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Abstract 

This study employs the concepts of complex networks to study the temporal dynamics of streamflow, with empha-
sis on annual scale (i.e., year-to-year connections). The study proposes a new approach to construct the streamflow 
network at the annual scale. It uses the daily streamflow data to construct the annual streamflow network, instead 
of using the annual (mean or accumulated) streamflow data. With this approach, each year serves as a node in the 
network, with each node having a time series of daily streamflow values (not a single streamflow value). Streamflow 
data observed over a period of 151 years (October 1862–September 2013) from the Mississippi River basin at St. Louis, 
Missouri, USA are considered for implementation of the approach. The properties of the annual streamflow network 
are investigated using three complex network-based methods: degree centrality, clustering coefficient, and degree 
distribution. The sensitivity of the results to streamflow correlation threshold is also examined. The results suggest that 
(1) there are only a few very significant nodes (years) in the annual streamflow network (degree centrality method); 
(2) the annual streamflow network is not a classical random graph, but may be a small-world network or scale-free 
network (clustering coefficient method); and (3) the network exhibits a combination of exponential and power-law 
distribution (degree distribution method). Based on the identification of a significant stretch of period (around the 
1950s–1990s) with very weak connections with the rest of the period studied, the results also suggest the influence of 
dam construction (and other anthropogenic factors) on the evolution of annual streamflow dynamics.
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Background
Identification of patterns in data (e.g., streamflow) serves 
as a fundamental approach towards modeling and predic-
tion of the underlying systems. Numerous methods have 
been developed for identification of patterns in data (in 
space, time, and space–time) and possible connections 
between the components involved. Such methods can 
be categorized in different ways depending on their con-
cepts and use of data, such as linear and nonlinear, deter-
ministic and stochastic, parametric and non-parametric, 
supervised and unsupervised, and their combinations. 
The methods include those that are based on correlation, 
trend, spectrum, data distribution, data reconstruction, 

dimension, scaling, regression, clustering, and classifica-
tion, among others. They have been extensively applied 
to identify patterns in hydrologic data around the world; 
see, for example, Labat et  al. (2011), Sivakumar and 
Singh (2012), Özger et al. (2013), Tongal and Berndtsson 
(2014), and Xu et al. (2015) for some recent studies, and 
Salas et al. (1995) and Sivakumar and Berndtsson (2010) 
for compilations.

A key aspect in the identification of patterns in data 
is the search for “connections.” In this context, the con-
cepts of “complex networks” (e.g., Watts and Strogatz 
1998; Barabási and Albert 1999; Girvan and Newman 
2002; Estrada 2012) seem to provide new avenues—a 
network is a set of points called “nodes” connected by a 
set of connections called “links.” Applications of the con-
cepts of complex networks in hydrology have been gain-
ing momentum in the last few years. Thus far, they have 
included studies of river networks (Rinaldo et  al. 2006; 
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Zaliapin et al. 2010; Czuba and Foufoula-Georgiou 2014, 
2015; Rinaldo et  al. 2014), rainfall monitoring networks 
(Malik et al. 2012; Boers et al. 2013; Scarsoglio et al. 2013; 
Sivakumar and Woldemeskel 2015; Jha et  al. 2015; Jha 
and Sivakumar 2017; Naufan et al. 2017), and streamflow 
monitoring networks (Tang et  al. 2010; Sivakumar and 
Woldemeskel 2014; Halverson and Fleming 2015; Braga 
et  al. 2016; Serinaldi and Kilsby 2016; Fang et  al. 2017). 
Such studies have employed different methods, includ-
ing degree centrality, clustering coefficient, degree dis-
tribution, closeness centrality, shortest path length, and 
community structure. The outcomes of such applications 
are encouraging, as they have important implications for 
the development of hydrologic models, interpolation/
extrapolation of hydrologic data, and classification of 
catchments. The ability of the concepts of complex net-
works to represent all types of connections also makes 
them a potential candidate to serve as a generic theory 
for hydrology (Sivakumar 2015).

Despite their encouraging outcomes, it is important to 
recognize that most of the above studies have addressed 
only the spatial connections in hydrologic networks. 
Since temporal dynamics are an integral part of hydro-
logic systems, especially from the perspective of time 
series analysis for modeling and prediction, studying 
the suitability of complex networks for temporal con-
nections is crucial. To our knowledge, the only studies 
that have attempted this, in the context of streamflow 
analysis, are those conducted by Tang et al. (2010), Braga 
et al. (2016), and Serinaldi and Kilsby (2016). Tang et al. 
(2010) employed the visibility graph algorithm (Lacasa 
et  al. 2008) to construct networks for daily streamflow 
series of three rivers: one in China (the Yangtze River) 
and two in the United States (the Umpqua River and the 
Ocmulgee River). They then used degree distribution and 
accumulative degree distribution to identify the type of 
such streamflow networks. Using daily streamflow data, 
Braga et  al. (2016) employed the horizontal visibility 
graph (HVG) to construct streamflow networks from 
141 gaging stations that cover 53 Brazilian rivers. They 
further characterized these 141 networks by examin-
ing their degree distributions and clustering coefficients. 
They reported that the river discharges in several stations 
had evolved to become more or less correlated over the 
years and attributed that behavior to changes in the cli-
mate system and other man-made phenomena. Serinaldi 
and Kilsby (2016) used the directed horizontal visibility 
graph (DHVG) to study the dynamics of daily streamflow 
fluctuations from 699 stations in the continental United 
States. They explored irreversibility by mapping the time 
series into ingoing, outgoing, and undirected graphs 
and comparing the corresponding degree distributions. 
They showed that the degree distributions do not decay 

exponentially, but tend to follow a sub-exponential 
behavior. The outcomes of these studies have important 
implications for streamflow modeling, prediction, and 
catchment classification.

In the present study, we attempt to further advance 
the applications of the concepts of complex networks for 
temporal connections in streamflow. Our objective here 
is to study the year-to-year connections in streamflow, 
i.e., temporal dynamics at the annual scale. This is moti-
vated by the need to study long-term water management 
and the influence of large-scale climate patterns as well 
as anthropogenic effects, including the role of climate 
change. However, taking advantage of the general avail-
ability of daily streamflow time series (for most locations 
around the world), this study adopts a new approach to 
construct the streamflow network at the annual scale. 
The study uses daily streamflow data and constructs 
the streamflow network corresponding to the annual 
scale, instead of using the annual (accumulated or aver-
age) streamflow and employing the visibility graph. In 
other words, in this study, each year is considered as a 
node, with each node consisting of a time series of (365 
daily) streamflow values, rather than a single (annual) 
streamflow value. This approach is different from the one 
employed in Tang et  al. (2010), Braga et  al. (2016), and 
Serinaldi and Kilsby (2016), who considered each day as 
a node and the entire daily time series/year as a network. 
The properties of the annual streamflow network are 
then identified using different methods.

For implementation, streamflow data from the Missis-
sippi River basin in the United States are studied. Spe-
cifically, daily streamflow data over a period of as many 
as 151  years (October 1862–September 2013) observed 
in the Mississippi River basin at St. Louis, Missouri are 
used. Considering each year as a node, three different 
methods are employed to investigate the connections in 
this annual streamflow network: degree centrality, clus-
tering coefficient, and degree distribution. Different 
threshold values (i.e., correlations in streamflow between 
nodes) are also used to study the influence of threshold 
on the outcomes of degree centrality, clustering coeffi-
cient, and degree distribution methods.

The rest of this paper is organized as follows. First, the 
network construction and the three methods used in this 
study are described. Next, details of the study area and 
streamflow data are presented. Then, analysis and results 
are presented, followed by a discussion. Finally, some 
closing remarks are made.

Network methodology
Network construction
A network (or a graph) is a set of points joined together 
by a set of lines, as shown in Fig.  1. The points are 
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referred to as nodes (or vertices) and the lines are referred 
to as links (or edges). Mathematically, a network can be 
represented as G = {P,E}, where P is a set of N nodes (P1, 
P2,…, PN) and E is a set of n links. The network shown in 
Fig. 1 has N = 7 (nodes) and n = 8 (links), with P = {1, 2, 
3, 4, 5, 6, 7} and E = {{1,7}, {2,4}, {2,5}, {2,7}, {3,7}, {4,7}, 
{5,6, {6,7}}. Figure 1, consisting of a set of identical type of 
nodes connected by identical type of links, is perhaps the 
simplest form of network. This kind of network, however, 
is rarely seen in nature, since natural (e.g., streamflow) 
networks are often far more complex. Indeed, there are 
many ways in which natural networks may be more com-
plex. For instance, networks can (1) have different types 
of nodes and/or links; (2) contain nodes and links with a 
variety of properties associated with them (e.g., weights); 
(3) have links that can be directed; (4) contain multi-
links, self-links, and hyperlinks; and (5) contain nodes 
of two distinct types, with links running only between 
unlike types (called bipartite). For further details, the 
interested reader is directed to Estrada (2012), among 
others.

In a network, the existence/non-existence of links 
is identified based on a measure that represents the 
strength of the link. The measure used to identify the link 
and its strength may be different, depending on the net-
work under consideration and the problem of interest. 
For instance, in the analysis of spatial connections in a 
streamflow monitoring network (such as the one shown 
in Fig.  1), a common measure used is the spatial corre-
lation between nodes, and node pairs that have spatial 
correlation values exceeding a certain threshold value (T) 
may be assigned links (e.g., Sivakumar and Woldemeskel 
2014). However, in the analysis of temporal streamflow 
connections, the difference in streamflow values between 
nodes can be used as a measure, and node pairs that have 
differences below a certain threshold may be assigned 
links (e.g., Braga et  al. 2016). With this basic network 
concept, construction of the streamflow network, in this 

study, to represent the temporal dynamics at the annual 
scale is described next.

Let us assume that we have daily streamflow data 
observed over a period of N years at a gaging station. If 
the objective is to study the day-to-day connections in 
streamflow, then one can construct the network based on 
the daily streamflow values using, for example, the vis-
ibility graph method (e.g., Lacasa et  al. 2008), consider-
ing each day as a node in itself, with each node having a 
single streamflow value (see Fig. 2a), as has been done by, 
for example, Tang et  al. (2010), Braga et  al. (2016), and 
Serinaldi and Kilsby (2016). However, if the objective is 
to identify the year-to-year connections in streamflow (or 
connections at any scale coarser than daily), then two dif-
ferent approaches may be adopted:

1. Compute certain statistic (e.g., mean, total) of 
streamflow for the annual scale, and then use the vis-
ibility graph method to construct the network based 
on such annual streamflow values. In this approach, 
each year is treated as a node (see Fig.  2b), and a 

Fig. 1 Concept of a network

Fig. 2 Network construction for streamflow: a daily network 
construction using daily data; b annual network construction using 
annual data; and c annual network construction using daily data
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node has only one streamflow value, i.e., the annual 
streamflow value; and

2. Use the daily streamflow values to construct the 
streamflow network at the annual scale. In this 
approach, again each year is treated as a node, but 
then each node is made up of a time series of (365 or 
366) daily streamflow values (see Fig. 2c).

The present study adopts the latter approach for net-
work construction of streamflow at the annual scale, as 
it possesses the following advantages over the former: (1) 
it is simple, as it considers the daily data as they are and 
eliminates the need for visibility graph (or other meth-
ods) for network construction; (2) the construction takes 
into consideration the within-year streamflow variability 
to identify connections, rather than simply considering 
one annual value; and (3) the resulting network is similar 
to a network in space (i.e., each station as a node with a 
time series of streamflow and the connections between 
them as links), and therefore, the analysis becomes fairly 
straightforward and generic. For the purpose of conveni-
ence in the present analysis, each year is considered to 
contain only 365 days (i.e., February 29th in leap year is 
excluded). Therefore, the network construction adopted 
in this study for temporal dynamics is more similar to the 
construction adopted in Sivakumar and Woldemeskel 
(2014) and Halverson and Fleming (2015) for spatial 
dynamics than to the one adopted in Tang et al. (2010), 
Braga et  al. (2016), and Serinaldi and Kilsby (2016) for 
temporal dynamics.

Network methods
There exist a variety of measures to study the properties 
of complex networks. These include centrality, clustering, 
adjacency, distance, community structure, bipartivity, 
subgraphs, and communicability, among others. Exten-
sive details of these measures are available in Estrada 
(2012), among others. These measures identify/quantify 
different properties of networks. For some measures, 
there are also different definitions, submeasures, and 
the corresponding methods, as appropriate. In what fol-
lows, a brief description of degree centrality (centrality), 
clustering coefficient (clustering), and degree distribu-
tion (adjacency) is provided, as they are employed in this 
study to examine streamflow connections.

Degree centrality
Centrality is one of the most basic and intuitive measures 
of a network, as it identifies the significance of the nodes 
in the network. The concept of centrality goes back to the 
studies of Bavelas (1948) and Leavitt (1951) for commu-
nication networks. However, Jeong et al. (2001) and New-
man (2001) were among the first to use the concept in the 

context of complex networks. A number of centrality-
based measures have been proposed in the network liter-
ature, such as degree centrality, centrality beyond nearest 
neighbors (e.g., Katz centrality, eigenvector centrality, 
subgraph centrality, PageRank centrality, and vibrational 
centrality), closeness centrality, betweenness centrality, 
and information centrality; see Estrada (2012) for details. 
Among these, the degree centrality has been one of the 
most widely used measures.

The idea behind the use of degree centrality as a net-
work measure is that it identifies whether a given node, 
say i in a network, is more significant (or central or influ-
ential) than another node in the network. For instance, 
the node with the highest degree centrality value is con-
sidered as the most significant in the network, while 
the node with the lowest degree centrality value is con-
sidered as the least significant. The degree centrality of 
node i in a network of N nodes is defined as the number 
of first neighbors (or simply neighbors) of node i divided 
by the total number of possible neighbors (N − 1) in the 
network. The neighbors of node i are identified through 
finding the nodes that have links to node i according to 
an assumed threshold.

Let us consider a selected node i in a network of N 
nodes. So, the total number of possible direct neighbors 
for node i is N − 1, which means the total number of pos-
sible direct links for node i is N − 1. Let us assume that 
node i has only k neighbors (i.e., nodes), denoted as ki, 
in the network according to an assumed threshold. This 
means that node i has ki direct links (that connect it to 
ki other nodes in the network). Therefore, the degree 
centrality of node i is given by the ratio of the number of 
direct links for node i (i.e., ki) to the total number of all 
possible direct links for node i (i.e., N −  1). The proce-
dure is repeated for each and every node of the network. 
An example of the calculation of the degree centrality is 
presented in Sivakumar and Woldemeskel (2014).

Clustering coefficient
One of the most basic properties of a network is its ten-
dency to cluster. The concept of clustering has its origin 
in sociology, under the name fraction of transitive triples 
(Wasserman and Faust 1994). However, Watts and Stro-
gatz (1998) were the first to use this concept in the con-
text of complex networks. The tendency of a network to 
cluster is quantified by the clustering coefficient. There 
exist several definitions of clustering coefficient; see 
Watts and Strogatz (1998), Barrat and Weigt (2000), and 
Newman (2001) for details. However, the clustering coef-
ficient method proposed by Watts and Strogatz (1998), 
which measures the local density, is widely used. A brief 
description of its calculation is presented here, as this 
method is used in the present study.
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Let us consider first a selected node i in the network, 
having ki links which connect it to ki other nodes (i.e., 
neighbors) according to an assumed threshold, as men-
tioned earlier. If the neighbors of the original node i were 
part of a cluster, there would be ki(ki − 1)/2 links between 
them. Let us also assume that among the ki(ki  −  1)/2 
links, the number of ‘actual links’ that exist (according to 
the assumed threshold) is only Ei. With these, the clus-
tering coefficient of node i is given by the ratio between 
the number Ei of links that actually exist between the ki 
nodes and the total number of links ki(ki − 1)/2, i.e.,

The procedure is repeated for each and every node of 
the network. The average of the clustering coefficients 
of all the individual nodes is the clustering coefficient 
of the whole network C. An example of the clustering 
coefficient calculation can be found in Sivakumar and 
Woldemeskel (2014).

The clustering coefficient of the individual nodes and of 
the entire network can be used to obtain important infor-
mation about the type of network, grouping (or classifica-
tion) of nodes, and identification of the most significant 
nodes. For instance, a very high clustering coefficient 
(close to 1.0) indicates a regular network, since in a regu-
lar network, every node is connected to every other node 
in the same manner. A very low clustering coefficient 
(close to zero), with C = p (where p is the probability of 
any two nodes in the network being connected), indi-
cates a (classical) random network, since the connections 
between the nodes are purely random in nature. For a 
small-world network (e.g., Watts and Strogatz 1998), the 
clustering coefficient is generally smaller than that of the 
regular network but also considerably larger than that 
of a comparable random network (i.e., having the same 
number of nodes and links). A scale-free network (e.g., 
Barabási and Albert 1999) may also have such a cluster-
ing coefficient value. Therefore, it is often not easy to dis-
tinguish between small-world networks and scale-free 
networks based on the clustering coefficient alone (both 
small-world networks and scale-free networks essentially 
belong to the category of random networks, but their 
properties are different from that of classical random net-
works). However, other network-based measures, such as 
the shortest path length (e.g., Watts and Strogatz 1998) 
and the degree distribution (e.g., Barabási and Albert 
1999), can provide reliable information to identify/dis-
tinguish between small-world networks and scale-free 
networks, or even some other type. It is relevant to note, 
at this point, that for a number of real-world networks 
studied in the literature, including hydrologic networks, 
the clustering coefficient is reported to be above 0.5 (e.g., 

(1)Ci =
2Ei

ki(ki − 1)
.

Watts and Strogatz 1998; Jeong et  al. 2000; Newman 
2001; Newman et  al. 2001; Tsonis and Roebber 2004; 
Suweis et al. 2011; Scarsoglio et al. 2013; Sivakumar and 
Woldemeskel 2014, 2015; Halverson and Fleming 2015), 
suggesting that such networks are not classical random 
networks, but may be small-world networks or scale-free 
networks or some other types.

Degree distribution
In a network, different nodes may have different num-
ber of links. The number of links (k) of a node is called 
node degree. The degree is an important characteristic of 
a node, as it allows one to derive many measurements for 
the network. The spread in the node degrees is character-
ized by a distribution function p(k), which expresses the 
fraction of nodes in a network with degree k. This dis-
tribution is called degree distribution (e.g., Barabási and 
Albert 1999). The degree distribution is often a reliable 
indicator of the type of network.

In a random graph, since the links are placed randomly, 
the majority of nodes have approximately the same 
degree, and close to the average degree k  of the network. 
Therefore, the degree distribution of a completely ran-
dom graph is a Poisson distribution with a peak at p(k), 
and is given by

Similarly, depending upon the properties of networks, 
the degree distribution can also be Gaussian, given by

exponential, given by

power-law or scale-free, given by

or other, or their combinations.
Among these distributions, the power-law or scale-

free distribution (e.g., Barabási and Albert 1999) has 
attracted the most attention in the literature on complex 
networks, since such a distribution has been found in 
a number of natural and social networks (e.g., Barabási 
and Albert 1999; Kim et  al. 2004; Keller 2005; Clauset 
et al. 2010). The fractal or scale-free nature of numerous 
natural systems, including hydrologic systems, and their 
ability to self-organize themselves, already well-docu-
mented in the literature (e.g. Mandelbrot 1983; Bak 1996; 

(2)p(k) =
e−kk

k

k!
.

(3)p(k) =
1

√
2πσk

e
−

(

(k−k)
2

2σ2
k

)

,

(4)p(k) ∼ e−k/k
,

(5)p(k) ∼ k−γ
,



Page 6 of 15Han et al. Geosci. Lett.  (2018) 5:10 

Rodriguez-Iturbe and Rinaldo 1997; Peckham and Gupta 
1999; Barnsley 2012), give both credence and motiva-
tion to further advance research on scale-free networks. 
While it is true that some scale-free networks display an 
exponential tail, the functional form of p(k) still deviates 
significantly from the Poisson distribution expected for a 
random graph.

Study area and data
In the present study, streamflow data from the Missis-
sippi River basin are considered to investigate the use-
fulness of complex networks for temporal streamflow 
dynamics. The Mississippi River originates at Lake Itasca 
in northern Minnesota in the United States and flows for 
about 3770  km (2342 mi) through the mid-continental 
United States, the Gulf of Mexico Coastal Plain, and its 
subtropical Louisiana Delta (Fig. 3). The entire river basin 
measures about 4.76 million  km2 (1.84 million  mi2), of 
which about 3.22 million  km2 (1.24 million  mi2) is in the 
continental United States; see Alexander et al. (2012) for 
further details.

In the Mississippi River basin, streamflow data are 
measured at thousands of locations. For the present 
study, daily streamflow data observed in a sub-basin 
station of the Mississippi River basin at St. Louis, Mis-
souri (USGS station 07010000) are analyzed; see Fig.  3 
for the location of St. Louis. The sub-basin is situated 
between 38°37′03″ latitude and 90°10′47″ longitude, on 
downstream side of west pier of Eads Bridge at St. Louis, 
24.1  km downstream from the Missouri River, and at 
289.6 km above the Ohio River. The drainage area of this 
sub-basin is 251,230  km2 (97,000  mi2). The natural flow 
of stream in this sub-basin is affected by many reservoirs 
and navigation dams in the upper Mississippi River basin 
and by many reservoirs and diversion for irrigation in the 
Missouri River basin (e.g., Alexander et al. 2012).

For the present analysis, daily streamflow data 
observed over a period of 151 years (October 1862–Sep-
tember 2013) (i.e., “water year”) are considered. The data 
are obtained from the USGS National Water Information 
System website; see http://nwis.waterdata.usgs.gov/nwis. 
Figure  4 shows the variation of this daily streamflow 

Fig. 3 The Mississippi River Basin and location of St. Louis, Missouri, USA (adapted from Alexander et al. 2012)

http://nwis.waterdata.usgs.gov/nwis


Page 7 of 15Han et al. Geosci. Lett.  (2018) 5:10 

series. It is relevant to mention here that the temporal 
dynamics of streamflow (and other river-related pro-
cesses) observed at the St. Louis station have been inves-
tigated by many studies in recent years. Among such 
studies, those that have employed nonlinear dynamic 
and chaos concepts for system identification, predic-
tion, and catchment classification (e.g., Sivakumar and 
Jayawardena 2002; Sivakumar and Wallender 2005; Siva-
kumar et  al. 2007) may be of particular interest in the 
context of complex networks, as there is potential to con-
struct networks based on nonlinear data reconstruction 
(phase space reconstruction). This will be addressed in a 
future study.

Analysis and results
Using the daily streamflow data of 151  years (October 
1862–September 2013), the annual streamflow network 
for the Mississippi River basin at St. Louis, Missouri is 
constructed, following the procedure explained earlier. 
The annual streamflow network thus constructed has 
151 nodes, corresponding to 151 years of daily data. Each 
node consists of 365 daily streamflow values (excluding 
the data for February 29 in leap years). This allows cal-
culation of correlations in streamflow between each of 
the 151 nodes (years) with each and every other node in 
the network. In this study, the Pearson correlation coeffi-
cient is used to calculate the correlation. The correlations 

in flow between nodes, in turn, allow identification 
of neighbors (i.e., links) for each and every node in the 
network, which is the key to the implementation of the 
degree centrality, clustering coefficient, and degree dis-
tribution methods. It is important to note that the cor-
relation threshold (T) may significantly influence the 
identification of the neighbors (i.e., links), and hence, 
the outcomes of the methods. However, the optimum 
correlation threshold is not known a priori. To take this 
issue into account and examine the influence of thresh-
old, eight different threshold values are considered in the 
analysis: 0.3, 0.4, 0.5, 0.6, 0.65, 0.7, 0.75, and 0.8 (see Siva-
kumar and Woldemeskel (2014) for some details on the 
selection of the correlation threshold values). The results 
are presented next, where different threshold values may 
be considered for different methods to allow better visu-
alization of the differences in results.

Degree centrality
Figure  5a–d, for instance, shows the results from the 
degree centrality analysis for the annual streamflow 
network from the Mississippi River basin at St. Louis, 
Missouri, for threshold values of 0.4, 0.5, 0.6, and 0.7, 
respectively. In these plots, a box corresponds to a node 
(i.e., there are 151 boxes in total), and the boxes are num-
bered from 1 to 151, corresponding to the year numbers. 
As normally expected, the degree centrality value (for 

Fig. 4 Variation of daily streamflow time series from the Mississippi River basin at St. Louis, Missouri, USA
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any given node) is found to decrease with an increase 
in the threshold value. However, the plots also indicate 
the enormous sensitivity of the degree centrality to the 
threshold level, as significant differences in the central-
ity values are observed between different thresholds. For 
instance, while more than 50% of the nodes (80 nodes) 
have degree centrality values exceeding 0.7 when T = 0.4, 
only about 18% of the nodes (27 nodes) have degree cen-
trality values exceeding 0.7 when T = 0.5, and this num-
ber falls to zero when T = 0.6 and T = 0.7. This means that 
more than half the number of nodes (years) have con-
nections with more than 70% of the rest of the network 
when T = 0.4, but this number falls to just a quarter when 
T = 0.5 and then to zero when T ≥ 0.6. Indeed, when 
T = 0.7, more than 40% of the nodes (63 nodes) have 
connections with only less than 10% of the other nodes. 
These observations suggest that the connections are only 
very little or even none when more stringent conditions 
are imposed, such as when T ≥ 0.5 and especially when 

T ≥ 0.6, even considering the streamflow dynamics at the 
annual scale (where correlations and, thus, connections 
are normally expected to be much stronger when com-
pared to those at the daily scale, for example, because of 
the presence of seasonality and “smoothing” at the annual 
scale).

Overall, the results suggest that only a very few nodes 
(years), with very high degree centrality values, have great 
significance in terms of connections in the network espe-
cially when T ≥ 0.5 (see the boxes colored in dark blue). 
Similarly, only a very few nodes, with very low degree 
centrality values, are found to have almost no signifi-
cance in terms of connections, even for very low thresh-
old values, such as T = 0.4 and T = 0.5 (see the boxes 
colored in red in Fig. 5a, b). It is also important to note 
that not all of the years that a given year has connection 
with are ‘closer’ in time (e.g., successive years), and some 
are very much apart in time. In other words, ‘proximity’ 
in time does not necessarily mean similarity in behavior, 

Fig. 5 Degree centrality values for the annual streamflow network from the Mississippi River basin for four different thresholds (T): a T = 0.4; b 
T = 0.5; c T = 0.6; and d T = 0.7. Each box represents a node (year)
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at least when it is considered as part of a network as a 
whole. However, the results also indicate some kind of 
order, since at least some successive years show similar 
degree centrality values; see, for instance, nodes 55–59 
(1916–1920) when T = 0.4, nodes 56–58 (1917–1919) or 
nodes 124–127 (1985–1988) when T = 0.5, nodes 123–
127 (1984–1988) when T = 0.6, and a number of stretches 
of nodes for T = 0.7 (see the boxes colored in red). It is 
not clear why only a few nodes have great significance in 
terms of connections, why only a few other nodes have 
almost no significance, and why the rest of the nodes fall 
in between these two extremes—similar questions are 
also relevant for the clustering coefficient results (see 
below). An insight into the time series and some basic 
statistical characteristics (e.g., mean, standard devia-
tion) of the daily flow series for the 151 years also does 
not offer any convincing explanation to these questions. 
Despite these questions (and indeed because of them), 
one can clearly recognize that the above results and 

observations have important implications for long-term 
streamflow predictions (including in the use of methods 
that are based on temporal dependence) and potentially 
indicate the influence of large-scale climate patterns (and 
perhaps anthropogenic effects) on streamflow.

Clustering coefficient
Figure 6a–d, for instance, shows the clustering coefficient 
values for the annual streamflow network from the Mis-
sissippi River basin at St. Louis, Missouri for threshold 
values of 0.5, 0.6, 0.7, and 0.8, with each box representing 
a node. Similar to the degree centrality, and as expected, 
the clustering coefficient value (for any given node) is 
found to decrease with an increase in the threshold and 
also shows significant sensitivity. When T = 0.5, almost 
90% of the nodes (137 nodes) have clustering coeffi-
cient values above 0.7, and about 52% of the nodes (79 
nodes) have clustering coefficient values above 0.7 when 
T = 0.6. This number becomes as low as 28% (43 nodes) 

Fig. 6 Clustering coefficient values for annual streamflow network from the Mississippi River basin for four different thresholds (T): a T = 0.5; b 
T = 0.6; c T = 0.7; and d T = 0.8. Each box represents a node (year)
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when T = 0.7 and only 9% (13 nodes) when T = 0.8. These 
results indicate that almost 90% of the nodes have rea-
sonably good connections with the rest of the network 
(i.e., correlation ≥ 0.5), but only less than one-tenth of the 
nodes have strong connections (i.e., correlation ≥ 0.8), 
even at the annual scale. Similar observations can also 
be made in terms of very low clustering coefficient val-
ues. For instance, only one node has a clustering coef-
ficient value below 0.2 when T = 0.5, and only nine 
nodes have a clustering coefficient value below 0.2 when 
T = 0.6 (see the boxes colored in red in Fig.  6a, b). The 
results also indicate that even some distant nodes (i.e., 
years far apart), with similar clustering coefficient val-
ues, may have strong connections in the overall network, 
even when they may or may not be connected between 
themselves. That is, they are ‘similar’ in some way, in 
the long-term evolution of streamflow dynamic system. 
In a similar vein, even ‘closer’ nodes (successive years) 
may behave very differently when considered as part of 
a network. Again, the reasons for these are unclear, and 
an insight into the time series and basic statistical charac-
teristics (e.g., mean, standard deviation) of the flow series 

does not offer any convincing explanation either. Never-
theless, it is clear that the clustering coefficient results 
have implications for streamflow predictions, especially 
when using methods that are based on temporal depend-
ence, and also highlight the potential role of long-term 
climate change/variability, thus providing support to the 
results from the degree centrality method.

Although Fig.  6 provides useful information on the 
extent of connection of each node (year) with the rest 
of the 150 nodes of the network collectively, comparing 
the clustering coefficient value of each node with respect 
to each and every other node in the network on an indi-
vidual basis may offer additional information. A simple 
way to do this may be to present the average of cluster-
ing coefficients of any two nodes for the entire network. 
This is done in Fig. 7, which shows the results for T = 0.6, 
0.65, 0.7, and 0.75—these four thresholds are presented 
for better visualization and discussion. The results gener-
ally show very high connections (i.e., average clustering 
coefficient > 0.7) of each node with respect to each and 
every other node (light blue, dark blue, and black boxes) 
for T = 0.6 (Fig. 7a), and to a certain extent, for T = 0.65 

Fig. 7 Average of clustering coefficients of any nodes in the annual streamflow network from the Mississippi River basin for four different thresh-
olds (T): a T = 0.6; b T = 0.65; c T = 0.7; and d T = 0.75
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(Fig.  7b). The connections become considerably weaker 
(yellow, orange, and red boxes) for T = 0.7 (Fig.  7c) and 
more so for T = 0.75 (Fig.  7d). The results also seem to 
indicate that a particular stretch of nodes, i.e., nodes 
95–130 (1957–1992) (see the glaring yellow–orange–red 
color part, marked in Fig.  7d), have very poor connec-
tions with the rest of the network. Further discussion on 
this is made in the next section.

While the clustering coefficient values for each of the 
151 nodes (Fig.  6) and their comparison with each and 
every other node (Fig.  7) indeed provide useful infor-
mation about individual connections in the network, 
an even broader interest in this network-based study is 
the identification of the nature of the entire network, for 
development of an appropriate model. To this end, the 
clustering coefficient of the entire network, calculated as 
the average of the clustering coefficients for all the 151 
nodes, is useful. The clustering coefficient values of the 
entire network for the eight different thresholds consid-
ered in this study (i.e., 0.3, 0.4, 0.5, 0.6, 0.65, 0.7, 0.75, and 
0.8) are 0.883, 0.835, 0.763, 0.656, 0.612, 0.560, 0.431, and 
0.288, respectively. As normally expected, the clustering 
coefficient value decreases with an increase in the thresh-
old value. The generally high clustering coefficient values 
(including for T ≥ 0.7) seem to suggest that the network is 
not a purely random graph, as the clustering coefficient 
values for classical random networks are typically very 
low (close to zero, essentially due to random distribu-
tion of links), as mentioned in the methodology section 
earlier; see also, for example, Watts and Strogatz (1998). 
As the clustering coefficient for the annual streamflow 

network is much higher than that for the classical ran-
dom network but lower than the ones expected for fully 
connected networks (for which the clustering coefficient 
should be equal to 1.0), one may interpret that the net-
work is a small-world network (e.g., Watts and Strogatz 
1998) or a scale-free network (e.g., Barabási and Albert 
1999) or some other type, as highlighted in the method-
ology section earlier. In the identification of the network 
type, the results from the degree distribution method 
could also offer some clues, and are presented next.

Degree distribution
Figure  8 presents the results from the degree distribu-
tion analysis of the annual streamflow network from the 
Mississippi River basin at St. Louis, Missouri for all the 
eight threshold levels considered in this study. The results 
are shown both in the normal scale (Fig.  8a) and in the 
log–log scale (Fig. 8b). The values are the complementary 
cumulative distribution, defined as the fraction of nodes 
with degree at least k and denoted as p(K ≥ k).

The results in Fig. 8 clearly show that the degree distri-
bution for the annual streamflow network changes with 
respect to the correlation thresholds. For instance, when 
T = 0.3, there are over 80% of the nodes with at least 100 
neighbors. This number becomes over 60% when T = 0.4, 
and less than 30% when T = 0.5. For T ≥ 0.6, the number 
of nodes with at least 100 neighbors is zero, indicating 
very poor connections in the network.

The shape of the degree distribution curves in Fig. 8 also 
offers some interesting observations. For low thresholds 
(say T = 0.3, T = 0.4, and also perhaps T = 0.5), the curves 

Fig. 8 Degree distribution for the annual streamflow network from the Mississippi River basin for eight different thresholds (T) (0.3, 0.4, 0.5, 0.6, 0.65, 
0.7, 0.75, and 0.8): a normal scale; and b log–log scale
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seem to resemble exponential distribution. For high 
thresholds (say T = 0.8, and T = 0.75), the curves seem to 
resemble power-law distribution, especially at the tail. For 
medium thresholds (say T = 0.6, 0.65, and 0.7), the curves 
seem to resemble a distribution that is somewhere in 
between exponential and power-law, and perhaps a com-
bination. With these observations, the annual streamflow 
network may be considered as a combination of exponen-
tial distribution and power-law distribution, with clear 
dependence on the correlation threshold level. This result 
has important implication for the selection of the type of 
model for annual streamflow dynamics.

Discussion of results
The results from the construction of annual streamflow 
network based on daily streamflow data and application 
of the degree centrality, clustering coefficient, and degree 
distribution methods to such a network are useful and 
interesting in several ways. A few important aspects are 
highlighted here.

Streamflow dynamics at the annual scale often exhibit a 
certain level of temporal correlation. However, the results 
from the present analysis do not readily indicate strong 
connections in streamflow dynamics between successive/
different years (as a result of “annual cycle”) or between 
distant years (as a result of the influence of large-scale 
climate patterns and long-term evolution, including dec-
adal cycles). The degree centrality results (Fig. 5) indicate 
that the streamflow dynamics in only a few years have 
great significance (or almost no significance) in terms of 
connections in the network of 151 years of data consid-
ered. Similarly, the clustering coefficient results (Fig.  6) 
indicate that the streamflow dynamics in only a very 
few years are very strongly (or very weakly) connected 
to the streamflow dynamics in all the other years of the 
151-year period of study. Considering that there are also 
some differences between the few years identified in the 
degree centrality method and those identified in the clus-
tering coefficient method, what makes such years highly 
significant (or almost insignificant) in the network or 
very strongly (or very weakly) connected in the network 
is unclear. However, the existence of these years seems 
to suggest the need to focus on such years in streamflow 
modeling (both for high flows and for low flows), espe-
cially in the long-term perspective. Whether these years 
reflect the influence of large-scale climate patterns and 
long-term climate change/variability (including decadal 
changes) is an important question to ask. The answer 
remains unknown, and this will be an important future 
investigation. What is clear, however, is that these results 
have important implications for studies on the use of 
methods based on temporal dependence for long-term 
streamflow modeling and prediction.

The clustering coefficient results (Fig.  6) suggest that 
the annual streamflow network is neither a purely ran-
dom graph nor a regular network but something in 
between, such as a small-world network or a scale-free 
network or other. The degree distribution results (Fig. 8) 
suggest that the annual streamflow network exhibits 
exponential distribution or power-law (scale-free) dis-
tribution or a combination of both, depending on the 
correlation threshold level considered for studying con-
nections in the network. Therefore, identification of 
the exact type of the network is still not complete and 
requires additional evidence for confirmation.

Another interesting observation comes from the clus-
tering coefficient results, especially from the average of 
clustering coefficients of any two nodes for the entire net-
work (Fig. 7). As can be seen from Fig. 7, when the average 
of clustering coefficients of any two nodes is considered, 
there is a certain stretch of nodes that exhibit very low 
connections (the yellow–orange–red colored part) with 
the rest of the network, depending upon the correlation 
threshold level. This is particularly clear for high thresh-
old levels, such as the very low connections observed 
for nodes 95–130 (1957–1992) for T = 0.75 (marked in 
Fig. 7d). What makes this stretch of nodes (i.e., period of 
time) to very weakly connect with the rest of the network 
is not clear. It is relevant to note, however, that the period 
1950s–1990s corresponds to the period when a large 
number of dams were constructed across the Mississippi 
River. The natural flow of stream in the sub-basin of the 
St. Louis gaging station has and continues to be affected by 
many reservoirs and navigation dams in the upper Missis-
sippi River basin and by many reservoirs and diversion for 
irrigation in the Missouri River basin (e.g., Alexander et al. 
2012). The construction of most of the dams started in the 
1950s and construction of dams ended in the 1990s.

It may be premature to associate the very weak con-
nections in the annual streamflow network for the period 
1950s–1990s with the influence of dam construction dur-
ing the 1950s–1990s. However, the possible existence of 
such an association cannot be dismissed altogether. On 
the other hand, it may also be argued that, if the con-
struction of dams was indeed a reason for very weak con-
nections in the network, very weak connections should 
also be observed for the period after the 1990s. However, 
such is not the case in the clustering coefficient results, 
as the period after the 1990s exhibits better connec-
tions with the rest of the years compared to the period 
1950s–1990s. One reason for this may be that there has 
been better regulation of flows since the 1990s, and only 
the period 1950s–1990s was severely influenced. These 
observations seem to suggest that the concepts of com-
plex networks and their outcomes can offer physical 
explanations about the system dynamics.
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Finally, it is important to remember that the streamflow 
dynamics examined in this study are only at the annual 
scale. Since streamflow dynamic properties can, and 
often, change with temporal scale, whether the results 
obtained in this study for the annual scale would still 
hold true for any other temporal scale is an obvious ques-
tion to ask. Such a question still remains to be answered, 
and will be investigated in a future study. Nevertheless, 
our opinion, for the moment, especially based on nonlin-
ear dynamic studies on streamflow (and other hydrologic 
data) and complex network studies on rainfall at different 
temporal scales, is that the streamflow network proper-
ties (including degree centrality, clustering coefficient, 
and degree distribution) may change for other temporal 
scales, despite the possible presence of scaling (or fractal) 
behavior in streamflow; see Sivakumar (2001), Sivaku-
mar et al. (2001, 2004, 2007), Regonda et al. (2004), Salas 
et al. (2005), Jha and Sivakumar (2017), and Naufan et al. 
(2017) for some details. We hope to provide more reli-
able and convincing answers to this question in a future 
study, as we are currently conducting additional research 
on network properties in terms of scale and network size.

Conclusions
Understanding the temporal dynamics of streamflow 
(and other hydrologic processes) continues to be chal-
lenging. This study employed modern concepts of net-
work theory, i.e., complex networks, for studying the 
temporal dynamics of streamflow, with particular focus 
on the annual scale, i.e., year-to-year connections. It 
adopted a new approach to construct the streamflow 
network at the annual scale. Instead of using the annual 
streamflow data (mean or accumulated) and consider-
ing each year as a node with just one streamflow value, 
the study proposed to use the daily streamflow data, with 
each year serving as a node in the network and with each 
node having a time series of (365) daily streamflow val-
ues. The approach was implemented on the streamflow 
data observed over a long period of 151  years from the 
Mississippi River basin at St. Louis, Missouri. The prop-
erties of the network were examined using degree cen-
trality, clustering coefficient, and degree distribution 
methods.

The results from the present analysis regarding the 
temporal connections in annual streamflow are use-
ful and interesting in many ways. The degree centrality 
results suggest the presence of a very few significant (or 
almost insignificant), but not necessarily consecutive, 
years in the studied period of 151  years. The clustering 
coefficient results suggest the presence of a few years that 
are connected very strongly (or very weakly) to the rest 
of the years and that the annual streamflow network is 
neither a purely random network nor a regular network, 

but something in between (e.g., small-world or scale-free 
or other). The degree distribution results also seem to 
support this, to a certain extent, indicating exponential 
behavior or power-law behavior or their combination in 
the distribution of links in the network. The clustering 
coefficient results also seem to suggest the influence of 
dam construction (and other anthropogenic influences) 
on the annual streamflow dynamics, especially through 
identifying a stretch of period (around the 1950s–1990s) 
with very weak connections when compared to the rest 
of the period of data.

All these results have important implications for stud-
ies on the temporal dynamics of streamflow at the annual 
scale (and at other scales), and hence, for streamflow 
modeling and prediction. Among these are (1) use of 
models that particularly assume temporal dependence; 
(2) identification of appropriate model for studying con-
nections in streamflow; (3) long-term predictability of 
streamflow; (4) influence of large-scale climate patterns 
and long-term climate change/variability; and (5) influ-
ence of anthropogenic factors.

The outcomes of the present study lead to several 
potential future directions. In addition to studying the 
issues associated with the implications above, one par-
ticularly useful area of research may be to improve the 
construction of the streamflow network based on the 
available data. To this end, nonlinear data reconstruction 
and related concepts that use a single-variable (or multi-
variable) time series to reconstruct a multi-dimensional 
phase space, such as phase space reconstruction (e.g., 
Packard et  al. 1980; Takens 1981) and dimensionality 
(e.g., Grassberger and Procaccia 1983; Kennel et al. 1992), 
could provide new avenues. For instance, instead of using 
the HVG or the approach proposed in the present study, 
one may reconstruct the streamflow data in a multi-
dimensional phase space and then construct the network 
based on the points (vectors) in the reconstructed phase 
space. This way, each point in the phase space can serve 
as a node in the network and the distances between the 
points can serve to identify the links. Such a phase space 
reconstruction approach for network construction is cer-
tainly appealing, especially considering that it has already 
proved useful for representing the temporal dynamics 
of streamflow (and other hydrologic processes), both in 
the Mississippi River basin (e.g., Sivakumar and Jaya-
wardena 2002; Sivakumar and Wallender 2005; Siva-
kumar et al. 2007) and in many other basins around the 
world (e.g., Regonda et  al. 2004; Salas et  al. 2005; Siva-
kumar and Singh 2012; Jothiprakash and Fathima 2013; 
Tongal et al. 2013). Research in this direction is currently 
underway. Indeed, whether, and how, the temporal con-
nections identified from the combination of phase space 
reconstruction and complex networks can be useful for 
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streamflow prediction and catchment classification is 
also being studied. We hope to report the details of such 
studies in the near future.
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