θ | is 
likely to have been decreasing throughout the history 
of the Earth. However, the core temperature has been 
decreasing since the formation of the core, as found from 
the thermal evolution of the Earth. This suggests that the 
core electrical conductivity in the past could have been 
smaller than the present value, and that the numerator of 
� has been increasing. These circumstances indicate that 
the Elsasser number, � , could have been smaller in the 
past than at present. That is, core flow in the past could 
have been more geostrophic than the present flow state. 
With time, the rotation rate of the Earth decreases, and 
the core electrical conductivity increases. Hence, the 
Elsasser number, � , will be increasing. This implies that 
the style of magnetic field generation by poloidal and 
toroidal motions in the core has been changing.

In the present study, it is implicitly assumed that con­
vective motions occur in the entire outer core. Alterna­
tively, presence of a thermally or compositionally stably 
stratified layer at the top of the outer core is suggested 
by some seismic studies (e.g., Tanaka 2007; Helffrich 
and Kaneshima 2010), material studies (e.g., Pozzo 
et  al. 2012; Gomi et  al. 2013), and geomagnetic stud­
ies (e.g., Whaler 1980; Buffett 2014). If it is the case, 
the core surface flow should be purely toroidal without 
upwelling or downwelling. This point was examined 
by Whaler (1980), whose conclusion supported stable 
stratification at the core surface. However, this result 
depends on the validity of frozen-flux hypothesis, as 
Gubbins (2007) pointed out a possible effect of mag­
netic diffusion on geomagnetic secular variations. Asari 
and Lesur (2011) found that the purely toroidal flow is 
incompatible with the tangentially magnetostrophic 
flow. Then, Lesur et al. (2015) concluded that the purely 
toroidal flow at the core surface cannot explain the 
observed geomagnetic field, although a small poloi­
dal flow or magnetic diffusion may compensate for an 
incompatible part of geomagnetic secular variations. 
Furthermore, Takehiro and Lister (2001) demonstrated 
that a stably stratified layer at the top of the core can be 
penetrated by columnar convection depending on the 
rotation rate of the Earth and the horizontal scale of 
vortices. Thus, even if a stably stratified layer is present 
at the top of the outer core, it is impossible to ignore 
the presence of poloidal motion near the core surface. 
Further discussion on this point is beyond the scope of 
the present study, and the related problems should be 
addressed in the future.
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Conclusions
In this paper, the effect of core electrical conductiv­
ity in the range between 105 S m−1 and 107 S m−1 on 
core surface flow models was investigated. Core elec­
trical conductivity is related to two terms in the equa­
tion to be solved: the magnetic diffusion term in the 
induction equation and the Lorentz force term in the 
Navier–Stokes equation. Tangentially geostrophic and 
tangentially magnetostrophic constraints were imposed 
for core flow beneath the viscous boundary layer at the 
core–mantle boundary to derive a core surface flow 
model from a geomagnetic field model. Magnetic dif­
fusivity is inversely proportional to electrical conduc­
tivity, whereas the Lorentz force term is proportional 
to electrical conductivity. Under the tangentially geo­
strophic constraint, only the magnetic diffusion term 
has any effect on core surface flow models. It was found 
that core electrical conductivity has a limited effect on 
core flow models. In contrast, under the tangentially 
magnetostrophic constraint, it was found that the mean 
poloidal flow increases with an increase of core electri­
cal conductivity (Fig. 2). This result arises from the Lor­
entz force, as found from Figs. 3 and 4, where the ratio 
of the magnitude of mean toroidal flow to that of mean 
poloidal flow is shown with respect to control parame­
ters under the tangentially geostrophic and tangentially 
magnetostrophic constraints, respectively.

Furthermore, this result suggests that the ratio of the 
magnitude of mean toroidal flow to that of mean poloi­
dal flow has been changing with secular change of the 
Elsasser number given by the ratio of the Lorentz and 
Coriolis forces. The Elsasser number has been increas­
ing throughout the evolution of the Earth, because the 
rotation rate of the Earth has been decreasing and the 
core electrical conductivity has been increasing due to 
the decrease in core temperature. If the ratio can be esti­
mated from magnetic field measurements of a planet, it 
may provide information on the core electrical conduc­
tivity of the planet.

Abbreviation
CMB: Core–mantle boundary.
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Appendix: Expression of horizontal flow 
in an Ekman–Hartmann boundary layer
The Elsasser number in this study is defined as 
� = σB2

r /ρ� (without θ-dependence). According to Soder­
lund et al. (2012), this is a traditional form denoted by �i , 
being the ratio of the Lorentz force ρ−1J × B to the Coriolis 
force �× V  with J = σ(E + V × B) ≈ σV × B as

Alternatively, Soderlund et al. (2012) defined the dynamic 
Elsasser number, �d with J = µ−1

0 ∇ × B as

where the electric current density is estimated as 
J ∼ B/µ0ℓB . Soderlund et al. (2012) pointed out that �d 
represents the ratio of the Lorentz force to the Coriolis 
force better than the traditional one. E = 0, as assumed 
above, means that the magnetic field is not strongly 
time variant. This corresponds to a magnetoconvective 
system, in which a magnetic field is imposed.

Temporal variation of the radial magnetic field, Ḃr , is 
generated by the interaction between VH and imposed 
Br . Therefore, �i corresponding to J ≈ σV × B is appro­
priate. Then, the horizontal component of current den­
sity, which is much larger than the radial component, 
Jr ≪ |JH | , is given as

Next, using Eq. (24), I derive the expression of horizontal 
flow in an Ekaman–Hartmann boundary layer (e.g., 
Busse et al. 2007). The equation of motion including the 
effect of Earth’s rotation and magnetic field, neglecting 
the inertia term, can be given as

The horizontal components of Eq. (25) can be written as

(22)�i =
JB

ρ�V
= σVB2

ρ�V
= σB2

ρ�
.

(23)�d = JB

ρ�V
= B2

ρµ0�V ℓB
,

(24)JH ≈ σ(V × B)H ≈ σBrVH × r̂.

(25)

− 1

ρ
∇p− 2�× V + A

ρ
r̂ + 1

ρ
J × B + ν∇2V = 0.

https://www.editage.com
https://www.editage.com
https://www.spacecenter.dk/files/magnetic-models/COV-OBSx1/
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where ∇2 ≈ ∂2/∂r2 is presumed. Using Eq. (24), one can 
obtain the magnetostrophic part of Eqs. (26a) and (26b) 
as

Taking

one can obtain

Solving these equations, one obtains a solution in terms 
of linear combination as

where ζ =
√
2ξ/δE , ξ = r0 − r , γ =

(

1+�4/4
)1/4 , 

cos 2β = �/2γ 2 , sin 2β = 1/γ 2 , and c1 , c2 , c3 , c4 are 
constants. vθ and vφ must be finite for ζ → ∞ , so that 
c1 = c3 = 0 , and vθ and vφ must vanish at ζ = 0 , so that 
vθ = −V θ and vφ = −V φ . Then, one can obtain the solu­
tion as

(26a)

− 1

ρ

1

r

∂p

∂θ
+ 2�cos θVφ + 1

ρ
JφBr + ν

∂2Vθ

∂r2
≈ 0,

(26b)

− 1

ρ

1

rsin θ

∂p

∂φ
− 2�cos θVθ −

1

ρ
JθBr + ν

∂2Vφ

∂r2
≈ 0,

(27a)− 1

ρ

1

r

∂p

∂θ
+ 2�cos θV φ − σ

ρ
B
2
r V θ = 0,

(27b)− 1

ρ

1

rsin θ

∂p

∂φ
− 2�cos θV θ −

σ

ρ
B
2
r V φ = 0.

(28)
Vθ = V θ + vθ , Vφ = V φ + vφ ,

∂2V θ

∂r2
= ∂2V φ

∂r2
= 0,

(29a)2�cos θvφ − σ

ρ
B
2
r vθ +

∂2vθ

∂r2
= 0,

(29b)−2�cos θvθ −
σ

ρ
B
2
r vφ + ∂2vφ

∂r2
= 0.

(30a)
vθ = c1e

ζγ eiβ + c2e
−ζγ eiβ + c3e

ζγ e−iβ + c4e
−ζγ e−iβ

,

(30b)
vφ =

(

sgn cos θ
)

(

−ic1e
ζγ eiβ − ic2e

−ζγ eiβ

+ic3e
ζγ e−iβ + ic4e

−ζγ e−iβ
)

,

(31a)
Vθ =V θ

{

1− e
−ζγ cosβcos(ζγ sinβ)

}

−
(

sgn cos θ
)

V φe
−ζγ cosβsin(ζγ sinβ),

(31b)

Vφ =V φ

{

1− e
−ζγ cosβcos(ζγ sinβ)

}

+
(

sgn cos θ
)

V θ e
−ζγ cosβsin(ζγ sinβ).

Using cosβ =
√

γ 2 +�/2/
√
2γ and  

sinβ =
√

γ 2 −�/2/
√
2γ , one can obtain

Hence,
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