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Introduction
With the growth of information, traditional analysis methods must be modified because 
they cannot handle immense amounts of data. Data mining algorithms are analytics 
that require a paradigm shift for algorithm execution and changes for deployment over 
nodes. Data mining algorithms must be modified so they can be executed over scalable 
and distributable environments. However, modifying data mining algorithms for distrib-
uted architecture is not easy. One problem with distributed architecture is data locality. 
This occurs when the required data for processing do not exist on the processor node.

One of the most prominent methods used to solve big data problems over shared-
nothing architecture is Map-Reduce. Map-Reduce [1] is used in open-source solutions 
such as Hadoop and Spark. There are many products in addition to Hadoop and Spark 
that can be used to solve data mining problems. However, pure Map-Reduce suffers 
from the data locality problem and does not support iteration. Because nearly all data 
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mining algorithms are iterative in nature, it is necessary to solve the iteration problem in 
Map-Reduce to solve data mining problems by using Map-Reduce-based methods.

Association rule mining is a data mining algorithm that requires iteration to find fre-
quent itemsets. Methods such as Apriori [2] and FP-Growth [3] solve association rule 
mining problems. There are two main parameters for association rule mining: confi-
dence and support. A rule in an association rule is defined as x → y (if x, then y), where 
x and y are itemsets. The support of a rule is defined as the frequency of an itemset in a 
database. The confidence of a rule is defined as

In this paper, Kavosh, which is a method for association rule mining, is proposed. This 
method is designed for a shared-nothing architecture and can properly solve the asso-
ciation rule mining problem in Map-Reduce.

This method solves the data locality problem completely. Thus, the nodes do not 
require data from other nodes. By changing and unifying the data format, data compres-
sion and data load balancing are supported. In addition, iteration is omitted in the pro-
posed method; therefore, it is well-suited for the Map-Reduce architecture.

The remainder of this paper is structured as follows: In “Related works” section, 
related works are discussed. In the third section, Kavosh is presented. The fourth section 
describes an evaluation, and the final section presents the conclusions.

Related works
Map-Reduce is used to solve many problems over a shared-nothing architecture. This 
method is also used to solve association rule mining. There are four main problems with 
association rule mining on a shared-nothing architecture, namely, lack of support for the 
following:

• • Data locality,
• • Iteration,
• • Load balancing, and
• • Data compression.

As mentioned above, the data locality problem is a lack of required data on the proces-
sor node, which creates data dependency among nodes. This problem causes network 
congestion and increases the algorithm execution time. Another problem is lack of itera-
tion support. When intermediate results are created by the Reducers, they must be fed 
as input to the Mappers for another iteration. This problem also increases the execution 
time because intermediate data must be written on the disk by the Reducers and read by 
the Mappers to initiate another iteration. The third problem is the load balancing prob-
lem. This occurs when the processes are not allocated to the Mappers fairly. This prob-
lem reduces the algorithm speed because all nodes must wait for a busy node after job 
completion. The last problem is lack of support for data compression. Because of the 
large amount of data, data volume reduction is necessary for more rapid iterations and 
intermediate result storage.
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In some methods, traditional Apriori methods are used in Map-Reduce. Transactions 
are allocated to Mappers and frequent k-itemsets are extracted from each Mapper before 
the results are shuffled through combiners and the final k-itemsets are extracted accord-
ing to support and confidence thresholds. In Oruganti et al. [4], Kovacs et al. [5], Li et al. 
[6], Mappers and Reducers are used, but in [7, 8], in addition to Mappers and Reducers, 
Combiners are used for better shuffling and to address performance issues.

In Lin et al [9], three methods are proposed: Single Pass Counting (SPC), Fixed Passes 
Combined-counting (FPC) and Dynamic Passes Combined-counting (DPC). In Apriori, 
each iteration must generally wait until the results of all the Reducers from the previous 
iteration have been generated.

The FiDoop [10] method uses three Map-Reduce phases to generate frequent itemsets. 
FiDoop claims to support automatic parallelization, load balancing, data distribution, 
and fault tolerance. ScaDiBino [11] extracts rules with the maximum length and one tar-
get field. This method omits iterations. In Yu et al. [12], the Distributed Parallel Apriori 
(DPA) algorithm is proposed and metadata are stored in the form of Transaction Iden-
tifiers (TIDs). In this method, a single scan of the database is required and a balanced 
workload among nodes is created.

Various proposed methods use FP-Growth on a shared-nothing architecture. In Li 
et al. [13], parallel FP-Growth is proposed for independently executing a group of tasks 
on a node. In Bechini et  al. [14], MRAC and MRAC+ are proposed, which are Map-
Reduce-based and FP-Growth-based methods, respectively, and FP-Growth was mod-
ified to overcome performance issues. In Yang et  al. [15], a Hadoop-based method is 
proposed that uses a distributed DH-TRIE frequent pattern algorithm and tries to solve 
FP-Growth problems for big data. In Tlili et  al. [16], a partitioning method is used to 
achieve load balancing problems for association rule mining. PARMA [17] creates mul-
tiple small random samples of the input data and runs a mining algorithm on them. 
Because it is implemented on small samples, the algorithm can be run in parallel and 
independently. The results are aggregated to produce the final results. In Yu and Zhou 
[18], Tidset-based Parallel FP-tree (TPFP-tree) and Balanced Tidset-based Parallel FP-
tree (BTP-tree) are proposed. In the proposed method, a transaction identification set 
(Tidset) is used to provide direct access to transactions instead of a full database scan. 
In Moens et al. [19], two methods are proposed: Dist-Eclat and BigFIM. Dist-Eclat has 
three steps: finding the frequent items, generating frequent itemsets of size k and sub-
tree mining. BigFIM also has three steps: generating frequent itemsets of size k, finding 
potential extensions and sub-tree mining. The Sequence-Growth algorithm is designed 
according to the concepts of the lexicographical sequence tree and the lazy mining prun-
ing strategy and is implemented in the MapReduce framework for a distributed execu-
tion [20]. In Liang et al. [21], an algorithm for lexicographic frequent itemset generation 
is proposed, which claims to find the maximum information from a database regarding 
frequent itemsets and their respective frequencies in a single database scan.

Methods
The proposed method uses the Map-Reduce architectural structure for association rule 
mining. The first step in the proposed method is to convert the input data items to a 
Kavosh format and the second step is to extract rules with variable lengths. In this paper, 
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the number of fields after the “if” conditions are applied is defined as the length of the 
rule. In the proposed method, data are converted into Kavosh format, which helps nodes 
execute their processes independently. This format is a unified format and other input 
data formats are converted to this format. The proposed unified format helps create 
<key, value> pairs for use in the Map-Reduce method.

• Converting input data items to Kavosh format

In this section, the Kavosh format is defined
Θ = {θ1, θ2, …, θn, ϯ}.
The input data table is denoted as Θ, the columns of the table as θ and the table key as ϯ

θk= {µ1, µ2, ..., µm}.

The distinct values of each column are denoted as µ. In this paper, it is assumed that all 
θ values are discrete and that a continuous θ must be converted to discrete values.

Based on the above definitions, the Kavosh format is defined as follows:

ϝ = {θ1 → μ1, θ2 → μ2,…, θn → μm}

where ϝ is the Kavosh table and each θp → µq is equal to zero or one. Each input column 
value is converted to a Boolean column if there are more than two values for the column.

The input data (Θ) are divided into equal segments. For fragmentation, the function ψ 
is used, which is defined as follows:

Ψ (ϝ, ϯstart, ϯfinish, ηk)

where ηk is the Mapper node to which the data ϝ are allocated from key ϯstart to key ϯfinish. 
From the previous conversion steps, a Boolean matrix is created on each Mapper. Each 
field ϝ can be selected as a target field. If a binary position is assigned to each field ϝ 
(except target fields), each row can be converted into a decimal number. Therefore, a 
<Key, Value> pair is created in which the Key is the decimal number of each row (Rule-
Key) and the Value is the decimal value of the target field. In the next step, the Kavosh 
triple is created, which is defined as follows:

<Rule-Key, Rule count, Target field count with the specified value>

According to the generated <Rule-Key, Target fields>, the count of each Rule-Key and 
target field with the specified value is calculated and the Kavosh triple set is created. To 
convert Mapper data into the Kavosh triple and Rule-Key aggregation, the function Ϯ is 
used.

Ϯ(ηk, ϼk)

where ϼk is the result of computation of the input data. After calculating ϼk for each 
Mapper, all ϼk are reduced to ϼReducer by the function £.

£(ϼ1, ϼ2,…, ϼp, ϼReducer, ϧ)

where ϧ is the Reducer node and p is the number of Mappers.
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• Rule extraction

In this section, a Map-Key is added to the Rule-Key (ϻ). The Map-Key is used for rule 
generation, and its length in binary format is equal to the Rule-Key. Here, ϼReducer is sent 
to the rule generation nodes. Each rule generation node has one or more Map-Keys. The 
function ϖ allocates ϼReducer to each rule generation node.
where ι is the Map-Key, q is the number of Map-Keys allocated to a rule generation node, 
and Ϧ is the rule generation node.
ϖ (ϼReducer, ι1, ι2,…, ιq ,Ϧr)
Each Map-Key is concatenated to all Rule-Keys. If the length of the Rule-Key in binary 

format is equal to L, then there are 2L − 1 Map-Keys. They start from zero to 2L − 1 and 
are concatenated with the Rule-Keys to create various condition combinations of fields ϝ. 
The concatenation (ϒ) of the Map-Key with the result of the “logical and” (ϰ) of the Map-
Key and the Rule-Key is called MHB_Key, and τ is the MHB_Key.

τ = ϒ (ιi, ϰ (ϻ, ιi))
There are two important factors for rule extraction in association rule mining: confi-

dence and support. In this paper, Д (τ) is defined as the frequency of a specified MHB_
Key (τ) and ζ (τ, σ, ρ) is defined as the frequency of a specific decimal value (ρ) that is 
equal to the target field (σ) for a specified MHB_Key (τ). In addition, ς is the total num-
ber of generated Kavosh triple sets. Thus, the support ( ) is calculated using the follow-
ing formula:

Moreover, the confidence ( ) is calculated using the following formula:

After  and  have been calculated, they are compared with the defined thresholds for the 
association rules and the final results are produced. The rules are extracted using Д.

Д ( , , α, β, Ϧr)

where α is the support threshold and β is the confidence threshold. Each rule generation 
node creates its final result separately because the results do not have common rules 
with other nodes. Figure 1 shows the Kavosh architecture. It consists of three layers: the 
Mapper layer, the Reducer layer and the rule generation layer.

For clearer illustration, pseudocodes are provided. Table 1 lists the functions used in 
the code.
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Fig. 1  Kavosh architecture

Table 1  Pseudocode functions

Function Description

NOC(TableName) Returns the number of columns

NOR(TableName) Returns the number of rows

NODV(TableName, ColumnName/ColumnID) Returns the number of distinct values in the specified column

NaOC(TableName, k) Returns the name of the kth column in the specified table

DVC(TableName,ColumnName/ColumnID, k) Returns the kth distinct value of the specified column

CT(ColumnsArray[],TableName) Creates a table with an input column array with a specified table 
name

RVT(TableName, ColumnName/ColumnID,RowID) Returns the value of the specified table name, column name/
column ID, and row ID

EXEC (Query, ResultTable) Executes a query, creates a results table and puts the results into 
the results table

The results table can be created in RAM or HDD, according to the 
node hardware specification.

& & is a logical operator (And)

I2B(i) Converts the integer value i to a binary value
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The following code shows the binominal conversion.

The following pseudocode shows the Mapper’s functionality:

Mapper()
{

CT(“[Rule_Key],[TargetFieldCount],[ TargetFieldSum]”,”Kavosh_Mapper”);
For i=1 to NOR(Kavosh_Convert)

For j=1 to NOC(Kavosh_Convert)
If (NaOC(TableName, j)!=TargetField)

MHB_Key=Concatenate(Key, RVT(Kavosh,i,j))     ;
Next j;

Insert into Kavosh_Mapper ([Rule_Key],[TargetFieldCount],[ TargetFieldSum]) values (Key, 1, RVT(Kavosh,i, 
TargetField));
Next i;
EXEC (Select [Rule_Key],Sum([TargetFieldCount]),Sum([ TargetFieldSum]) From Kavosh_Mapper group by 
[Rule_Key],Kavosh_Rules);

Output <k’1,v’1,v’2> <Kavosh_Mapper.[Rule_Key], Kavosh_Mapper.[TargetFieldCount],
Kavosh_Mapper[TargetFieldSum]

}

In the reduce phase, the EXEC() function is repeated to obtain the final intermediate 
results layer. The following pseudocode shows the Reducer phase:

Reducer()
{

Input <k1,v1,v2> <Kavosh_Mapper.[Rule_Key], Kavosh_Mapper.[TargetFieldCount], Kavosh_Mapper.[
TargetFieldSum]>

EXEC (Select [Rule_Key],Sum([TargetFieldCount]),Sum([ TargetFieldSum]) From Kavosh_Rules group by 
[Rule_Key], Kavosh_Distinct_Rules);

Output <k’1,v’1,v’2> < Kavosh_Distinct_Rules.[Rule_Key], Kavosh_Distinct_Rules.[TargetFieldCount],
Kavosh_Distinct_Rules.[ TargetFieldSum]>

}

Convert_To_Binominal()
{

For i=1 to NOC(InputTableName)
For j=1 to NODV(InputTableName, i)

ColumnsArray[]=ColumnsArray[]+DVC(InputTableName,i, j);
Next j

Next i
CT(ColumnsArray[],”Kavosh_Convert”);
For i=1 to NOR(InputTableName)

Kavosh.InsertNewRow();
For j=1 to NOC(InputTableName)

For k=1 to NODV(InputTableName, j)
If (InputTableName (i,j)==DVC(InputTableName,j, k))

RVT(Kavosh_Convert,i,j)=1     ;
Else

RVT(Kavosh_Convert,i,j)=0     ;
Next k;

Next j;
Next i;

}
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After the extraction of all the rules with a maximum length in the intermediate results 
layer (Fig.  4), a mapping field is added to these rules. Each rule is converted to 2n − 1 
rules, where n is the number of input data item fields. The new rule value is equal to the 
concatenation of the mapping field and the result of the logical And between the map-
ping field and the rule value.

Map_Field_Adder()
{
Mapper_Count=2Input_Field_Count -1
CT(“[MHB_Key],[TargetFieldCount],[ TargetFieldSum]”,”Kavosh_RuleGenerator”);
For (i=1  to Mapper_Count)

MHB_Key=Concatination(I2B(i), (Concatination(I2B(i) & RVT(Kavosh_Distinct_Rules, i,”Key”) ));
Kavosh_RuleGenerator.Insert(MHB_Key, RVT(Kavosh_Distinct_Rules,i, ”TargetFieldCount”)  , 

RVT(Kavosh_Distinct_Rules, i,”TargetFieldSum”));
Next i

}

Rule_Sum_And_Count_Calculator()
{

EXEC (Select MHB_Key,Sum([TargetFieldCount]),Sum([ TargetFieldSum]) From Kavosh_RuleGenerator group 
by MHB_Key,Kavosh_RG1);

}

Confidence_And_Support_Calculator()
{
TotalCount=(Sum(TargertFieldCount) from Kavosh_Distinct_Rules) * (2Input_Field_Count -1);
EXEC (Select MHB_Key,[TargetFieldCount]/TotalCount as Support,[TargetFieldSum]/TargetFieldCount as Confidence 
From Kavosh _RG1 group by [MHB_Key],Kavosh_RG2);
}

Apply_Filter(Min_Confidence, Min_Support)
{

EXEC (Select MHB_Key,Confidence,Support from Kavosh_RG2 where Confidence>Min_Confidence and 
Support>Min_Support, Kavosh_Final_Result);
}

Suppose the input data are as described in Table  2, where New Service is the target 
field and the data are divided between two Mappers.

Table 2  Sample input information

City Sex Income New service Mapper

Tehran Male High Yes 1

Tehran Female Low Yes

Yazd Male High No

Yazd Male High Yes 2

Tehran Female Low No

Yazd Male High No

Table 3  Binominal format

Tehran Sex High New service Mapper

1 1 1 1 1

1 0 0 1

0 1 1 0

0 1 1 1 2

1 0 0 0

0 1 1 0
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Table 3 shows the data after conversion to a binominal format. Table 4 shows the 
Mapper results. The rules are now combined based on their keys in the Reducer layer. 
As shown in Table 5, the rules are combined in this phase, and their rule count and 
rule summation values are recalculated. Then, the mapping fields are added to the 

Table 4  Mapper results

Decimal rule Target field Rule count Rule sum Mapper

7 1 1 1 1

4 1 1 1

3 0 1 0

3 0 1 0 2

4 1 1 1

3 0 1 0

Table 5  Reducer results

Rule Rule count Rule sum

7 1 1

4 2 2

3 3 0

Table 6  Mapping field addition stage

Mapping field Rule MHB_Key (Binary) MHB_Key 
(Decimal)

Rule count Rule sum

111 111 111111 63 1 1

111 100 111100 60 2 2

111 011 111011 59 3 0

110 111 110110 54 1 1

110 100 110100 52 2 2

110 011 110010 50 3 0

101 111 101101 45 1 1

101 100 101100 44 2 2

101 011 101001 41 3 0

100 111 100100 36 1 1

100 100 100100 36 2 2

100 011 100000 32 3 0

011 111 011011 27 1 1

011 100 011000 24 2 2

011 011 011011 27 3 0

010 111 010010 18 1 1

010 100 010000 16 2 2

010 011 010010 18 3 0

001 111 001001 9 1 1

001 100 001000 8 2 2

001 011 001001 9 3 0
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rules. The mapping fields are sorted to prevent future shuffling among the Mappers. 
As the input item, the field count is equal to three, and seven mapping fields (23 − 1) 
must be added to the rules. Table 6 shows this stage.

The rule sum and count are recalculated, and the same key rules are combined, as 
depicted in Table 7. In the next stage, confidence and support are calculated. Table 8 
shows the results of this stage. As mentioned earlier, confidence values must be cal-
culated for two values: zero and one. Finally, the Reduce stage of the rule generation 

Table 7  Rule sum and count recalculation

MHB_Key (Binary) MHB_Key (Decimal) Rule count Rule sum

111111 63 1 1

111100 60 2 2

111011 59 3 0

110110 54 1 1

110100 52 2 2

110010 50 3 0

101101 45 1 1

101100 44 2 2

101001 41 3 0

100100 36 3 3

100000 32 3 0

011011 27 4 1

011000 24 2 2

010010 18 4 1

010000 16 2 2

001001 9 4 1

001000 8 2 2

Table 8  Support and confidence results

Rule Support (%) Confidence 
(one) (%)

63 2 100

60 5 100

59 7 0

54 2 100

52 5 100

50 7 0

45 2 100

44 5 100

41 7 0

36 7 100

32 7 0

27 10 20

24 5 100

18 10 20

16 5 100

9 10 20

8 5 100
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layer filters rules according to thresholds for support and confidence. If support is 
greater than 5% or confidence is greater than 95%, the Reducer results are as shown 
in Table 9. As shown in Table 9, some rows have confidence equal to 0%. These rows 
have confidence equal to 100% for a zero value. In other words, for rule filtering with 
confidence greater than 95%, it is necessary to consider confidence lower than 5% 
(100 − 95%). Kavosh can be summarized as follows:

• • The input data are converted to a binominal format.
• • The converted data are distributed among the Mappers.
• • The results of the Mappers are sent to the Reducer layer.
• • Mapping fields are added to the results of the Reducer layer, and MHB_Keys are 

generated.
• • The Reducer results are sent to the Rule generation layer.
• • Confidence and support parameters are applied to the extracted rules to create the 

final results.

Evaluation
The proposed method is evaluated on the TPC-DS dataset and a real-world dataset. 
“The TPC Benchmark DS (TPC-DS) is a decision support benchmark that models sev-
eral generally applicable aspects of a decision support system, including queries and data 
maintenance. The benchmark provides a representative evaluation of performance as a 
general purpose decision support system. A benchmark result measures query response 
time in single user mode, query throughput in multi user mode and data maintenance 
performance for a given hardware, operating system, and data processing system con-
figuration under a controlled, complex, multi-user decision support workload. The pur-
pose of TPC benchmarks is to provide relevant, objective performance data to industry 
users. TPC-DS Version 2 enables emerging technologies, such as Big Data systems, to 
execute the benchmark” (http://www.tpc.org/tpcds​).

The proposed method can use DBMS on each node independently. PostgreSQL is 
used as DBMS on each node. PostgreSQL is a powerful, open-source object-relational 
database system that uses and extends the SQL language, combined with many fea-
tures that safely store and scale the most complicated data workloads (https​://www.
postg​resql​.org/about​/).

Table 9  Reducer results

Rule Support (%) Confidence 
(one) (%)

59 7 0

50 7 0

41 7 0

36 7 100

32 7 0

http://www.tpc.org/tpcds
https://www.postgresql.org/about/
https://www.postgresql.org/about/
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To achieve higher performance, an In-Memory database is used. Redis is an open-
source (BSD licensed), in-memory data structure store, which is used as a database, 
cache and message broker (https​://redis​.io/).

TPC‑DS

To implement the Kavosh method, Hadoop 2.7.3 is used. Ubuntu 16.04 is installed on 
each node. Parts of Hadoop were modified for Kavosh implementation. As described 
above, there are three layers of nodes in Kavosh: The first layer consists of the Map-
per nodes, the second layer consists of the Reducer node, and the third layer is the 
rule generation layer. The DataNodes of Hadoop are used for these three layers. A 
MetaNode is added to the Hadoop NameNode to maintain the type information of 
each group of nodes. Because of the Kavosh data format and the independence of 
each node, it is possible to use a database management system for each data node. 
Therefore, PostgreSQL 9.6.1 is used for the Mapper nodes. A Kavosh converter exists 
on the Mapper nodes to convert the input data format into the Kavosh format. To 
achieve faster computation speed, an in-memory database is used for the Reducer 
node and the rule generation nodes. Redis 3.2.5 is used as an in-memory database on 
these nodes with AOF disk persistence for the Reducer and disk persistence is disa-
bled for the rule generation nodes. Table 10 shows DBMS for the various node types.

Figure 2 shows Kavosh architecture using Hadoop.
For data generation, TPC-DS_Tools_v2.8.0 was used. Four tables (Customer_demo-

graphics, Store_sales, Web_sales, and Item) were used for association rule mining. 
Figures 3 and 4 show the ER-Diagrams.

A database view is created over four mentioned tables. This view contains customer 
information and items that each customer bought. Figures 5, 6, 7 and 8 show the table 
structures.

The Kavosh method extracts market basket analysis (MBA) rules for items on vari-
ous sell channels. The frequent items with a maximum length of twenty are extracted. 
In other words, twenty related items are extracted. The scale factor is 100  TB and 
SF = 100,000. Table 11 shows the number of rows in each data table.

Tables  12 and 13 show the node specifications for the Kavosh method. A total of 
86 nodes are used for evaluation. Seventy nodes were used as the Mapper nodes, one 
node was used as the Reducer node and fifteen nodes were used as the rule genera-
tion nodes. The input data must be converted to the Kavosh format and it requires 
6740 s for the Kavosh converter to convert the input data to the Kavosh format. Each 
Mapper node simultaneously converts approximately 1.5 TB of data.

Table 10  DBMS for the various node types

Node type DBMS

Mapper PostgreSQL

Reducer Redis

Rule generation Redis

https://redis.io/
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The Kavosh method is compared with FiDoop [10] and Sequence-Growth [20]. 
Table  14 shows the node specifications for the FiDoop and Sequence-Growth 
methods.

The total CPU, RAM and HDD used for Kavosh and other methods are equal.
To evaluate the three methods, frequent items for MBA of web sales and store sales 

are extracted. The association rule parameters are shown in Table 15.

Fig. 2  Using Hadoop to implement Kavosh

Fig. 3  Store sales diagram
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They are compared with one another in three dimensions: execution time, data com-
pression and load balancing.

Execution time

The method proposed by FiDoop requires three Map-Reduce cycles to generate the 
final results. The execution time for each cycle is almost the same, and in each cycle, 
a full database scan is required. Sequence-Growth requires twenty Map-Reduce cycles 

Fig. 4  Web sales diagram

Fig. 5  Store_sales

Fig. 6  web_sales
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Fig. 7  Items

Fig. 8  Customer_Demographics

Table 11  Number of rows in each data table

Table name Number of rows

Items 502,000

web_sales 71,999,670,164

Store_sales 287,997,818,084

Customer_Demographics 1,920,800

Table 12  Mapper node specifications

CPU Intel Core i7-3770 
Quad-Core Processor 
3.4 GHz

HDD 2 TB

RAM 64 GB

Table 13  Reducer and rule generation node specifications

CPU Intel Core i7-3770 
Quad-Core Processor 
3.4 GHz

HDD 500 GB

RAM 512 GB
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because it generates each frequent item in a Map-Reduce cycle. However, the execution 
time decreases each cycle in comparison with the previous cycle because the number of 
frequent items decreases. Nevertheless, Kavosh requires a Map-Reduce cycle on com-
pressed data and a rule generation phase. According to the data format, all nodes can 
complete their processes independently. In addition, Kavosh uses an in-memory data-
base in the Reducer and rule generation nodes, which causes a reduction in I/O time. 
According to the above description, Table 16 shows the execution time for each method.

Figure 9 shows the total execution time for each method.

Table 14  Nodes for FiDoop and Sequence-Growth

CPU Intel Core i7-3770 
Quad-Core Processor 
3.4 GHz

HDD 1.5 TB

RAM 150 GB

Table 15  Association rule parameters

Parameter name Parameter 
value (%)

Confidence 90

Support 0.05

Table 16  Execution details

Method name Map (s) Reduce (s) Rule 
generation 
(s)

FiDoop 1265 1194 0

Sequence-Growth 3500 2890 0

Kavosh 288 265 1159
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Fig. 9  Association rule mining execution time
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Compression

In this part of the evaluation, the Kavosh data volume is compared with those of FiDoop 
and Sequence-Growth. In FiDoop and Sequence-Growth, no compression is performed 
on the input data, whereas the data are compressed in Kavosh due to the conversion of 
the input data to the Kavosh data format. The compression rates are different: if fields 
have fewer discrete values, the compression rate reaches ninety percent, but Kavosh 
compresses data by an average of approximately 57%. The data compression in the 
Kavosh data format is due to the conversion of string and number values to the bit data 
type. In the Kavosh method, no data replication or collocation is required for perfor-
mance issues. In addition, data compression helps Kavosh retrieve more data in the data 
retrieval phase. Table 17 shows the memory usage for different methods.

Load balancing

In this section, the load balancing of various methods is investigated. To calculate the 
load balance, the length of time during which a processor has a CPU usage of over eighty 
percent while other CPUs have CPU usages of under thirty percent is calculated. In this 
paper, this measure is called Balance_Factor. Using this definition, the results in Table 18 
were obtained.

Real traffic data of a mobile operator

In this section, the proposed method is evaluated using real traffic data of a mobile 
value-added service (VAS) provider. The evaluation data include more than 60,000,000 
subscribers, together with their services. The subscribers used 3000 services and all the 
subscribers’ activities were considered in the evaluation. The mobile operator needs 
accurate information about their customers’ favourites to be able to provide appropri-
ate VAS suggestions. Due to the high volume of information, existing association rule 
algorithms would take a long time to execute and, therefore, are not suitable. In this 
evaluation, high-dimensional data items were used. If all the combinations of rules were 
applied, 23000 − 1 mapping fields would have to be added to each rule that is generated 

Table 17  Memory usage

Method name Used table 
data volume 
(TB)

FiDoop 39.9

Sequence-Growth 70

Kavosh 70

Table 18  Hadoop configuration

Method Balance_
Factor 
(s)

FiDoop 800

Sequence-Growth 3230

Kavosh 15
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in the rule generation layer. Such a large number of rules is neither necessary nor calcu-
lable. Based on additional information obtained about the services, a maximum of ten 
services is required for recommending VAS. Thus, rules with a maximum length of ten 
must be generated.

The input data format is as shown in Table  19. The first column is the subscriber 
mobile number and the second column is the service’s ID.

We converted Table  18 to a binominal format. Finally, a <Key,Value> pair is cre-
ated. The Key is the mobile number, and the value is a bit stream with a length of 2999 
(Number of VAS services − 1 (Target Field)). Kavosh was deployed on the hardware 
nodes with the specifications detailed in “TPC-DS” section.

In the first step, the customer service information table is converted to the Kavosh 
format. In this phase, one service is considered as a target field. The relationships 
between this service and other services are extracted as rules. The customer service 
information table is distributed over 70 nodes. The conversion time is 1200s. Fifty 
servers are used for the Mapper, one server is used for the Reducer and sixty servers 
are used for the rule generation layer.

Table 20 presents the parameters that are used for the association rule algorithm.
Table 21 shows execution details for the three methods.

Table 19  Input data format

MobileNumber ServiceID

09121450111 1041

09121450111 58

09121450111 971

09121450111 119

09123895004 971

09191005069 113

… …

Table 20  Association rule parameters

Parameter name Parameter 
value (%)

Confidence 85

Support 0.1

Table 21  Execution details

Method name Map (s) Reduce (s) Rule 
generation 
(s)

FiDoop 206 199 0

Sequence-Growth 779 750 0

Kavosh 75 71 119
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Figure 10 shows the total execution time for each method.

Compression

Table 22 shows the memory usage for the three methods.

Load balancing

Table 23 shows the values of Balance_Factor for the three methods
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Fig. 10  Association rule mining execution time

Table 22  Memory usage

Method name Table data 
volume used 
(TB)

FiDoop 19

Sequence-Growth 40

Kavosh 40

Table 23  Load balancing

Method Balance_
Factor 
(s)

FiDoop 683

Sequence-Growth 2800

Kavosh 17
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Scalability

In this section Kavosh scalability is evaluated. Different data sizes(TPC-DS) and var-
ious number of nodes are investigated and the results are depicted as Fig.  11. The 
results show that by adding more nodes and scale out data over nodes less time is 
required for data processing.

Conclusion
In this paper, the Kavosh method is proposed. Kavosh is a Map-Reduce-based associ-
ation rule mining method that can manage an immense amount of data. This method 
converts input data into the Kavosh format, which is a unified and compressed for-
mat. Using the Kavosh data format, data can be distributed over nodes, and nodes 
do not require additional data from other nodes. Kavosh also compresses input data 
and facilitates data management. The main advantage of the proposed method is the 
omission of iterations for extracting rules. This is a substantial achievement because 
writing intermediate results to a disk and retrieving them for the next iteration is 
the most time-consuming portion of association rule mining. Another important 
achievement of the proposed method is the balanced process for each node. Because 
of the unified data format, each node is allocated the same number of rows in the 
homogenous nodes; thus, the process is equally divided among the nodes. By modi-
fying Hadoop, the proposed method was implemented. Kavosh was compared with 
prominent association rule mining methods and achieved a faster execution time.

Kavosh is not suitable for high-dimensional data because creating all the input field 
combinations requires many nodes in the data generation layer. However, Kavosh is 
completely usable for normal data (not high-dimensional data) and can generate rules of 
a predefined length if other rule lengths are not required.
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Data format unification can be applied to problems in other fields. This method can 
be used in data warehouse like Aras and Atrak methods [22, 23], graph processing [24], 
integrating multidimensional data sources [25] and specific problems like finding patient 
similarity [26]. For future works, this method can also be used for interactive query pro-
cessing, online data mining and stream processing.
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