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Introduction
The aim of clustering is to group a set of N data vectors {xi} in D-dimensional space into 
k clusters by optimize a given objective function f. Each cluster is represented by its pro-
totype, which is usually the centroid of the cluster. K-means performs the clustering by 
minimizing the distances of the vectors to their cluster prototype. This objective func-
tion is called sum-of-squared errors (SSE), which corresponds to minimizing within-
cluster variances. The output of clustering is the set of cluster labels {pi} and the set of 
prototypes {ci}.

K-means was originally defined for numerical data only. Since then, it has also been 
applied to other types of data. The key is to define the distance or similarity between the 
data vectors, and to be able to define the prototype (center). It is not trivial how to do it, 
but if properly solved, then k-means can be applied. In case of categorical data, several 
alternatives were compared including k-medoids, k-modes, and k-entropies [1].

Quality of clustering depends on several factors. The first step is to choose the attrib-
utes and the objective function according to the data. They have the biggest influence on 
the clustering result, and their choice is the most important challenge for practitioners. 
The next step is to deal with missing attributes and noisy data. If the number of missing 
attributes is small, we can simply exclude these data vectors from the process. Otherwise 
some data imputation technique should be used to predict the missing values; for some 
alternatives see [2].
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Noise and outliers can also bias the clustering especially with the SSE objective func-
tion. Detection of outliers is typically considered as a separate pre-processing step. 
Another approach is to perform the clustering first, and then label points that did not 
fit into any cluster as outliers. Outlier removal can also be integrated in the clustering 
directly by modifying the objective function [3]. After the pre-processing steps, the main 
challenge is to optimize the clustering so that the objective function would be mini-
mized. In this paper, we focus on this problem.

We use the centroid index (CI) as our primary measure of success [4]. It counts how 
many real clusters are missing a prototype, and how many have too many prototypes. 
The CI-value is the higher of these two numbers. It is demonstrated in Fig. 1 where four 
real clusters are missing a prototype. This value provides a clear intuition about the 
result. Specifically, if CI = 0, the result is correct clustering. Sometimes we normalize CI 
by the number of clusters, and report the relative CI-value (CI/k). If the ground truth is 
not available, the result can be compared with the global minimum (if available), or with 
the best available solution used as gold standard.

K-means is very good in fine-tuning the cluster boundaries locally but it is unable to 
solve the cluster locations globally. In the solution in Fig. 2 (current solution), most pro-
totypes are in correct locations, except at the top there are two prototypes but only one 
would be needed; one prototype is also missing in the middle. This solution has value 
CI = 1. K-means is not able to fix it as the two regions are spatially separated, and there is 
one stable cluster between the two problematic ones. Gradual changes cannot therefore 
happen by k-means iterations. This kind of problems is typical especially when the data 
contains well-separated clusters.

On the other hand, the correct locations of the prototypes can be solved by a sequence 
of prototype swaps, and leaving the fine-tuning of their exact location to k-means. In 
Fig. 2, only one swap is needed to fix the solution. An important observation is that it 
is not even necessary to swap one of the redundant prototypes but simply removing 
any prototype in their immediate neighborhood is enough since k-means can fine-tune 

Fig. 1  Illustration of the clustering problem using a pigeon-hole principle with dataset S2. The circles 
represent the location of the ground truth clusters (pigeon holes), and the black dots the prototypes. 
Centroid index is calculated as how many cluster-level errors (either empty slots or over-crowded slots) there 
are
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their exact location locally. Also, the exact location where the prototype is relocated is 
not important, as long as it is in the immediate neighborhood where the prototype is 
needed.

Several swap-based clustering algorithms have been considered in literature. Deter-
ministic swap selects the prototype to be swapped as the one that increases the objec-
tive function value f least [5–7], or by merging two existing clusters [8, 9] following the 
spirit of agglomerative clustering. The new location of the prototype can be chosen by 
considering all possible data vectors [7], splitting an existing cluster [7, 10], or by using 
some heuristic such as selecting the cluster with the largest variance [5]. The swap-based 
approach has also been used for solving p-median problem [11].

The main drawback of these methods is their computational complexity. Much simpler 
but effective approach is random swap strategy: select the prototype to be removed ran-
domly and replace it to the location of a randomly selected data vector. This trial-and-
error approach was first used in the tabu search algorithm presented in [12], and later 
simplified to a method called randomized local search (RLS) [13]. The main observa-
tion was that virtually the same clustering quality is reached independent of the initial 

Centroid swappingCurrent solution

Two centroids, but
only one cluster.

One centroid, but
two clusters.

Local repartition Fine-tuning by K-means

Swap is made from
centroid rich area to
centroid poor area..

Fig. 2  Demonstration of the prototype swap for a sample initial solution for N = 5000 data vectors from 
k = 15 clusters (data set S2)
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solution. The same conclusion was later confirmed in [14]. CLARANS is another variant 
of this technique using medoids instead of centroids [15].

The main reason why random swap approach is not so widely used is the lack of the-
oretical results of its properties. Our experiments, however, have shown that it works 
much better than k-means in practice, and in most cases, is also more efficient [16–20]. 
Its main limitation is that there is no clear rule how long the algorithm should be iter-
ated and this parameter needs to be selected experimentally.

In this paper, we formulate the random swap (RS) as a probabilistic algorithm. We show 
that the expected time complexity to find the correct cluster allocation of the prototypes is 
polynomial. The processing time of the algorithm depends on how many iterations (trial 
swaps) are needed, and how much time each iteration takes. We will show that for a given 
probability of failure (q), the time complexity of the algorithm is upper bounded by a function 
that has linear O(N) dependency on the number of data vectors, quadratic O(k2) dependency 
on the number of clusters, and inverse dependency on the size of neighborhood.

The main advantage of random swap clustering is that it is extremely simple to imple-
ment. If k-means can be implemented for the data, random swap is only a small exten-
sion. K-means consists of two steps (partition step and centroid step), and the random 
swap method has only one additional step: prototype swap. In most cases, this step is 
independent on the data and the objective function. It is also trivial to implement, which 
makes it highly useful for practical applications.

Besides the theoretical upper bound, we compare the efficiency experimentally against 
k-means, repeated k-means, k-means++, x-means, global k-means, agglomerative clus-
tering and genetic algorithm. With our clustering benchmark data sets, we compare the 
results to the known ground truth and observe that random swap finds the correct clus-
ter allocation every time. In case of image data, we use genetic algorithm (GA) as golden 
standard, as it is the most accurate algorithm known.

The rest of the paper is organized as follows. In “Random swap clustering” section, 
we recall k-means and random swap algorithms and analyze their time complexities. 
In “Number of iterations” section, we study the number of iterations and derive the 
expected time complexity of the algorithm. The optimality of the algorithm is also dis-
cussed. In “Neighborhood size” section, we define the concept of neighborhood. Experi-
mental studies are given in “Experiments” section to demonstrate the results in practice. 
Conclusions are drawn in “Conclusions” section.

Random swap clustering
The clustering problem is defined as follows. Given a set of N data vectors x in D-dimen-
sional space, partition the vectors into k clusters so that sum of squared error SSE (intra clus-
ter variance) is minimized. For consistency to our previous works, we normalize the sum per 
vector and per dimension. In this way, the function represents how much error the clustering 
causes per single attribute (dimension). In image processing context, it is also natural to nor-
malize the value per pixel (N vectors in image, D pixels in vector). It is calculated as follows:

(1)normalized MSE =
SSE

N · D
where SSE =

N
∑

i=1

∥

∥xi − cpi
∥

∥

2
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K-means algorithm starts with a set of randomly selected vectors as the initial proto-
types. It then improves this it initial solution iteratively by the following two steps. In the 
first step, optimal partition is solved in respect to the given set of prototypes by mapping 
each data vector to its nearest prototype:

In the second step, a new set of prototypes is calculated based on the new partition:

These steps are iteratively performed for a fixed number of iterations, or until 
convergence.

Random swap algorithm

Random swap removes one existing cluster and creates a new one to a different part of 
the data space. This is done by selecting a randomly chosen prototype Cs, and replacing 
it by a randomly selected data vector xi:

This generates a global change in the clustering structure. An alternative implementa-
tion of the swap would be to create the new cluster by first choosing an existing cluster 
randomly, and then by selecting a random data vector within this cluster. We use the first 
approach for simplicity but the second approach is useful for the analysis of the swap.

After the swap, local repartition is performed to update the partition. This local repar-
tition is not obligatory as the solution will anyway be tuned by k-means afterwards, but 
it merely speed-ups the process. First, vectors of the removed cluster are re-partitioned 
to their nearby clusters. This is done by comparing the distances to all other prototypes 
(including the new cluster) and selecting the nearest:

Second, the new cluster is created by attracting vectors from nearby clusters by calcu-
lating the distance of all vectors to the new prototype. If the distance is smaller than the 
distance to the prototype of the current cluster, the vector will join the new cluster:

The new solution is then modified by two iterations of k-means to adjust the parti-
tion borders locally. The overall process is a trial-and-error approach: a new solution is 
accepted only if it improves the objective function (1).

Pseudo code of the algorithm is sketched in Fig. 3. In brief, random swap is a sim-
pler wrapper, in which any existing k-means library can be used. One can also leave 
out the local re-partition step as k-means will anyway fix the partition. The purpose 

(2)pi = arg min
1≤j≤k

∥

∥xi − cj
∥

∥

2
∀i ∈ [1,N ]

(3)cj =
∑

pi=j

xi

/

∑

pi=j

1 ∀j ∈ [1, k]

(4)cs ← xi
∣

∣ s = rand(1, k), i = rand(1,N )

(5)pi ← arg min
1≤j≤k

∥

∥xi, cj
∥

∥

2
∀ pi = s

(6)pi ← arg min
j=s∨ j=pi

∥

∥xi, cj
∥

∥

2
∀ i ∈ [1,N ]
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of the local re-partition is merely to speed-up the process as it basically implements 
a half iteration of k-means but faster. Otherwise, it has no significance in the algo-
rithm. To sum up, the only additions random swap have to k-means are the swap and 
the comparison (IF–THEN). They are both trivial to implement. Therefore, if k-means 
can be applied to the data, so can random swap.

The process of the algorithm is demonstrated in Fig.  4 with T = 5000 trial swaps. 
Eight of the trial swaps improves the sum of squared error (SSE) and are thus 
accepted. Among the accepted swaps, three reduces the CI-value (iterations 1, 3 and 
16). The rest of the accepted swaps provide minor improvement in SSE via local fine-
tuning (iterations 2, 9, 28, 58, 121). After that, no further improvement is found. In 
this example, 16 iterations were needed to solve the correct clustering (CI = 0), and 
121 iterations to complete the local fine-tuning. However, the algorithm does not 
know when to stop, and we therefore need to estimate how many iterations (trial 
swaps) should be applied.

Implementations are available in our web pages in C, Matlab, Java, Javascript, R and 
Python:

http://www.uef.fi/web/machi​ne-learn​ing/softw​are
http://cs.uef.fi/sipu/anima​tor/
http://cs.uef.fi/sipu/clust​erato​r/
http://cs.uef.fi/pages​/frant​i/clust​er/

Random Swap(X) C, P

C  Select random representatives(X); 
P  Optimal partition(X, C); 
REPEAT T times 

(Cnew,j)  Random swap(X, C); 
Pnew  Local repartition(X, Cnew, P, j); 
Cnew, Pnew Kmeans(X, Cnew, Pnew); 
IF f(Cnew, Pnew) < f(C, P) THEN 

(C, P) Cnew, Pnew; 
RETURN (C, P);

Fig. 3  Pseudo code of the Random Swap (RS) clustering. Local repartition is optional and can be left out 
especially if k-means is iterated 2 or more times

Iteration   nMSE           Time 
0           5312689297     0.006186  
1           2687180682     0.017132 CI=2 
2           2275082565     0.027188  
3           1704970391     0.037289 CI=1 
9           1700185570     0.097908  
16          1328087775     0.161352 CI=0 
28          1327946264     0.265631  
58          1327923352     0.516983  
121         1327910949     1.027286 

Fig. 4  Demonstration of the process for S2

http://www.uef.fi/web/machine-learning/software
http://cs.uef.fi/sipu/animator/
http://cs.uef.fi/sipu/clusterator/
http://cs.uef.fi/pages/franti/cluster/
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There are also video lecture (youtube), presentation material (ppt), flash animation 
(animator) and web page (Clusterator) where anyone can upload data in text format and 
obtain quick clustering result in just a 5 s, or alternatively, use longer 5 min option for 
higher quality. It is currently limited to numerical data only but we plan to extend it to 
other data types in future.

Time complexity of a swap

Time complexity of a single iteration depends on the implementation of the following 
steps:

1.	 Swap of the prototype.
2.	 Removal of the old cluster.
3.	 Creation of the new cluster.
4.	 Updating affected prototypes.
5.	 K-means iterations.

Step 1 consists of two random number generations and one copy operation, which take 
O(1) time. For simplicity, we assume here that the dimensionality is constant d = O(1). In 
case of very high dimensions, the complexities should be multiplied by d due to the dis-
tance calculations.

In step 2, a new partition is found for every vector in the removed cluster. The time 
complexity depends on the size of the removed cluster. In total, there are N data vectors 
divided into k clusters. Since the cluster is selected randomly, its expected size is N/k. 
Processing of a vector requires k distance calculations and k comparisons. This multi-
plies to 2k·N/k = 2N. Note that the expected time complexity is independent on the size 
of the cluster.

In step 3, distance of every data vector to the newly created prototype is calculated. 
There are N vectors to be processed, each requiring 2 distance calculations. Thus, the 
time complexity of this step sums up to 2N, which is also independent on the size of the 
cluster.

In step 4, new prototypes are generated by calculating cumulative sums of the vec-
tors in each cluster. To simplify the implementation, the cumulative sums are calculated 
already during the steps 2 and 3. One addition and one subtraction are needed per each 
vector that changes its cluster. The sums of the affected clusters (the removed, the new 
and their neighbors) are then divided by the size of the cluster. There are N/k vectors 
both in the removed and in the new cluster, on average. Thus, the number of calculations 
sums up to 2N/k + 2N/k + 2α = O(N/k) where α denotes to the neighborhood size (see 
“Neighborhood size” section).

The time complexity of the k-means iterations is less trivial to analyze but the rule 
of thumb is that only local changes appear due to the swap. In a straightforward 
implementation, O(Nk) time would be required for every k-means iteration. How-
ever, we use the reduced search variant [21], where full search is needed only for the 
vectors in the affected clusters. For the rest of the vectors, it is enough to compute 
distances only to the prototypes of the affected clusters. We estimate that the num-
ber of the affected clusters equals to the size of neighborhood of the removed and 
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the added clusters, which is 2α. The expected number of vectors in those clusters is 
2α·(N/k). The time complexity of one k-means iteration is therefore 2α·(N/k)·k for the 
full searches, and (N −  (2α·(N/k)))·2α ≤ N·2α for the rest. These sum up roughly to 
4αN = O(αN) for two k-means iterations.

Table 1 summarizes the time complexity and shows also real observed numbers for 
the Bridge data set (see “Experiments” section). These numbers are reasonably close 
to the expected time complexities; only k-means iterations take twice more than what 
expected. The reason is that we apply only two iterations whereas the fast k-means 
variant in [21] does not become fully effective during the first two iterations. It is the 
more effective the less the prototypes are moving. This can be seen in Fig. 5; 1st itera-
tion takes 53% share of the total processing time, but 2nd iteration only 39%. Nev-
ertheless, the theoretical estimates are still well within the order of the magnitude 
bounds.

Figure  5 shows the distribution of the processing times between the steps 1–4 
(swap + local repartition) and the step 5 (k-means). The number of processing time 
required by k-means is somewhat higher in the early iterations. The reason is the 
same as above: there are more prototypes moving in the early stage but the move-
ments soon reduce to the expected level. The time complexity function predicts that 
k-means step would take 4αN/(2N + 2N + 4αN) = 89% proportion of the total process-
ing time with Bridge. The observed number of the steps gives 197,327/215,718 = 91% 
at the 500 iterations, and the actual measured processing times of k-means takes 

Table 1  Time complexity estimations of  the  steps of  the  random swap algorithm, 
and the observed numbers as the averages over the first 500 iterations for data set Bridge 
(N = 4096, k = 256, N/k = 16, α ≈ 8)

Step Time complexity Observed number of steps at iteration

50 100 500

Prototype swap 2 2 2 2

Cluster removal 2N 7526 8448 10,137

Cluster addition 2N 8192 8192 8192

Prototype update 4N/k + 2α 53 61 60

K-means iterations ≤ 4αN 300,901 285,555 197,327

Total O(αN) 316,674 302,258 215,718
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Fig. 5  Processing time profile with the random swap iterations. Time taken by the local repartition (steps 
1–4) remains rather stable during the iterations whereas the time taken by k-means varies more
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0.53 + 0.39 = 92%. For BIRCH1, the time complexity predicts 85% proportion whereas 
the actual is 97% but it drops to 94% around 500 iterations after all the prototypes 
have found their correct location.

Further speed-up of k-means could be obtained by using the activity-based approach 
jointly with kd-tree [22], or by exploiting the activity information together with triangu-
lar inequality rule for eliminating candidates in the nearest neighbor search [23]. This 
kind of speed-up works well for data where the vectors are concentrated along the diag-
onal but generalizes poorly when the data is distributed uniformly [21, 24]. It is also pos-
sible to eliminate those prototypes from the full search whose activity is smaller than a 
given threshold and provide further speed-up at the cost of decreased quality [25, 26].

Number of iterations
We define three different types of swap:

• • Trial.
• • Accepted.
• • Successful.

One trial swap is made in every iteration but only a swap that improves the objective 
function is called accepted swap. However, in the following analysis we are interested not 
all accepted swaps but only those that also reduces CI-value. In other words, swaps that 
correct one error in the global prototype allocation; minor fine-tunings do not count in 
this analysis. We therefore define a swap as successful if it reduces the CI-value.

In the example in Fig. 4, among the 5000 thousand trial swaps, 8 are accepted of which 
3 we consider successful. Another example is shown in Fig.  6 where the swap in the 
middle improves objective function and is therefore accepted. However, it does not fix 
any problem in the prototype allocation, and is therefore not considered as a success-
ful swap. In the rightmost case, the prototype is moved elsewhere and it fixes one more 
cluster location (CI changes from 2 to 1). This swap shows also significant reduction in 
the objective function (from 20.12 to 15.87). Larger scale examples are shown in Fig. 7; 
one with CI = 4 and another one with CI = 9.

Successful swaps

To achieve a successful swap, the algorithm must succeed in three independent tasks:

15.8720.12 20.09

Before swap Accepted SuccessfulBefore swap Accepted Successful

CI=2 CI=2 CI=1

Fig. 6  Example of an accepted swap (middle) that improves SSE, and a successful swap (right) that also 
reduces the value of the centroid index (CI). Part of the dataset S2 is shown
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– – Select a proper prototype to be removed.
–– Select a proper location for the prototype.
–– Perform local fine-tuning successfully.

The first two are more important, but we will show that the fine-tuning can also play a 
role in finding a successful swap. We analyze next the expected number of iterations to 
fix one prototype location, and then generalize the result to the case of multiple swaps.

To make successful swap to happen, we must remove one prototype from an over-par-
titioned region and relocate it to an under-partitioned region, and the fine-tuning must 
relocate the prototype so that it fills in one real cluster (pigeon-hole). All of this must 
happen during the same trial swap.

Assume that CI = 1. It means that there is one real cluster missing a prototype, and 
another cluster overcrowded by having two prototypes. We therefore have two favorable 
prototypes to be relocated. The probability for selecting one of these prototypes by a ran-
dom choice is 2/k as there are k prototypes to choose from. To select the new location, 
we have N data vectors to choose from and the desired location is within the real cluster 
lacking prototype. Assume that all the clusters are of the same sizes, and that the mass 
of the desirable cluster is twice that of the others (it covers two real clusters). With this 
assumption, the probability that a randomly selected vector belongs the desired cluster 
is 2(N/k)/N = 2/k. The exact choice within the cluster is not important because k-means 
will tune the prototype locations locally within the cluster.

At first sight, the probability for a successful swap appears to be 2/k·2/k = O(1/k2). 
However, the fine-tuning capability of k-means is not limited within the cluster but it 
can also move prototypes across neighboring clusters. We define here that two clusters 
are k-means neighbors if k-means can move prototypes from a cluster to its neighbor. In 
order this to happen, the clusters must be both spatial neighbors and also in the vicinity 
of each other. This concept of neighborhood will be discussed more detailed in “Neigh-
borhood size” section.

Note that it is also possible that the swap solves one allocation problem but creates 
another one elsewhere. However, this not considered a successful swap because it does 
not change the CI-value. It is even possible that CI-value occasionally increases even 
when objective function decreases but this is also not important for the analysis. In fact, 

CI=4CI=4 CI=9CI=9

A3A3

Fig. 7  Number of wrongly allocated prototypes in dataset A3, as measured by centroid index. Prototypes 
mapped more than once are marked by ‘+’, and unmapped prototypes by ‘−’
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by accepting any swap that decreases the objective function, we guarantee that the algo-
rithm will eventually converge; even if the algorithm itself does not know when it hap-
pens. We will study this more detailed in “Experiments” section.

Probability of successful swap

To keep the analysis simple, we introduce a data-dependent variable α to represent the 
size of the k-means neighborhood (including the vector itself ). Although it is difficult 
to calculate exactly, it provides a useful abstraction that helps to analyze the behavior of 
the algorithm. Mainly α depends on the dimensionality (d) and structure of the data, but 
also on the size (N) and number of clusters (k). The worst case is when all clusters are 
isolated (α = 1). An obvious upper limit is α ≤ k.

By following the intuition that any k-means neighbor of the desired cluster is good 
enough (both for the removal and for the addition) we estimate the probability of a suc-
cessful swap as:

In total, there are O(α) clusters to choose from, but both the removal and addition 
must be made within the neighborhood. This probability becomes lower when the num-
ber of clusters (k) increases, but higher when the dimensionality (d) increases. The exact 
dependency on dimensionality is not trivial to analyze. Results from literature imply 
that the number of spatial neighbors increases exponentially with the dimensionality: 
α = O(2d) [27]. However, the data is expected to be clustered and has some structure; it 
usually has lower intrinsic dimensionality than its actual dimensionality.

Analysis for the number of iterations

We study next the probability that the algorithm can fix one cluster in T iterations. We 
refer the probability of success as p, and the probability of failure as q = 1 − p. If only one 
swap is needed, the probability of failure equals to the probability of selecting T unsuc-
cessful swaps in a row:

We can estimate the number of iterations (trial swaps) needed to find the successful 
swap with the probability of q as follows:

For example, we have visually estimated that the size of neighborhood in Fig.  2 
is 4, on average. This estimate leads to the probability of a favorable swap as 
(α/k)2 = (4/15)2 ≈ 7%. The dependency of T on p and q is demonstrated in Fig. 8.

Bounds for the number of iterations

We derive tight bounds for the required number of iterations for (8) as follows.

(7)p = (a/k) · (a/k) = O(a/k)2

q =

(

1−
α2

k2

)T

(8)log q = T · log

(

1−
α2

k2

)

⇔ T =
log (q)

log
(

1− α2

k2

)
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Theorem

Proof for upper limit
According to [28, p. 54]:

This inequality is strict when x = 0. From the second part of (10), we can derive inequality:

Applying this result to (8) with x = (α/k)2, we derive an upper bound as:

Proof for lower limit
In a similar manner, we can derive another inequality from the first part of (10):

Applying this to (8), we derive a lower bound as:

(9)T = Θ

(

−lnq ·
k2

α2

)

(10)
x

1+ x
≤ ln (1+ x) ≤ x, ∀ x > −1

ln (1+ x) ≤ x

⇒ ln (1− x) ≤ −x ∀ x < 1

⇒
1

ln (1− x)
≥ −

1

x

⇒
−1

ln (1− x)
≤

1

x

(11)T =
lnq

ln
(

1− α2/M2
) ≤

− lnq

α2/M2
= − ln(q) ·

k2

α2

x

1+ x
≤ ln (1+ x)

⇒
−1

ln (1− x)
≥

1− x

x
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Fig. 8  Theoretical calculations for the probability of success (p) and failure (q) as a function of the iterations 
for S2
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Since the same function is both the upper (11) and lower bound (12), the theorem is 
proven.� □

Multiple swaps

The above analysis was made only if one prototype is incorrectly located. In case of the 
S1–4 datasets, 1 swap is needed in 60% cases of a random initialization, and 2 swaps in 
38% cases. Only very rarely (< 2%) three or more swaps are required.

The result of “Analysis for the number of iterations” section can be generalized to mul-
tiple (w) swaps as follows. It is known that T ≫ w and p ≥ α2/k2 independent on the num-
ber of swaps. An upper bound for the probability for performing less than w successful 
swaps in T iterations can be calculated by the binomial probability:

The idea is that there is a sequence of T swaps of which (i < w) are successful. The 
expected number of iterations for this would be:

The only difference to the case of single swap is the logarithmic term (log2 w), which 
depends only on the number of swaps needed. Even this is a too pessimistic estimation 
since the probability of the first successful swap is up to w2 times higher than that of the 
last swap. This is because there are potentially w times more choices for the successful 
removal and addition. Experimental observations show that 2.7 swaps are required with 
S1–S4, on average, and the number of iterations is multiplied roughly by a factor of 1.34, 
when compared to the case of a single swap. However, the main problem of using the 
Eq. (13) in practice is that the number of swaps (w) is unknown.

Overall time complexity

The total processing time is the number of iterations multiplied by the time required for 
a single iteration (αN). Based on the results in section combined with (11–13), it can be 
estimated as:

The expected processing time is derived accordingly multiplying (14) by αN:

(12)T =
lnq

ln
(

1− α2
/

k2
) ≥ − ln (q)

1− α2
/

k2

α2
/

k2
= − ln (q) ·

k2

α2

(13)q ≤

w−1
∑

i=0

(

T
i

)

·

(

α2

k2

)i

·

(

1−
α2

k2

)T−i

(14)T̂ =

(

w
∑

i=1

1

i

)

·
k2

α2
= O

(

log2 w ·
k2

α2

)

(15)t(N , k) ≤ −lnq · logw ·
k2

α2
· αN = O

(

−ln(q) · logw · Nk2

α

)
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From (16), we can make the following observations about the time complexity:

• • Linear dependency on N.
• • Quadratic dependency on k.
• • Logarithmic dependency on w.
• • Inverse dependency onα.

The main result is that the time complexity has only linear dependency on the size of 
data, but quadratic on the number of clusters (k). Although k is relatively small in typical 
clustering problems, the algorithm can become slow in case of large number of clusters.

The size of the neighborhood affects the algorithm in two ways. On one hand, it 
increases the time required by the k-means iterations. On the other hand, it also 
increases the probability for finding successful swaps, and in this way, it reduces the total 
number of iterations. Since the latter one dominates the time complexity, the final con-
clusion becomes somewhat surprising: the larger the neighborhood (α) the faster the 
algorithm.

Furthermore, since α increases with the dimensionality, the algorithm has inverse 
dependency on dimensionality. The higher the dimensionality implies the algorithm 
being faster. In this sense, data having low intrinsic dimensionality represent the worst 
case. For example, BIRCH2 (see “Experiments” section) has one-dimensional structure 
(D = 1) having small neighborhood size (α = 3).

Optimality of the random swap

So far we have assumed that the algorithm finds the correct cluster allocation every 
time (CI = 0). This can be argued by the pigeonhole principle: there are k pigeons and k 
pigeonholes. In a correct solution, exactly one pigeon (prototype) occupies one pigeon 
hole (cluster). The solution for this problem can be found by a sequence of swaps: by 
swapping pigeons from over-crowded holes to the empty ones. It is just a matter of how 
many trial swaps are needed to make it happen. We do not have formal proof that this 
would always happen but it is unlikely that the algorithm would get stuck in sub-optimal 
solution with wrong cluster allocation (CI > 0). With all our data having known ground 
truth and unique global minimum, random swap always finds it in our experiments.

A more relevant question is what happens with real world data that does not neces-
sarily have clear clustering structure. Can the algorithm also find the global optimum 
minimizing SSE? According to our experiments, this is not the case. Higher dimensional 
image data can have—not exactly multiple optima—but multiple plateaus with virtu-
ally the same SSE-values. In such cases, random swap ends up to any of the alternative 
plateaus all having near-optimal SSE-values. Indirect evidence in [4] showed that two 
highly optimized solutions with the same cluster allocation (CI = 0) have also virtually 
the same objective function value (SSE = 0.1%) with significantly different allocations of 
the prototypes (5%).

(16)t̂(N , k) ≤ log w ·
k2

α2
· αN = O

(

−log(w) · Nk2

α

)
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We constructed similar experience here using three different random initial solutions: 
A, B and C, see Fig. 9. We first performed one million trial swaps (A1, B1, C1) and then 
continued further to 8 million trial swaps, in total (A8, B8, C8). As expected, all solu-
tions have very similar SSE-values (< 0.3% difference). Despite of this, their cluster level 
differences (CI-values) remain significantly high: A8 and B8 had 24/256 ≈  9% differ-
ences. This indicates that the random swap algorithm will find one of the near-optimal 
solutions but not necessarily the one minimizing SSE.

To sum up: proof of optimality (or non-optimality) of the cluster level allocation (CI-
value) remains an open problem. For minimizing SSE, the algorithm finds either the 
optimal solution (if unique) or one of the alternative near-optimal solutions all having 
virtually equal quality.

Neighborhood size
In the previous analysis, we introduced the concept of k-means neighborhood. The size 
of this neighborhood (including the vector itself ) is denoted by α. It is defined as the 
average over the entire data set. In practice, it is not possible to calculate or even esti-
mate α accurately without actually performing k-means. The value is bounded to the 
range α∈[1,k], and the worst case is α = 1 when all clusters are isolated from each other. 
We next discuss how the size of this neighborhood could be analyzed in the context of 
multidimensional data.

Voronoi neighbors

One way to analyze whether clusters are neighbors is to calculate Voronoi partition of 
the vector space [29, 30] according to a given set of prototypes, and define two clusters 
as neighbors if they share a common Voronoi facet. An example of Voronoi partition is 
shown in Fig. 10 (left).

For 2-D data, an upper limit for the number of Voronoi surfaces has been shown to 
be 3k − 6 [30]. Since every Voronoi surface separates two neighbor partitions, we can 
derive an upper limit for the average number of neighbors as 2·(3k − 6)/k = 6 − 12/k, 
which approaches to 6 when k becomes large. In our 2-D data sets (S1–S4), there are 
4 Voronoi neighbors, on average, varying from 1 to 10. For D-dimensional data, the 

Fig. 9  With image dataset Bridge (k = 256) random swap can find several different global allocations: CI = 26 
(10%) but difference in SSE is negligible (< 0.2%). Visualization (right) shows the difference in practice
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number of Voronoi surfaces is upper bounded by O(k
∣

∣D / 2
∣

∣

) [30]. Respectively, an upper 
bound for the Voronoi neighbors is O(2 · k

∣

∣D / 2
∣

∣

/k) = O(2 · k
∣

∣D / 2
∣

∣−1).
However, such upper bounds estimates are far from reality. Firstly, there cannot be 

more neighbors than there are clusters (α ≤ k). Secondly, k-means cannot solve the local 
optimization if the distance between the clusters is greater than the longest distance 
within the clusters because no vector can then change partition by k-means iterations. 
So we have the following bounds derived both from theory and from data:

Theory for 2-dim:	� α ≤ 6 − 12/k
Theory for D-dim:	� α ≤ O(2 · k

∣

∣D / 2
∣

∣−1

Data limit:	� α ≤ k

According to our experiments (“Estimating α and T” section), the theoretical bounds 
are reasonable for 2-D but not for higher dimensions. For example, our highest dimen-
sional (D = 74) dataset KDD04-Bio has only 33.3 neighborhood size whereas the theo-
retical upper bound is 10118, and the data limit 2000. The DIM-32 dataset is even more 
extreme; there are almost no neighbors because the clusters are well separated.

Data Dim k Theory Reality

S2 2 15 5.2 4.5

Bridge 16 256 1017 5.4

DIM-32 32 16 1019 1.1

KDD04-Bio 74 2000 10118 33.3

To sum up, the number of Voronoi neighbors is significantly higher than the size of 
the k-means neighborhood. A better estimator for the size of neighborhood is therefore 
needed.

Estimation algorithm

For the sake of analysis, we introduce an algorithm to estimate the average size of the 
k-means neighborhood. We use it merely to approximate the expected number of itera-
tions (14) for a given data set in experiments in “Experiments” section. The idea is to first 
to find Voronoi neighbors and then analyze whether they are also k-means neighbors. 

Voronoi neighbors Neighbors by distance

1

2

3

1

4

2

3

6

5

S1S1

Fig. 10  Definition of neighborhood according to Voronoi partition (left), and according to their spatial 
connectivity and distance (right) for dataset S1
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However, Voronoi can be calculated fast in O(k·log k) only in case of 2-dimensional data. 
In higher dimensions it takes O(k

∣

∣D / 2
∣

∣

) time [31]. We therefore apply the following 
procedure.

First, we perform random swap clustering for a small number of iterations (T = 5) to 
obtain an initial clustering. We then compare each pair of prototypes ca and cb to con-
clude whether the two clusters a and b are neighbors. We use the XNN graph introduced 
in [32]:

1.	 Calculate the half point of the prototypes: hp←(ca + cb)/2.
2.	 Find the nearest prototype (nc) for hp.
3.	 If nc = ca or nc = cb then (a, b) are neighbors.

Every pair of prototypes that pass this test, are detected as spatial neighbors. We then 
calculate all vector distances across the two clusters. If any distance is smaller than the 
distance of the corresponding vector to its own cluster prototype, it is evidence that 
k-means has potential to operate between the clusters. Accordingly, we define the clus-
ters as k-means neighbors. Although this does not give any guarantee, it is reasonable 
indicator for our purpose.

Experiments
We next test the theory and the assumptions using the data sets summarized in 
Table 2 and visualized in Fig. 11. The vectors in the first set (Bridge) are 4 × 4 non-over-
lapping blocks taken from a gray-scale image, and in the second set (Miss America) 4 × 4 
difference blocks of two subsequent frames in video sequence. The third data set (House) 
consists of color values of the RGB image. Europe consists of differential coordinates from 
a large vector map. The number of clusters in these is fixed to k = 256. We also use several 
generated data sets such as BIRCH [33], the high-dimensional data sets from [24], and 
the datasets S1–S4 with varying overlap of the clusters. KDD04-Bio is a large-scale high-
dimensional data set [34]. 

Ground truth clustering results exist for all the generated data. For the rest, we iterate 
random swap algorithm for 1 million iterations, and use the final result as the reference 

Table 2  Summary of the Data Sets

For archive of the data sets: http://cs.uef.fi/sipu/datas​ets/
a  Duplicate data vectors are combined and their frequency information is stored instead

Data set Ref. Type of data Vectors (N) Clusters (k) Vectors 
per cluster

Dimension (d)

Bridge [35] Gray-scale image 4096 256 16 16

Housea [35] RGB image 34,112 256 133 3

Miss America [35] Residual vectors 6480 256 25 16

Europe Diff. coordinates 169,673 256 663 2

BIRCH1–BIRCH3 [33] Artificial 100,000 100 1000 2

S1–S4 [6] Artificial 5000 15 333 2

Unbalance [42] Artificial 6500 8 821 2

Dim16–Dim1024 [24] Artificial 1024 16 64 16–1024

KDD04-Bio [34] DNA sequences 145,751 2000 73 74

http://cs.uef.fi/sipu/datasets/
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solution (golden standard) when applicable. To measure the goodness of the result, we 
calculate the centroid index (CI) against the ground truth (or reference) solution. Value 
CI = 0 indicates that the cluster level structure is correct.

All tests have been performed on a Dell PowerEdge R920 Server with four Xeon 
E7-4860 v2 processors having 1 TB memory and using RedHat Enterprise Linux 7 oper-
ating system.

Estimating α and T

Table 3 reports the estimated neighborhood sizes when calculated by the algorithm of 
“Estimation algorithm” section and that of the full data. For our analysis, it does not 
make a big difference at which stage (T = 0, T = 5, T = 5000) the estimation is made. Even 
if the value was calculated from a random clustering (T = 0) it still provides a useful esti-
mate. In the following experiments, we use the values calculated at T = 5.

We estimate the number of iterations (trial swaps) required to find the clustering for 
three given probabilities of failure (10, 1, 0.1%). The estimated number of iterations 
is small for data with few clusters (S1–S4, Unbalance). Even the highest confidence 
level (q = 0.1%) requires only 97–137 iterations for S1–S4, and 167 for Unbalance. The 

Fig. 11  Data sets (S1–S4), Unbalance and the first two dimensions of Dim32
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Table 3  Neighborhood size (α) estimated from  the  data and  from  the clustering result 
after T Iterations

Estimated number of iterations (T) for selected values of q are calculated as T = − ln q ln w (k/α)2

Dataset Full data From clustering Estimated iterations (T)

Initial T = 0 Early T = 5 Final T = 5000 q = 10% q = 1% q = 0.1%

Bridge 69.8 8.7 5.4 4.6 33,595 67,910 100,785

House 15.4 6.7 8.3 8.2 13,381 26,761 40,142

Miss America 346 34.2 17.1 11.9 3593 7078 10,617

Europe (5.0) 4.8 6.3 6.3 26,699 53,398 80,098

BIRCH1 5.0 4.5 5.8 5.6 2908 5815 8723

BIRCH2 (4.7) 3.1 3.1 2.9 10,524 21,048 31,572

BIRCH3 (4.9) 4.1 4.9 5.0 4508 9016 13,523

S1 4.8 3.7 4.1 4.2 46 92 137

S2 4.9 3.7 4.5 4.7 37 73 110

S3 4.9 3.9 4.4 4.3 38 77 115

S4 4.9 3.9 4.8 5.0 32 64 97

Unbalance 3.4 2.3 2.3 2.0 56 111 167

Dim-32 26.8 1.5 1.1 1.0 920 1839 2759

Dim-64 37.1 1.9 1.1 1.0 920 1839 2759

Dim-128 47.3 1.4 1.0 1.0 1135 2271 3406

KDD04-Bio – 286.2 33.3 30.4 72,800 145,600 218,401

clusters in the Dim dataset are isolated, which makes the size of the neighborhood 
very small (1.1). It therefore has larger estimates (about 1700). For the image datasets 
the estimates are significantly higher because of large number of clusters.

We next study how these predicted numbers compare to reality. For this, we run the 
algorithm for each dataset exactly the number of times estimated in Table 4. The runs 
are then repeated 10,000 times, and we record how many times the algorithm actu-
ally found the correct clustering (CI = 0). The results for Dim and S datasets in Fig. 12 
show that the estimates are slightly over-optimistic for S1–S4. For example, for S1 the 
predicted number of iterations are T = (46, 92, 137) for the failure values q = (10, 1, 
0.1%), whereas the algorithm actually failed 18, 4 and 0.6% times. For the Dim sets the 
results are much closer to the estimates.

The inaccuracies originate from two factors: the estimate of α is somewhat over-opti-
mistic, and the fact that we apply only two iterations of k-means. To understand the 
significance of these we plot the distribution of the iterations (trial swaps) required in 
Fig. 13 as observed in the reality. In 90% of cases, the algorithm requires less than 70 
(S1) and 50 (S4) iterations. The corresponding estimates (q = 10%) are 46 (S1) and 34 (S4). 
Thus, the number of iterations needed is roughly 1.5 than what is estimated. This is well 
within the order of magnitude of the estimates of Eqs. (15) and (16).

The worst case behavior is when α = 1, meaning that all clusters are isolated. If we left 
α out of the equations completely, this would lead to estimates of T ≈ 700 for S1–S4 even 
with q = 10%. With this number of iterations we always found the correct clustering and 
the maximum number of iterations ever observed was 322 (S1) and 248 (S4) at the end of 
the tail of the distribution. To sum up, the upper bounds hold very well in practice even 
if we ignored α.
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Table 4  Expected number of  iterations (Exp) for  the  last successful swap is  estimated 
as 1/p = (k/α)2, which is multiplied by log w to obtain the value for all swaps

The observed results are recorded using both two (Real2) and ten (Real10) k-means iterations. The number of swaps is 
calculated from the initial solution. Results are averages of 100 runs

Dataset α w Last swap All swaps

Exp Real2 Real10 Exp Real2 Real10

Bridge 5.4 90 2247 – – 14,590 – –

House 8.3 69 951 – – 5811 – –

Miss America 17.1 116 224 – – 1537 – –

Europe 6.3 130 1651 – – 11,595 – –

BIRCH1 5.8 19 297 440 121 1263 637 197

BIRCH2 3.1 21 1041 761 548 4571 1246 924

BIRCH3 4.9 26 416 – – 1958 – –

S1 4.1 2.8 13 26 18 20 33 23

S2 4.5 2.7 11 19 9 16 25 12

S3 4.4 2.7 12 17 7 17 22 10

S4 4.8 2.7 10 19 9 14 25 11

Unbalance 2.3 4.0 12 58 54 24 122 110

Dim-32 1.1 3.7 212 52 52 399 73 76

Dim-64 1.1 3.7 212 59 64 399 83 88

Dim-128 1.0 3.8 256 56 65 493 91 98

KDD04-Bio 33.3 435 3607 – – 31,617 – –
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Fig. 12  Observed probability (%) of failure (q) for S1–S4 (left) and for the high dimensional data sets (right). 
The observed values are plotted, and the theoretical estimates are shown as blue
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Page 21 of 29Fränti  ﻿J Big Data  (2018) 5:13 

Expected number of iterations

Next we study how well the Eq. (16) can predict the expected number of iterations. We 
use the same test setup and run the algorithm as long as needed to reach the correct 
result (CI = 0). Usually the last successful swap is the most time consuming, so we study 
separately how many iterations are needed from CI = 1 to 0 (last swap), and how many in 
total (all swaps). The estimated and the observed numbers are reported in Table 4. The 
number of successful swaps needed (w) is experimentally obtained from the data sets.

a. Estimated iterations

The expected results are again somewhat over-optimistic compared to the reality but still 
well within the order of magnitude of the time complexity results. For S sets, the algo-
rithm is iterated about 50% longer [26, 29, 35] than estimated [18, 20, 21, 24]. For BIRCH 
data, the estimates for the last swap are slightly too pessimistic as it over-estimates the 
iterations by about 30%. The difference becomes bigger in case of all swaps. Unbalance 
has the biggest difference, almost 5 times, so let us focus on it a little bit more.

The creation of a new cluster assumes that all clusters are roughly of the same size. 
However, this assumption does not hold for the Unbalance data, which has three big clus-
ters of size 2000 and five small ones of size 100. By random sampling, it is much more 
likely to allocate prototype in a bigger cluster. On average, random initialization allocates 
7 prototypes within the three big clusters, and only one within the five small clusters. 
Starting from this initial solution, a successful swap must select a vector from any of the 
small clusters because the big clusters are too far and they are not k-means neighbors with 
the small ones. The probability for this is 500/6500 = 7.7% in the beginning (when w = 4 
swaps needed), and 200/6500 = 3% for the last swap. The estimate is 1/k = 1/8 = 12.5%.

Despite this inaccuracy, the balance cluster assumption itself is usually fair because the 
time complexity result is still within the order of the magnitude. We could make even 
more relaxed assumption by considering the cluster sizes following arithmetic series cN, 
2cN,…, kcN, where c is a constant in range [0,1]. The analysis in [36] shows that the time 
complexity result holds both with the balance assumption and with the arithmetic case. 
The extreme case still exists though: cluster size distribution of (1, 1, 1,…, N − k) would 
lead to higher time complexity of O(Nk3) instead of O(Nk2). However, balance assump-
tion is still fair because such tiny clusters are usually outliers.

b. K‑means iterations

Another source of inaccuracy is that we apply only two k-means iterations. It is possible 
that k-means sometimes fails to make the necessary fine-tuning if the number of itera-
tions is fixed too low. This can cause over-estimation of α. However, since the algorithm is 
iterated long, much more trial swaps can be tested within the same time. A few additional 
failures during the process is also compensated by the fact that k-means tuning also hap-
pens when a swap is accepted even if it is not considered as successful swap by the theory.

We tested the algorithm also using 10 k-means iterations to see whether it affects the 
estimates of T, see column Real10 in Table 4. The estimates are closer to the reality with 
the S sets having cluster overlap. This allows k-means to operate better between the 
clusters. However, the estimates are not significantly more accurate, and especially with 
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datasets like Dim and Unbalance where clusters are well separated, the difference is neg-
ligible. The value of the k-means iterations is therefore not considered as important.

However, since k-means step is a bottleneck in terms of absolute running time, we 
studied its time-distortion efficiency with values 1, 2, 3, 4, 5, 10, 20 and 100. Earlier stud-
ies quite unanimously support that two iterations is the best choice [12, 13, 16], and our 
results here in Fig. 14 confirm this; two iterations is slightly better but the exact value 
is not critical. One k-means iteration is slightly inferior to two iterations. However, 
three or more iterations do not provide enough additional benefit to compensate the 
extra time spent. We observe the same trend with all data sets. Only exception is if we 
iterate the algorithm extremely long; several hours or even several days. Then applying 
100 k-means iterations eventually provides the lower SSE-values with better time effi-
ciency but this kind of result has no practical relevance.

c. Number of swaps

From Table 4, we can also observe that more time is spent for the last successful swap 
than to all previous ones together. It indicates that the logarithmic dependency on the 
number of swaps needed is too pessimistic estimation. We therefore study next how 
much more work is done by all the other swaps in addition to the last one. Results 
are summarized in Table 5 by measuring the factor between the number of iterations 
requires by the last swap relative to that of all swaps.

Overall trend is that the log w term is slightly too high estimate when compared 
to the reality. In case of S sets, the log w value indicates 1.5 total work, whereas the 
reality is between 1.27 and 1.34. For example, S1 requires 33 swaps in total, of which 
26 are spent for the last swap. In BIRCH datasets, the difference is much more vis-
ible. About 20 swaps are needed, which indicates extra work by a factor of about 4. In 
reality, only 50% more is required. The corresponding numbers for unbalance (2.0 vs. 
2.09) and Dim sets (1.9 vs. 1.41–1.61) show also mild over-estimate.

Overall, our conclusion is that for datasets with clear clustering structure, the last swap 
is the bottleneck and the additional work for all the previous swaps at most doubles the 
total work load. We therefore conclude that knowing the exact number of swaps needed 
is not very important to have a good estimate for the required number of iterations.

Fig. 14  Effect of the number of k-means iterations applied within RS. The value 2 is slightly better choice 
but the exact value is not critical. Only when iterated very long, high number of k-means iterations can 
become more beneficial with the image datasets. When running 45 min with Bridge, iterating k-means until 
convergence improved the SSE-value from 161.38 to 160.89 (improvement of 0.3%)
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d. Effect of N and k

We perform one more analysis by varying the size of the data (N) and the number of 
clusters (k). We reduce the size of BIRCH2 in two alternative ways. First we generated 
random subsamples by eliminating 1000 random vectors at a time to create a series of 
subsets with N = 1000–100,000. Second we eliminated one cluster at a time to create a 
series of subsets with k = 1–100. For these subsets, we ran the algorithm until it found 
the correct clustering (CI = 0). Results are summarized in Fig. 15. We observe that the 
number of iterations needed has almost no dependency on the size of data but there it 
has strong quadratic correlation with k. These observations correspond directly to our 
theory in Eq. (14).

Time‑distortion efficiency in practice

We next compare time-distortion performance of the random swap (RS) algorithm to 
repeated k-means (RKM) in practice. It is well known that k-means often gets stuck 
into an inferior local minimum, and because of this, most practitioners repeat the algo-
rithm. The number of repeats is similar parameter as the number of iterations in RS. We 

Table 5  Total number of  iterations required to  reach a  solution with  certain number 
of swaps remaining (0–4)

Results are averages of 100 runs. Most work is spent for finding the last swap. The factor indicates how many iterations are 
spent for all swaps (total) compared to the last swap (CI = 0). The estimated factor is given by the term log w

Dataset Iterations to reach CI-value Factor log w

Total 0 1 2 3 4

BIRCH1 637 440 78 44 24 14 1.45 4.2

BIRCH2 1246 761 191 84 51 33 1.64 4.4

S1 33 26 7 2 1 1 1.34 1.5

S2 25 19 4 1 1 1 1.30 1.4

S3 22 17 4 1 1 1 1.34 1.4

S4 25 19 3 1 1 1 1.27 1.4

Unbalance 122 58 29 23 13 1 2.09 2.0

Dim-32 73 52 13 6 3 2 1.42 1.9

Dim-64 83 59 13 7 4 2 1.41 1.9

Dim-128 91 56 20 9 4 3 1.61 1.9
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Fig. 15  Number of iterations needed to find the correct clustering for subsets of BIRCH2 when varying the 
size of data (left), and number of clusters (right). The black line is the average of 100 runs, and the 25 and 75% 
quartiles show the level of variation between the individual runs. The blue lines are linear (left) and quadratic 
(right) fits to the data
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consider 10–100 repeats but it can be easily extended to much higher. Open questions 
are how many repeats should one use, and whether RKM will also find the correct global 
allocation.

We first let both RS and RKM run extremely long: RS 1 million iterations, and repeat 
RKM 500–25,000 times depending on the data. Time-distortion results are summarized 
in Fig. 16 showing also the number of trial swaps (RS) and repeats (RKM). The number 
of remaining successful swaps needed is shown by red and blue colors. In case of real 
data, we use the result of RS after 1 million iterations as reference. This is not necessar-
ily the global optimum but merely as a point of comparison. The dashed line shows the 
point when the expected number of iterations is reached.

The results show that RS is significantly more efficient than RKM. It usually 
achieves the same quality equally fast as k-means, and outperforms it when kept iter-
ating longer. In case of artificial data with clear clusters (Birch1, Birch2, Unbalanced), 
RS finds the correct clustering (CI = 0) in all cases. For the same data, k-means has 
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(CI = 7, CI = 18, CI = 3) and repeated k-means (CI = 3, CI = 9, CI = 1). RS achieves 
the correct clustering in less than 1 min using (606, 2067, 98) trial swaps. Repeated 
k-means is successful only with the Unbalance dataset. It finds the correct result 
60% of the trials if repeated 20,000 times. On average, it took 17,538 repeats to reach 
CI = 0 by RKM.

Multi-dimensional image data sets do not have clear clustering structure. The clus-
tering can therefore end-up with significantly different cluster allocation (10% dif-
ferent clusters) despite having virtually the same SSE-value (see “Optimality of the 
random swap” section). The number of missing swaps is therefore less intuitive what 
it means in practice, but the superiority of RS in comparison to the repeated K-means 
is still clear. The toughest data set is Europe, for which RS outperforms RKM only 
after running several minutes (after about 2000 swaps).

The expected number of iterations (dashed vertical line) gives a reasonable esti-
mate when the algorithm has succeeded in case of S and BIRCH datasets. For the 
image datasets, it is just like a line drawn into water without any specific meaning. 
Since they lack clear clustering structure, the algorithm keeps on searching—and also 
keeps on finding—better allocations of the prototypes. It seems not to reach any local 
or global minimum. Additional tests revealed that it seems to stabilize somewhere 
before 10 M iterations, which corresponds roughly about 3 weeks of processing—way 
beyond any practical significance.

As a second test, we run RS several times with T = 5000 iterations. Histograms of 
the resulting values are shown in Fig. 17. In case of S and BIRCH datasets, RS always 
found the correct clustering. In case of image data sets, there are some variations but 
even the worst run of RS is always better than the best run of k-means. Based on the 
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SSE-values, it is difficult to conclude how significant the difference would be for prac-
tical application. However, the CI-values with BIRCH demonstrate it better. Among 
the k = 100 clusters, k-means fails in case of 7% with BIRCH1, and 18% with BIRCH2. 
Repeated k-means reaches levels 3 and 9% but it requires 1000 repeats, which takes 
several minutes. Reaching CI = 0 by RKM seems unrealistic, indicating that it is not 
capable to solve the global cluster allocation in general.

Finally, we tested the optimality of the random swap using the datasets with known 
ground truth (S, Birch, Dim, Unbalance). We let the algorithm run until it reached 
the correct clustering (CI = 0), and then restarted it from scratch. We let it run 10,000 
times for Birch sets and 1,000,000 times for S, Dim and Unbalance sets. The algorithm 
found CI = 0 result every time and never got stuck into a sub-optimal solution even 
once.

Comparison to other algorithms

Since random swap is not the only good clustering algorithm around, we next put the 
results in wider perspective. Table 6 summarizes the quality and the processing times 
of a few selected algorithms including the best known and some popular ones: k-means 
(KM), repeated k-means (RKM), k-means++ [37], x-means [38], agglomerative cluster-
ing (AC) [35], random swap (RS) [13], global k-means [7], and genetic algorithm [39]. For 
all k-means variants, we use the fast variant presented in [21]. For detailed description 

Table 6  Summary of the processing times and clustering quality

The results of KM, RKM, KM++ and XM are averages over 10 runs. When correct result (CI = 0) is not always found the result 
is italics

Dataset KM RKM KM++ XM AC RS5000 RSx GKM GA

Processing time (s)

 BIRCH1 3.7 374 3.2 107 141 276 420 – 297

 BIRCH2 1.1 114 1.0 12 144 92 537 – 256

 S1 < 1 1.1 < 1 < 1 < 1 5 < 1 74 3

 S2 < 1 1.4 < 1 < 1 < 1 6 < 1 95 2

 S3 < 1 1.8 < 1 < 1 < 1 6 < 1 109 3

 S4 < 1 2.5 < 1 < 1 < 1 7 < 1 117 3

 Unbalance < 1 2.6 < 1 < 1 < 1 12 < 1 152 2

 Dim-32 < 1 < 1 < 1 < 1 < 1 3 1.5 6 1

 Dim-64 < 1 < 1 < 1 < 1 < 1 5 3 11 2

 Dim-128 < 1 < 1 < 1 < 1 < 1 8 5 19 3

Centroid index (CI)

 BIRCH1 6.6 2.9 4.0 1.6 0 0 0 – 0

 BIRCH2 16.9 10.5 7.6 1.7 0 0 0 – 0

 S1 1.8 0.0 1.1 0.3 0 0 0 0 0

 S2 1.5 0.0 1.0 0.2 0 0 0 0 0

 S3 1.1 0.0 0.9 0.3 0 0 0 0 0

 S4 0.8 0.0 0.9 0.4 1 0 0 0 0

 Unbalance 3.9 2.0 0.5 1.7 0 0 0 0 0

 Dim-32 3.8 1.1 0.5 2.7 0 0 0 0 0

 Dim-64 3.7 1.1 0.0 4.0 0 0 0 0 0

 Dim-128 4.0 1.4 0.0 4.2 0 0 0 0 0
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and more comprehensive quality comparison, we refer to [6]. For RS we use both 5000 
iterations (RS5000) and the number of iterations estimated for failure probability q = 0.1% 
(RSx) from Table 3. RKM is repeated 100 times. KM, KM++ and XM are results of indi-
vidual runs. The clustering quality is measured by the Centroid Index (CI).

The results show that all k-means variants (KM, RKM, KM++, XM) fail to find the 
correct result in more than 50% of the cases. K-means++ and x-means work better than 
k-means but not significantly better than RKM. Better algorithms (AC, RS, GKM, GA) 
are successful in all cases with the exception of AC, which makes one error with S4. RS 
is simplest to implement. AC is also relatively simple but requires the fast variant from 
[35] since a straightforward school book or Matlab implementations would be an order 
of magnitude slower. GA [39] is composed of the same AC and k-means components.

The down side of using the better algorithms is their slower running time. Three algo-
rithms (AC, RS, GA) work in reasonable time for data sets of size N = 5000 but require 
already several minutes for the Birch sets of size N = 100,000. GKM is slow in all cases.

Conclusions
Random swap is an efficient algorithm for solving clustering, and unlike k-means, it does 
not converge to an inferior local minimum [40, 41]. In this paper, we have analyzed the 
number of iterations (trial swaps) needed to solve the global allocation of the clusters. 
Our main results are that the expected processing time, O(Nk2logw/α), depends on the 
following factors:

• • Linear O(N) dependency on the size of data.
• • Quadratic O(k2) dependency on the number of clusters.
• • Inverse O(1/α) dependency on the neighborhood size.
• • Logarithmic O(log w) dependency on the number successful swaps needed.

The main limitation is that no practical stopping criterion can be reliably derived from 
the theory. Previously a fixed number of iterations has been used, such as T = 5000, or 
another rule of thumb such as T = N. Here we used w = 1 and estimated α using the 
preliminary clustering after T = 5 iterations. This works ok in practice, but a better esti-
mation would still be desired. Nevertheless, if the quality of the clustering is the main 
concern, one can simply iterate the algorithm as long as there is time.

The worst case of the algorithm is when the clusters are isolated (α = 1), which leads to 
O(Nk2) time for one swap. The number of successful swaps needed (w) is unknown but 
it has at most logarithmic additional cost. Empirical results indicate that the last swap is 
the most time-consuming. Theoretical upper limit would be O(Nk2logk) assuming that 
w = k swaps were needed. Due to the quadratic dependency on k, a faster algorithm such 
as deterministic swap [20] or divisive clustering [10] might be more useful if the number 
of clusters is very high.

Implementation of random swap is publicly available in C, Matlab, Java, Javascript, R 
and Python. We also have web page (http://cs.uef.fi/sipu/clust​erato​r/) where anyone can 
upload data in text format and obtain quick clustering result in a 5  s, or alternatively 
use longer 5 min option. As future work, we plan to extend the Clusterator to solve the 
number of clusters, and also to support non-numerical data. Importing random swap to 

http://cs.uef.fi/sipu/clusterator/


Page 28 of 29Fränti  ﻿J Big Data  (2018) 5:13 

other machine learning platforms like Spark MLlib will be considered, including a paral-
lel variant to provide better support for big data.
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