
Kavosh: an effective Map‑Reduce‑based
association rule mining method
Mohammadhossein Barkhordari* and Mahdi Niamanesh

Introduction
With the growth of information, traditional analysis methods must be modified because
they cannot handle immense amounts of data. Data mining algorithms are analytics
that require a paradigm shift for algorithm execution and changes for deployment over
nodes. Data mining algorithms must be modified so they can be executed over scalable
and distributable environments. However, modifying data mining algorithms for distrib-
uted architecture is not easy. One problem with distributed architecture is data locality.
This occurs when the required data for processing do not exist on the processor node.

One of the most prominent methods used to solve big data problems over shared-
nothing architecture is Map-Reduce. Map-Reduce [1] is used in open-source solutions
such as Hadoop and Spark. There are many products in addition to Hadoop and Spark
that can be used to solve data mining problems. However, pure Map-Reduce suffers
from the data locality problem and does not support iteration. Because nearly all data

Abstract 

The immense amount of data generated on a daily basis by various devices and sys-
tems necessitates a change in data analysis methods. As an important part of analyt-
ics, data mining methods require a paradigm shift to solve problems because the old
methods cannot manage massive data. Association rule mining is a data mining algo-
rithm used to solve various domain problems. Because of the immense volume of data,
one-node solutions are no longer useful, and it is necessary to solve problems by using
a distributed and shared-nothing architecture such as Map-Reduce. However, when
association rule mining is transferred to these architectures, new problems appear. The
main problems are lack of data locality and iteration support and process skewness. In
this paper, a method is proposed that solves these problems. Kavosh converts data into
a unified format that helps nodes perform their tasks independently without the need
to exchange data with other nodes. In addition, the proposed method compresses
input data to facilitate data management. Another advantage is the lack of process
skewness because it is possible to allocate a predefined amount of data to each node.
Kavosh omits iterations required for finding frequent itemsets by changing the Map-
Reduce architecture. The proposed method is implemented using Hadoop, and the
results are compared with open-source products in terms of three aspects: execution
time, load balancing and data compression. The results show that Kavosh outperforms
other methods in these aspects.

Keywords:  Big data, Data mining, Map-Reduce, Association rules

Open Access

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Barkhordari and Niamanesh ﻿J Big Data (2018) 5:25
https://doi.org/10.1186/s40537-018-0129-4

*Correspondence:
Barkhordari@ictrc.ac.ir
Information
and Communication
Technology Research Center,
No 5, Saeedi Alley, Colledge
Intersection, Enghelab Street,
Tehran 1599616313, Iran

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-018-0129-4&domain=pdf

Page 2 of 22Barkhordari and Niamanesh ﻿J Big Data (2018) 5:25

mining algorithms are iterative in nature, it is necessary to solve the iteration problem in
Map-Reduce to solve data mining problems by using Map-Reduce-based methods.

Association rule mining is a data mining algorithm that requires iteration to find fre-
quent itemsets. Methods such as Apriori [2] and FP-Growth [3] solve association rule
mining problems. There are two main parameters for association rule mining: confi-
dence and support. A rule in an association rule is defined as x → y (if x, then y), where
x and y are itemsets. The support of a rule is defined as the frequency of an itemset in a
database. The confidence of a rule is defined as

In this paper, Kavosh, which is a method for association rule mining, is proposed. This
method is designed for a shared-nothing architecture and can properly solve the asso-
ciation rule mining problem in Map-Reduce.

This method solves the data locality problem completely. Thus, the nodes do not
require data from other nodes. By changing and unifying the data format, data compres-
sion and data load balancing are supported. In addition, iteration is omitted in the pro-
posed method; therefore, it is well-suited for the Map-Reduce architecture.

The remainder of this paper is structured as follows: In “Related works” section,
related works are discussed. In the third section, Kavosh is presented. The fourth section
describes an evaluation, and the final section presents the conclusions.

Related works
Map-Reduce is used to solve many problems over a shared-nothing architecture. This
method is also used to solve association rule mining. There are four main problems with
association rule mining on a shared-nothing architecture, namely, lack of support for the
following:

• • Data locality,
• • Iteration,
• • Load balancing, and
• • Data compression.

As mentioned above, the data locality problem is a lack of required data on the proces-
sor node, which creates data dependency among nodes. This problem causes network
congestion and increases the algorithm execution time. Another problem is lack of itera-
tion support. When intermediate results are created by the Reducers, they must be fed
as input to the Mappers for another iteration. This problem also increases the execution
time because intermediate data must be written on the disk by the Reducers and read by
the Mappers to initiate another iteration. The third problem is the load balancing prob-
lem. This occurs when the processes are not allocated to the Mappers fairly. This prob-
lem reduces the algorithm speed because all nodes must wait for a busy node after job
completion. The last problem is lack of support for data compression. Because of the
large amount of data, data volume reduction is necessary for more rapid iterations and
intermediate result storage.

Confidence
(

x → y
)

=
Support

(

x ∩ y
)

Support(x)

Page 3 of 22Barkhordari and Niamanesh ﻿J Big Data (2018) 5:25

In some methods, traditional Apriori methods are used in Map-Reduce. Transactions
are allocated to Mappers and frequent k-itemsets are extracted from each Mapper before
the results are shuffled through combiners and the final k-itemsets are extracted accord-
ing to support and confidence thresholds. In Oruganti et al. [4], Kovacs et al. [5], Li et al.
[6], Mappers and Reducers are used, but in [7, 8], in addition to Mappers and Reducers,
Combiners are used for better shuffling and to address performance issues.

In Lin et al [9], three methods are proposed: Single Pass Counting (SPC), Fixed Passes
Combined-counting (FPC) and Dynamic Passes Combined-counting (DPC). In Apriori,
each iteration must generally wait until the results of all the Reducers from the previous
iteration have been generated.

The FiDoop [10] method uses three Map-Reduce phases to generate frequent itemsets.
FiDoop claims to support automatic parallelization, load balancing, data distribution,
and fault tolerance. ScaDiBino [11] extracts rules with the maximum length and one tar-
get field. This method omits iterations. In Yu et al. [12], the Distributed Parallel Apriori
(DPA) algorithm is proposed and metadata are stored in the form of Transaction Iden-
tifiers (TIDs). In this method, a single scan of the database is required and a balanced
workload among nodes is created.

Various proposed methods use FP-Growth on a shared-nothing architecture. In Li
et al. [13], parallel FP-Growth is proposed for independently executing a group of tasks
on a node. In Bechini et al. [14], MRAC and MRAC+ are proposed, which are Map-
Reduce-based and FP-Growth-based methods, respectively, and FP-Growth was mod-
ified to overcome performance issues. In Yang et al. [15], a Hadoop-based method is
proposed that uses a distributed DH-TRIE frequent pattern algorithm and tries to solve
FP-Growth problems for big data. In Tlili et al. [16], a partitioning method is used to
achieve load balancing problems for association rule mining. PARMA [17] creates mul-
tiple small random samples of the input data and runs a mining algorithm on them.
Because it is implemented on small samples, the algorithm can be run in parallel and
independently. The results are aggregated to produce the final results. In Yu and Zhou
[18], Tidset-based Parallel FP-tree (TPFP-tree) and Balanced Tidset-based Parallel FP-
tree (BTP-tree) are proposed. In the proposed method, a transaction identification set
(Tidset) is used to provide direct access to transactions instead of a full database scan.
In Moens et al. [19], two methods are proposed: Dist-Eclat and BigFIM. Dist-Eclat has
three steps: finding the frequent items, generating frequent itemsets of size k and sub-
tree mining. BigFIM also has three steps: generating frequent itemsets of size k, finding
potential extensions and sub-tree mining. The Sequence-Growth algorithm is designed
according to the concepts of the lexicographical sequence tree and the lazy mining prun-
ing strategy and is implemented in the MapReduce framework for a distributed execu-
tion [20]. In Liang et al. [21], an algorithm for lexicographic frequent itemset generation
is proposed, which claims to find the maximum information from a database regarding
frequent itemsets and their respective frequencies in a single database scan.

Methods
The proposed method uses the Map-Reduce architectural structure for association rule
mining. The first step in the proposed method is to convert the input data items to a
Kavosh format and the second step is to extract rules with variable lengths. In this paper,

Page 4 of 22Barkhordari and Niamanesh ﻿J Big Data (2018) 5:25

the number of fields after the “if” conditions are applied is defined as the length of the
rule. In the proposed method, data are converted into Kavosh format, which helps nodes
execute their processes independently. This format is a unified format and other input
data formats are converted to this format. The proposed unified format helps create
<key, value> pairs for use in the Map-Reduce method.

• Converting input data items to Kavosh format

In this section, the Kavosh format is defined
Θ = {θ1, θ2, …, θn, ϯ}.
The input data table is denoted as Θ, the columns of the table as θ and the table key as ϯ

θk= {µ1, µ2, ..., µm}.

The distinct values of each column are denoted as µ. In this paper, it is assumed that all
θ values are discrete and that a continuous θ must be converted to discrete values.

Based on the above definitions, the Kavosh format is defined as follows:

ϝ = {θ1 → μ1, θ2 → μ2,…, θn → μm}

where ϝ is the Kavosh table and each θp → µq is equal to zero or one. Each input column
value is converted to a Boolean column if there are more than two values for the column.

The input data (Θ) are divided into equal segments. For fragmentation, the function ψ
is used, which is defined as follows:

Ψ (ϝ, ϯstart, ϯfinish, ηk)

where ηk is the Mapper node to which the data ϝ are allocated from key ϯstart to key ϯfinish.
From the previous conversion steps, a Boolean matrix is created on each Mapper. Each
field ϝ can be selected as a target field. If a binary position is assigned to each field ϝ
(except target fields), each row can be converted into a decimal number. Therefore, a
<Key, Value> pair is created in which the Key is the decimal number of each row (Rule-
Key) and the Value is the decimal value of the target field. In the next step, the Kavosh
triple is created, which is defined as follows:

<Rule-Key, Rule count, Target field count with the specified value>

According to the generated <Rule-Key, Target fields>, the count of each Rule-Key and
target field with the specified value is calculated and the Kavosh triple set is created. To
convert Mapper data into the Kavosh triple and Rule-Key aggregation, the function Ϯ is
used.

Ϯ(ηk, ϼk)

where ϼk is the result of computation of the input data. After calculating ϼk for each
Mapper, all ϼk are reduced to ϼReducer by the function £.

£(ϼ1, ϼ2,…, ϼp, ϼReducer, ϧ)

where ϧ is the Reducer node and p is the number of Mappers.

Page 5 of 22Barkhordari and Niamanesh ﻿J Big Data (2018) 5:25

• Rule extraction

In this section, a Map-Key is added to the Rule-Key (ϻ). The Map-Key is used for rule
generation, and its length in binary format is equal to the Rule-Key. Here, ϼReducer is sent
to the rule generation nodes. Each rule generation node has one or more Map-Keys. The
function ϖ allocates ϼReducer to each rule generation node.
where ι is the Map-Key, q is the number of Map-Keys allocated to a rule generation node,
and Ϧ is the rule generation node.
ϖ (ϼReducer, ι1, ι2,…, ιq ,Ϧr)
Each Map-Key is concatenated to all Rule-Keys. If the length of the Rule-Key in binary

format is equal to L, then there are 2L − 1 Map-Keys. They start from zero to 2L − 1 and
are concatenated with the Rule-Keys to create various condition combinations of fields ϝ.
The concatenation (ϒ) of the Map-Key with the result of the “logical and” (ϰ) of the Map-
Key and the Rule-Key is called MHB_Key, and τ is the MHB_Key.

τ = ϒ (ιi, ϰ (ϻ, ιi))
There are two important factors for rule extraction in association rule mining: confi-

dence and support. In this paper, Д (τ) is defined as the frequency of a specified MHB_
Key (τ) and ζ (τ, σ, ρ) is defined as the frequency of a specific decimal value (ρ) that is
equal to the target field (σ) for a specified MHB_Key (τ). In addition, ς is the total num-
ber of generated Kavosh triple sets. Thus, the support () is calculated using the follow-
ing formula:

Moreover, the confidence () is calculated using the following formula:

After and have been calculated, they are compared with the defined thresholds for the
association rules and the final results are produced. The rules are extracted using Д.

Д (, , α, β, Ϧr)

where α is the support threshold and β is the confidence threshold. Each rule generation
node creates its final result separately because the results do not have common rules
with other nodes. Figure 1 shows the Kavosh architecture. It consists of three layers: the
Mapper layer, the Reducer layer and the rule generation layer.

For clearer illustration, pseudocodes are provided. Table 1 lists the functions used in
the code.

Page 6 of 22Barkhordari and Niamanesh ﻿J Big Data (2018) 5:25

Fig. 1  Kavosh architecture

Table 1  Pseudocode functions

Function Description

NOC(TableName) Returns the number of columns

NOR(TableName) Returns the number of rows

NODV(TableName, ColumnName/ColumnID) Returns the number of distinct values in the specified column

NaOC(TableName, k) Returns the name of the kth column in the specified table

DVC(TableName,ColumnName/ColumnID, k) Returns the kth distinct value of the specified column

CT(ColumnsArray[],TableName) Creates a table with an input column array with a specified table
name

RVT(TableName, ColumnName/ColumnID,RowID) Returns the value of the specified table name, column name/
column ID, and row ID

EXEC (Query, ResultTable) Executes a query, creates a results table and puts the results into
the results table

The results table can be created in RAM or HDD, according to the
node hardware specification.

& & is a logical operator (And)

I2B(i) Converts the integer value i to a binary value

Page 7 of 22Barkhordari and Niamanesh ﻿J Big Data (2018) 5:25

The following code shows the binominal conversion.

The following pseudocode shows the Mapper’s functionality:

Mapper()
{

CT(“[Rule_Key],[TargetFieldCount],[TargetFieldSum]”,”Kavosh_Mapper”);
For i=1 to NOR(Kavosh_Convert)

For j=1 to NOC(Kavosh_Convert)
If (NaOC(TableName, j)!=TargetField)

MHB_Key=Concatenate(Key, RVT(Kavosh,i,j)) ;
Next j;

Insert into Kavosh_Mapper ([Rule_Key],[TargetFieldCount],[TargetFieldSum]) values (Key, 1, RVT(Kavosh,i,
TargetField));
Next i;
EXEC (Select [Rule_Key],Sum([TargetFieldCount]),Sum([TargetFieldSum]) From Kavosh_Mapper group by
[Rule_Key],Kavosh_Rules);

Output <k’1,v’1,v’2> <Kavosh_Mapper.[Rule_Key], Kavosh_Mapper.[TargetFieldCount],
Kavosh_Mapper[TargetFieldSum]

}

In the reduce phase, the EXEC() function is repeated to obtain the final intermediate
results layer. The following pseudocode shows the Reducer phase:

Reducer()
{

Input <k1,v1,v2> <Kavosh_Mapper.[Rule_Key], Kavosh_Mapper.[TargetFieldCount], Kavosh_Mapper.[
TargetFieldSum]>

EXEC (Select [Rule_Key],Sum([TargetFieldCount]),Sum([TargetFieldSum]) From Kavosh_Rules group by
[Rule_Key], Kavosh_Distinct_Rules);

Output <k’1,v’1,v’2> < Kavosh_Distinct_Rules.[Rule_Key], Kavosh_Distinct_Rules.[TargetFieldCount],
Kavosh_Distinct_Rules.[TargetFieldSum]>

}

Convert_To_Binominal()
{

For i=1 to NOC(InputTableName)
For j=1 to NODV(InputTableName, i)

ColumnsArray[]=ColumnsArray[]+DVC(InputTableName,i, j);
Next j

Next i
CT(ColumnsArray[],”Kavosh_Convert”);
For i=1 to NOR(InputTableName)

Kavosh.InsertNewRow();
For j=1 to NOC(InputTableName)

For k=1 to NODV(InputTableName, j)
If (InputTableName (i,j)==DVC(InputTableName,j, k))

RVT(Kavosh_Convert,i,j)=1 ;
Else

RVT(Kavosh_Convert,i,j)=0 ;
Next k;

Next j;
Next i;

}

Page 8 of 22Barkhordari and Niamanesh ﻿J Big Data (2018) 5:25

After the extraction of all the rules with a maximum length in the intermediate results
layer (Fig. 4), a mapping field is added to these rules. Each rule is converted to 2n − 1
rules, where n is the number of input data item fields. The new rule value is equal to the
concatenation of the mapping field and the result of the logical And between the map-
ping field and the rule value.

Map_Field_Adder()
{
Mapper_Count=2Input_Field_Count -1
CT(“[MHB_Key],[TargetFieldCount],[TargetFieldSum]”,”Kavosh_RuleGenerator”);
For (i=1 to Mapper_Count)

MHB_Key=Concatination(I2B(i), (Concatination(I2B(i) & RVT(Kavosh_Distinct_Rules, i,”Key”)));
Kavosh_RuleGenerator.Insert(MHB_Key, RVT(Kavosh_Distinct_Rules,i, ”TargetFieldCount”) ,

RVT(Kavosh_Distinct_Rules, i,”TargetFieldSum”));
Next i

}

Rule_Sum_And_Count_Calculator()
{

EXEC (Select MHB_Key,Sum([TargetFieldCount]),Sum([TargetFieldSum]) From Kavosh_RuleGenerator group
by MHB_Key,Kavosh_RG1);

}

Confidence_And_Support_Calculator()
{
TotalCount=(Sum(TargertFieldCount) from Kavosh_Distinct_Rules) * (2Input_Field_Count -1);
EXEC (Select MHB_Key,[TargetFieldCount]/TotalCount as Support,[TargetFieldSum]/TargetFieldCount as Confidence
From Kavosh _RG1 group by [MHB_Key],Kavosh_RG2);
}

Apply_Filter(Min_Confidence, Min_Support)
{

EXEC (Select MHB_Key,Confidence,Support from Kavosh_RG2 where Confidence>Min_Confidence and
Support>Min_Support, Kavosh_Final_Result);
}

Suppose the input data are as described in Table 2, where New Service is the target
field and the data are divided between two Mappers.

Table 2  Sample input information

City Sex Income New service Mapper

Tehran Male High Yes 1

Tehran Female Low Yes

Yazd Male High No

Yazd Male High Yes 2

Tehran Female Low No

Yazd Male High No

Table 3  Binominal format

Tehran Sex High New service Mapper

1 1 1 1 1

1 0 0 1

0 1 1 0

0 1 1 1 2

1 0 0 0

0 1 1 0

Page 9 of 22Barkhordari and Niamanesh ﻿J Big Data (2018) 5:25

Table 3 shows the data after conversion to a binominal format. Table 4 shows the
Mapper results. The rules are now combined based on their keys in the Reducer layer.
As shown in Table 5, the rules are combined in this phase, and their rule count and
rule summation values are recalculated. Then, the mapping fields are added to the

Table 4  Mapper results

Decimal rule Target field Rule count Rule sum Mapper

7 1 1 1 1

4 1 1 1

3 0 1 0

3 0 1 0 2

4 1 1 1

3 0 1 0

Table 5  Reducer results

Rule Rule count Rule sum

7 1 1

4 2 2

3 3 0

Table 6  Mapping field addition stage

Mapping field Rule MHB_Key (Binary) MHB_Key
(Decimal)

Rule count Rule sum

111 111 111111 63 1 1

111 100 111100 60 2 2

111 011 111011 59 3 0

110 111 110110 54 1 1

110 100 110100 52 2 2

110 011 110010 50 3 0

101 111 101101 45 1 1

101 100 101100 44 2 2

101 011 101001 41 3 0

100 111 100100 36 1 1

100 100 100100 36 2 2

100 011 100000 32 3 0

011 111 011011 27 1 1

011 100 011000 24 2 2

011 011 011011 27 3 0

010 111 010010 18 1 1

010 100 010000 16 2 2

010 011 010010 18 3 0

001 111 001001 9 1 1

001 100 001000 8 2 2

001 011 001001 9 3 0

Page 10 of 22Barkhordari and Niamanesh ﻿J Big Data (2018) 5:25

rules. The mapping fields are sorted to prevent future shuffling among the Mappers.
As the input item, the field count is equal to three, and seven mapping fields (23 − 1)
must be added to the rules. Table 6 shows this stage.

The rule sum and count are recalculated, and the same key rules are combined, as
depicted in Table 7. In the next stage, confidence and support are calculated. Table 8
shows the results of this stage. As mentioned earlier, confidence values must be cal-
culated for two values: zero and one. Finally, the Reduce stage of the rule generation

Table 7  Rule sum and count recalculation

MHB_Key (Binary) MHB_Key (Decimal) Rule count Rule sum

111111 63 1 1

111100 60 2 2

111011 59 3 0

110110 54 1 1

110100 52 2 2

110010 50 3 0

101101 45 1 1

101100 44 2 2

101001 41 3 0

100100 36 3 3

100000 32 3 0

011011 27 4 1

011000 24 2 2

010010 18 4 1

010000 16 2 2

001001 9 4 1

001000 8 2 2

Table 8  Support and confidence results

Rule Support (%) Confidence
(one) (%)

63 2 100

60 5 100

59 7 0

54 2 100

52 5 100

50 7 0

45 2 100

44 5 100

41 7 0

36 7 100

32 7 0

27 10 20

24 5 100

18 10 20

16 5 100

9 10 20

8 5 100

Page 11 of 22Barkhordari and Niamanesh ﻿J Big Data (2018) 5:25

layer filters rules according to thresholds for support and confidence. If support is
greater than 5% or confidence is greater than 95%, the Reducer results are as shown
in Table 9. As shown in Table 9, some rows have confidence equal to 0%. These rows
have confidence equal to 100% for a zero value. In other words, for rule filtering with
confidence greater than 95%, it is necessary to consider confidence lower than 5%
(100 − 95%). Kavosh can be summarized as follows:

• • The input data are converted to a binominal format.
• • The converted data are distributed among the Mappers.
• • The results of the Mappers are sent to the Reducer layer.
• • Mapping fields are added to the results of the Reducer layer, and MHB_Keys are

generated.
• • The Reducer results are sent to the Rule generation layer.
• • Confidence and support parameters are applied to the extracted rules to create the

final results.

Evaluation
The proposed method is evaluated on the TPC-DS dataset and a real-world dataset.
“The TPC Benchmark DS (TPC-DS) is a decision support benchmark that models sev-
eral generally applicable aspects of a decision support system, including queries and data
maintenance. The benchmark provides a representative evaluation of performance as a
general purpose decision support system. A benchmark result measures query response
time in single user mode, query throughput in multi user mode and data maintenance
performance for a given hardware, operating system, and data processing system con-
figuration under a controlled, complex, multi-user decision support workload. The pur-
pose of TPC benchmarks is to provide relevant, objective performance data to industry
users. TPC-DS Version 2 enables emerging technologies, such as Big Data systems, to
execute the benchmark” (http://www.tpc.org/tpcds​).

The proposed method can use DBMS on each node independently. PostgreSQL is
used as DBMS on each node. PostgreSQL is a powerful, open-source object-relational
database system that uses and extends the SQL language, combined with many fea-
tures that safely store and scale the most complicated data workloads (https​://www.
postg​resql​.org/about​/).

Table 9  Reducer results

Rule Support (%) Confidence
(one) (%)

59 7 0

50 7 0

41 7 0

36 7 100

32 7 0

http://www.tpc.org/tpcds
https://www.postgresql.org/about/
https://www.postgresql.org/about/

Page 12 of 22Barkhordari and Niamanesh ﻿J Big Data (2018) 5:25

To achieve higher performance, an In-Memory database is used. Redis is an open-
source (BSD licensed), in-memory data structure store, which is used as a database,
cache and message broker (https​://redis​.io/).

TPC‑DS

To implement the Kavosh method, Hadoop 2.7.3 is used. Ubuntu 16.04 is installed on
each node. Parts of Hadoop were modified for Kavosh implementation. As described
above, there are three layers of nodes in Kavosh: The first layer consists of the Map-
per nodes, the second layer consists of the Reducer node, and the third layer is the
rule generation layer. The DataNodes of Hadoop are used for these three layers. A
MetaNode is added to the Hadoop NameNode to maintain the type information of
each group of nodes. Because of the Kavosh data format and the independence of
each node, it is possible to use a database management system for each data node.
Therefore, PostgreSQL 9.6.1 is used for the Mapper nodes. A Kavosh converter exists
on the Mapper nodes to convert the input data format into the Kavosh format. To
achieve faster computation speed, an in-memory database is used for the Reducer
node and the rule generation nodes. Redis 3.2.5 is used as an in-memory database on
these nodes with AOF disk persistence for the Reducer and disk persistence is disa-
bled for the rule generation nodes. Table 10 shows DBMS for the various node types.

Figure 2 shows Kavosh architecture using Hadoop.
For data generation, TPC-DS_Tools_v2.8.0 was used. Four tables (Customer_demo-

graphics, Store_sales, Web_sales, and Item) were used for association rule mining.
Figures 3 and 4 show the ER-Diagrams.

A database view is created over four mentioned tables. This view contains customer
information and items that each customer bought. Figures 5, 6, 7 and 8 show the table
structures.

The Kavosh method extracts market basket analysis (MBA) rules for items on vari-
ous sell channels. The frequent items with a maximum length of twenty are extracted.
In other words, twenty related items are extracted. The scale factor is 100 TB and
SF = 100,000. Table 11 shows the number of rows in each data table.

Tables 12 and 13 show the node specifications for the Kavosh method. A total of
86 nodes are used for evaluation. Seventy nodes were used as the Mapper nodes, one
node was used as the Reducer node and fifteen nodes were used as the rule genera-
tion nodes. The input data must be converted to the Kavosh format and it requires
6740 s for the Kavosh converter to convert the input data to the Kavosh format. Each
Mapper node simultaneously converts approximately 1.5 TB of data.

Table 10  DBMS for the various node types

Node type DBMS

Mapper PostgreSQL

Reducer Redis

Rule generation Redis

https://redis.io/

Page 13 of 22Barkhordari and Niamanesh ﻿J Big Data (2018) 5:25

The Kavosh method is compared with FiDoop [10] and Sequence-Growth [20].
Table 14 shows the node specifications for the FiDoop and Sequence-Growth
methods.

The total CPU, RAM and HDD used for Kavosh and other methods are equal.
To evaluate the three methods, frequent items for MBA of web sales and store sales

are extracted. The association rule parameters are shown in Table 15.

Fig. 2  Using Hadoop to implement Kavosh

Fig. 3  Store sales diagram

Page 14 of 22Barkhordari and Niamanesh ﻿J Big Data (2018) 5:25

They are compared with one another in three dimensions: execution time, data com-
pression and load balancing.

Execution time

The method proposed by FiDoop requires three Map-Reduce cycles to generate the
final results. The execution time for each cycle is almost the same, and in each cycle,
a full database scan is required. Sequence-Growth requires twenty Map-Reduce cycles

Fig. 4  Web sales diagram

Fig. 5  Store_sales

Fig. 6  web_sales

Page 15 of 22Barkhordari and Niamanesh ﻿J Big Data (2018) 5:25

Fig. 7  Items

Fig. 8  Customer_Demographics

Table 11  Number of rows in each data table

Table name Number of rows

Items 502,000

web_sales 71,999,670,164

Store_sales 287,997,818,084

Customer_Demographics 1,920,800

Table 12  Mapper node specifications

CPU Intel Core i7-3770
Quad-Core Processor
3.4 GHz

HDD 2 TB

RAM 64 GB

Table 13  Reducer and rule generation node specifications

CPU Intel Core i7-3770
Quad-Core Processor
3.4 GHz

HDD 500 GB

RAM 512 GB

Page 16 of 22Barkhordari and Niamanesh ﻿J Big Data (2018) 5:25

because it generates each frequent item in a Map-Reduce cycle. However, the execution
time decreases each cycle in comparison with the previous cycle because the number of
frequent items decreases. Nevertheless, Kavosh requires a Map-Reduce cycle on com-
pressed data and a rule generation phase. According to the data format, all nodes can
complete their processes independently. In addition, Kavosh uses an in-memory data-
base in the Reducer and rule generation nodes, which causes a reduction in I/O time.
According to the above description, Table 16 shows the execution time for each method.

Figure 9 shows the total execution time for each method.

Table 14  Nodes for FiDoop and Sequence-Growth

CPU Intel Core i7-3770
Quad-Core Processor
3.4 GHz

HDD 1.5 TB

RAM 150 GB

Table 15  Association rule parameters

Parameter name Parameter
value (%)

Confidence 90

Support 0.05

Table 16  Execution details

Method name Map (s) Reduce (s) Rule
generation
(s)

FiDoop 1265 1194 0

Sequence-Growth 3500 2890 0

Kavosh 288 265 1159

2459

1712

0

1000

2000

3000

4000

5000

6000

7000

Associa�on rule mining

Se
co

nd
s

FiDoop

Sequence-Growth

Kavosh

6390

Fig. 9  Association rule mining execution time

Page 17 of 22Barkhordari and Niamanesh ﻿J Big Data (2018) 5:25

Compression

In this part of the evaluation, the Kavosh data volume is compared with those of FiDoop
and Sequence-Growth. In FiDoop and Sequence-Growth, no compression is performed
on the input data, whereas the data are compressed in Kavosh due to the conversion of
the input data to the Kavosh data format. The compression rates are different: if fields
have fewer discrete values, the compression rate reaches ninety percent, but Kavosh
compresses data by an average of approximately 57%. The data compression in the
Kavosh data format is due to the conversion of string and number values to the bit data
type. In the Kavosh method, no data replication or collocation is required for perfor-
mance issues. In addition, data compression helps Kavosh retrieve more data in the data
retrieval phase. Table 17 shows the memory usage for different methods.

Load balancing

In this section, the load balancing of various methods is investigated. To calculate the
load balance, the length of time during which a processor has a CPU usage of over eighty
percent while other CPUs have CPU usages of under thirty percent is calculated. In this
paper, this measure is called Balance_Factor. Using this definition, the results in Table 18
were obtained.

Real traffic data of a mobile operator

In this section, the proposed method is evaluated using real traffic data of a mobile
value-added service (VAS) provider. The evaluation data include more than 60,000,000
subscribers, together with their services. The subscribers used 3000 services and all the
subscribers’ activities were considered in the evaluation. The mobile operator needs
accurate information about their customers’ favourites to be able to provide appropri-
ate VAS suggestions. Due to the high volume of information, existing association rule
algorithms would take a long time to execute and, therefore, are not suitable. In this
evaluation, high-dimensional data items were used. If all the combinations of rules were
applied, 23000 − 1 mapping fields would have to be added to each rule that is generated

Table 17  Memory usage

Method name Used table
data volume
(TB)

FiDoop 39.9

Sequence-Growth 70

Kavosh 70

Table 18  Hadoop configuration

Method Balance_
Factor
(s)

FiDoop 800

Sequence-Growth 3230

Kavosh 15

Page 18 of 22Barkhordari and Niamanesh ﻿J Big Data (2018) 5:25

in the rule generation layer. Such a large number of rules is neither necessary nor calcu-
lable. Based on additional information obtained about the services, a maximum of ten
services is required for recommending VAS. Thus, rules with a maximum length of ten
must be generated.

The input data format is as shown in Table 19. The first column is the subscriber
mobile number and the second column is the service’s ID.

We converted Table 18 to a binominal format. Finally, a <Key,Value> pair is cre-
ated. The Key is the mobile number, and the value is a bit stream with a length of 2999
(Number of VAS services − 1 (Target Field)). Kavosh was deployed on the hardware
nodes with the specifications detailed in “TPC-DS” section.

In the first step, the customer service information table is converted to the Kavosh
format. In this phase, one service is considered as a target field. The relationships
between this service and other services are extracted as rules. The customer service
information table is distributed over 70 nodes. The conversion time is 1200s. Fifty
servers are used for the Mapper, one server is used for the Reducer and sixty servers
are used for the rule generation layer.

Table 20 presents the parameters that are used for the association rule algorithm.
Table 21 shows execution details for the three methods.

Table 19  Input data format

MobileNumber ServiceID

09121450111 1041

09121450111 58

09121450111 971

09121450111 119

09123895004 971

09191005069 113

… …

Table 20  Association rule parameters

Parameter name Parameter
value (%)

Confidence 85

Support 0.1

Table 21  Execution details

Method name Map (s) Reduce (s) Rule
generation
(s)

FiDoop 206 199 0

Sequence-Growth 779 750 0

Kavosh 75 71 119

Page 19 of 22Barkhordari and Niamanesh ﻿J Big Data (2018) 5:25

Figure 10 shows the total execution time for each method.

Compression

Table 22 shows the memory usage for the three methods.

Load balancing

Table 23 shows the values of Balance_Factor for the three methods

405

1529

265

0

200

400

600

800

1000

1200

1400

1600

1800

Associa�on rule mining

Se
co

nd
s

FiDoop

Sequence-Growth

Kavosh

Fig. 10  Association rule mining execution time

Table 22  Memory usage

Method name Table data
volume used
(TB)

FiDoop 19

Sequence-Growth 40

Kavosh 40

Table 23  Load balancing

Method Balance_
Factor
(s)

FiDoop 683

Sequence-Growth 2800

Kavosh 17

Page 20 of 22Barkhordari and Niamanesh ﻿J Big Data (2018) 5:25

Scalability

In this section Kavosh scalability is evaluated. Different data sizes(TPC-DS) and var-
ious number of nodes are investigated and the results are depicted as Fig. 11. The
results show that by adding more nodes and scale out data over nodes less time is
required for data processing.

Conclusion
In this paper, the Kavosh method is proposed. Kavosh is a Map-Reduce-based associ-
ation rule mining method that can manage an immense amount of data. This method
converts input data into the Kavosh format, which is a unified and compressed for-
mat. Using the Kavosh data format, data can be distributed over nodes, and nodes
do not require additional data from other nodes. Kavosh also compresses input data
and facilitates data management. The main advantage of the proposed method is the
omission of iterations for extracting rules. This is a substantial achievement because
writing intermediate results to a disk and retrieving them for the next iteration is
the most time-consuming portion of association rule mining. Another important
achievement of the proposed method is the balanced process for each node. Because
of the unified data format, each node is allocated the same number of rows in the
homogenous nodes; thus, the process is equally divided among the nodes. By modi-
fying Hadoop, the proposed method was implemented. Kavosh was compared with
prominent association rule mining methods and achieved a faster execution time.

Kavosh is not suitable for high-dimensional data because creating all the input field
combinations requires many nodes in the data generation layer. However, Kavosh is
completely usable for normal data (not high-dimensional data) and can generate rules of
a predefined length if other rule lengths are not required.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

 1 TB 5 TB 10 TB 50 TB 100 TB

Ti
m

e
(S

ec
on

d)

Data size(Terabyte)

10 nodes

20 nodes

50 nodes

80 nodes

100 nodes

Fig. 11  Kavosh scalability

Page 21 of 22Barkhordari and Niamanesh ﻿J Big Data (2018) 5:25

Data format unification can be applied to problems in other fields. This method can
be used in data warehouse like Aras and Atrak methods [22, 23], graph processing [24],
integrating multidimensional data sources [25] and specific problems like finding patient
similarity [26]. For future works, this method can also be used for interactive query pro-
cessing, online data mining and stream processing.
Authors’ contributions
All authors contributed equally. All authors read and approved the final manuscript.

Acknowledgements
None.

Ethics approval and consent to participate and Consent for publication
In submitting an article to any of the journals published by SpringerOpen I certify that: (1) I am authorized by my co-
authors to enter into these arrangements. (2) I warrant, on behalf of myself and my co-authors, that: (i) the article is origi-
nal, has not been formally published in any other peer-reviewed journal, is not under consideration by any other journal
and does not infringe any existing copyright or any other third party rights; (ii) I am/we are the sole author(s) of the arti-
cle and have full authority to enter into this agreement and in granting rights to Springer are not in breach of any other
obligation; (iii) the article contains nothing that is unlawful, libellous, or which would, if published, constitute a breach of
contract or of confidence or of commitment given to secrecy; (iv)I/we have taken due care to ensure the integrity of the
article. To my/our—and currently accepted scientific—knowledge all statements contained in it purporting to be facts
are true and any formula or instruction contained in the article will not, if followed accurately, cause any injury, illness or
damage to the user. (3) I, and all co-authors, agree that the article, if editorially accepted for publication, shall be licensed
under the Creative Commons Attribution License 4.0. If the law requires that the article be published in the public
domain, I/we will notify Springer at the time of submission, and in such cases the article shall be released under the
Creative Commons 1.0 Public Domain Dedication waiver. For the avoidance of doubt it is stated that “Introduction” and
“Related works” sections of this license agreement shall apply and prevail regardless of whether the article is published
under Creative Commons Attribution License 4.0 or the Creative Commons 1.0 Public Domain Dedication waiver. (4) I,
and all co-authors, agree that, if the article is editorially accepted for publication in Chemistry Central Journal, Chemical
and Biological Technologies in Agriculture, Geochemical Transactions, Heritage Science, Journal of Cheminformatics, or
Sustainable Chemical Processes, data included in the article shall be made available under the Creative Commons 1.0
Public Domain Dedication waiver, unless otherwise stated. For the avoidance of doubt it is stated that “Introduction”,
“Related works” and “Methods” sections of this license agreement shall apply and prevail.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
http://www.tpc.org/TPC_Docum​ents_Curre​nt_Versi​ons/downl​oad_progr​ams/tools​-downl​oad-reque​st.asp?bm_
type=TPC-DS&bm_vers=2.7.0&mode=CURRE​NT-ONLY.

Funding
None.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 22 March 2018 Accepted: 18 June 2018

References
	1.	 Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM. 2008;51(1):107–13.
	2.	 Zaki MJ. Parallel and distributed association mining: a survey. IEEE Concurr. 1999;7(4):14–25.
	3.	 Pramudiono I, Kitsuregawa M. FP-tax: tree structure based generalized association rule mining. In: Proceedings of

the 9th ACM SIGMOD workshop on research issues in data mining and knowledge discovery. New York: ACM; 2004.
p. 60–3.

	4.	 Oruganti S, Ding Q, Tabrizi N. Exploring Hadoop as a platform for distributed association rule mining. In: Future
computing 2013 the fifth international conference on future computational technologies and applications; 2013. p.
62–7.

	5.	 Kovacs F, Illés J. Frequent itemset mining on hadoop. In: 2013 IEEE 9th international conference on computational
cybernetics (ICCC). New York: IEEE; 2013. p. 241–5.

	6.	 Li N, Zeng L, He Q, Shi Z. Parallel implementation of apriori algorithm based on mapreduce. In: 2012 13th ACIS
international conference on software engineering, artificial intelligence, networking and parallel and distributed
computing (SNPD). New York: IEEE; 2012. p. 236–41.

	7.	 Yang XY, Liu Z, Fu Y. MapReduce as a programming model for association rules algorithm on Hadoop. In: 2010 3rd
international conference on information sciences and interaction sciences (ICIS). New York: IEEE; 2010. p. 99–102.

http://www.tpc.org/TPC_Documents_Current_Versions/download_programs/tools-download-request.asp%3fbm_type%3dTPC-DS%26bm_vers%3d2.7.0%26mode%3dCURRENT-ONLY
http://www.tpc.org/TPC_Documents_Current_Versions/download_programs/tools-download-request.asp%3fbm_type%3dTPC-DS%26bm_vers%3d2.7.0%26mode%3dCURRENT-ONLY

Page 22 of 22Barkhordari and Niamanesh ﻿J Big Data (2018) 5:25

	8.	 Li L, Zhang M. The strategy of mining association rule based on cloud computing. In: 2011 international conference
on business computing and global informatization (BCGIN). New York: IEEE; 2011. p. 475–8.

	9.	 Lin MY, Lee PY, Hsueh SC. Apriori-based frequent itemset mining algorithms on MapReduce. In: Proceedings of the
6th international conference on ubiquitous information management and communication. New York: ACM; 2012. p.
76.

	10.	 Xun Y, Zhang J, Qin X. Fidoop: parallel mining of frequent itemsets using mapreduce. IEEE Trans Syst Man Cybern
Syst. 2016;46(3):313–25.

	11.	 Barkhordari M, Niamanesh M. ScadiBino: an effective MapReduce-based association rule mining method. In: Pro-
ceedings of the sixteenth international conference on electronic commerce. New York: ACM; 2014. p. 1.

	12.	 Yu KM, Zhou J, Hong TP, Zhou JL. A load-balanced distributed parallel mining algorithm. Expert Syst Appl.
2010;37(3):2459–64.

	13.	 Li H, Wang Y, Zhang D, Zhang M, Chang EY. Pfp: parallel fp-growth for query recommendation. In: Proceedings of
the 2008 ACM conference on recommender systems. New York: ACM; 2008. p. 107–14.

	14.	 Bechini A, Marcelloni F, Segatori A. A MapReduce solution for associative classification of big data. Inf Sci.
2016;332:33–55.

	15.	 Yang L, Shi Z, Xu LD, Liang F, Kirsh I. DH-TRIE frequent pattern mining on Hadoop using JPA. In: 2011 IEEE interna-
tional conference on granular computing (GrC). New York: IEEE; 2011. p. 875–8.

	16.	 Tlili R, Slimani Y. A novel data partitioning approach for association rule mining on grids. Int J Grid Distributed Com-
put. 2012;5(4):1–20.

	17.	 Riondato M, DeBrabant JA, Fonseca R, Upfal E. PARMA: a parallel randomized algorithm for approximate association
rules mining in MapReduce. In: Proceedings of the 21st ACM international conference on Information and knowl-
edge management. New York: ACM; 2012. p. 85-94.

	18.	 Yu KM, Zhou J. Parallel TID-based frequent pattern mining algorithm on a PC Cluster and grid computing system.
Expert Syst Appl. 2010;37(3):2486–94.

	19.	 Moens S, Aksehirli E, Goethals B. Frequent itemset mining for big data. In: 2013 IEEE international conference on Big
Data. New York: IEEE; 2013. p. 111–8.

	20.	 Liang YH, Wu SY. Sequence-growth: A scalable and effective frequent itemset mining algorithm for big data based
on MapReduce framework. In: 2015 IEEE international congress on Big Data (BigData Congress). New York: IEEE;
2015. p. 393–400.

	21.	 Chaudhary S, Sharma A, Singh R, Kumar P. Lexicographic logical multi-hashing for frequent itemset mining. In: 2015
international conference on computing, communication and automation (ICCCA). New York: IEEE; 2015. p. 563–8.

	22.	 Barkhordari M, Niamanesh M. Atrak: a MapReduce-based data warehouse for big data. J Supercomput.
2017;73:4596–610.

	23.	 Barkhordari M, Niamanesh M. Aras: a method with uniform distributed dataset to solve data warehouse problems
for big data. Int J Distributed Syst Technol (IJDST). 2017;8(2):47–60.

	24.	 Barkhordari M, Niamanesh M. ScaDiGraph: a MapReduce-based method for solving graph problems. J Inform Sci
Eng. 2017;33(1):143–58.

	25.	 Barkhordari M, Niamanesh M. Arvand: a method to integrate multidimensional data sources into big data analytic
structures. J Inf Sci Eng. 2018;34(2):505–18.

	26.	 Barkhordari M, Niamanesh M. ScaDiPaSi: an effective scalable and distributable MapReduce-based method to find
patient similarity on huge healthcare networks. Big Data Res. 2015;2(1):19–27.

	Kavosh: an effective Map-Reduce-based association rule mining method
	Abstract
	Introduction
	Related works
	Methods
	• Converting input data items to Kavosh format
	• Rule extraction

	Evaluation
	TPC-DS
	Execution time
	Compression
	Load balancing

	Real traffic data of a mobile operator
	Compression
	Load balancing

	Scalability

	Conclusion
	Authors’ contributions
	References

