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Introduction
Background

Data sets in simulation and signal-reconstruction applications easily reach sizes too large 
for a single computer’s random access memory (RAM). A reasonable grid size for such 
tasks like galactic density reconstructions [1] or multi-frequency imaging in radio astron-
omy [2] is a cube with a side resolution of 2048. Such a cube contains 20483 ≈ 8.6 · 109 
voxels. Storing a 64-bit double for every voxel therefore consumes 64 GiB. In practice 
one has to handle several or even many instances of those arrays which ultimately pro-
hibits the use of single shared memory machines. Apart from merely holding the arrays’ 
data in memory, parallelization is needed to process those huge arrays within reasonable 
time. This applies to basic arithmetics like addition and multiplication as well as to com-
plex operations like Fourier transformation and advanced linear algebra, e.g. operator 
inversions or singular value decompositions. Thus parallelization is highly advisable for 
code projects that must be scaled to high resolutions.

To be specific, the initial purpose of d2o was to provide parallelization to the pack-
age for Numerical Information Field Theory (NIFTy)[3], which permits the abstract and 
efficient implementation of sophisticated signal processing methods. Typically, those 
methods are so complex on their own that a NIFTy user should not need to bother with 
parallelization details in addition to that. It turned out that providing a generic encap-
sulation for parallelization to NIFTy is not straightforward as the applications NIFTy is 
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used for are highly diversified. The challenge hereby is that, despite all their peculiarities, 
for those applications numerical efficiency is absolutely crucial. Hence, for encapsulat-
ing the parallelization effort in NIFTy we needed an approach that is flexible enough 
to adapt to those different applications such that numerical efficiency can be preserved: 
d2o.

d2o is implemented in Python. As a high-level language with a low-entry barrier 
Python is widely used in computational science. It has a huge standard library and an 
active community for 3rd party packages. For computationally demanding applications 
Python is predominantly used as a steering language for external compiled modules 
because Python itself is slow for numerics.

This article is structured as follows. "Aim" section  gives the aims of d2o, and "Alter-
native packages" section describes alternative data distribution packages. We dicuss the 
code architecture in "Code architecture" section, the basic usage of d2o in "Basic usage" 
section, and the numerical scaling behavior in section "Performance and scalability". 
"Summary and outlook" section contains our conclusion and "Appendix 1" describes the 
detailed usage of d2o.

Aim

As most scientists are not fully skilled software engineers, for them the hurdle for 
developing parallelized code is high. Our goal is to provide data scientists with a 
numpy array-like object (cf. numpy [4]) that distributes data among several nodes of a 
cluster in a user-controllable way. The user, however, shall not need to have profound 
knowledge about parallel programming with a system like MPI  [5, 6] to achieve this. 
The transition to use distributed_data_objects instead of numpy arrays in existing code 
must be as straightforward as possible. Hence, d2o shall in principle run—at least in a 
non-parallelized manner—with standard-library dependencies available; the packages 
needed for parallel usage should be easily available. Whilst providing a global-minded 
interface, the node’s local data should be directly accessible in order to enable the 
usage in specialized high-performance modules. This approach matches with the 
theme of DistArray [7]: “Think globally, act locally”. Regarding d2o’s architecture we 
do not want to make any a-priori assumptions about the specific distribution strategy, 
but retain flexibility: it shall be possible to adapt to specific constraints induced from 
third-party libraries a user may incorporate. For example, a library for fast Fourier 
transformations like FFTW [8] may rely on a different data-distribution model than a 
package for linear algebra operations like ScaLAPACK [9].1 In the same manner it shall 
not matter whether a new distribution scheme stores data redundantly or not, e.g. 
when a node is storing not only a distinct piece of a global array, but also its neighbor-
ing (ghost) cells [10].

Our main focus is on rendering extremely costly computations possible in the first 
place; not on improving the speed of simple computations that can be done serially. 
Although primarily geared towards weak scaling, it turns out that d2o performs very 
well in strong-scaling scenarios, too; see "Performance and scalability" section  for details.

1 FFTW distributes slices of data, while ScaLAPACK uses a block-cyclic distribution pattern.
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Alternative packages

There are several alternatives to d2o. We discuss the differences to d2o and why the 
alternatives are not sufficient for our needs.

DistArray

DistArray [7] is very mature and powerful. Its approach is very similar to d2o: It mim-
ics the interface of a multi dimensional numpy array while distributing the data among 
nodes in a cluster. However, DistArray involves a design decision that makes it inapt for 
our purposes: it has a strict client-worker architecture. DistArray either needs an ipy-
thon ipcluster  [11] as back end or must be run with two or more MPI processes. The 
former must be started before an interactive ipython session is launched. This at least 
complicates the workflow in the prototyping phase and at most is not practical for batch 
system based computing on a cluster. The latter enforces tool-developers who build on 
top of DistArray to demand that their code always is run parallelized. Both scenarios 
conflict with our goal of minimal second order dependencies and maximal flexibility, cf. 
"Aim" section. Nevertheless, its theme also applies to d2o: “Think globally, act locally”.

Scalapy (ScaLAPACK)

scalapy is a Python wrapper around ScaLAPACK [9], which is “a library of high-performance 
linear algebra routines for parallel distributed memory machines”  [12]. The scalapy.
DistributedMatrix class essentially uses the routines from ScaLAPACK and therefore 
is limited to the functionality of that: two-dimensional arrays and very specific block-cyclic 
distribution strategies that optimize numerical efficiency in the context of linear algebra 
problems. In contrast, we are interested in n-dimensional arrays whose distribution scheme 
shall be arbitrary in the first place. Therefore scalapy is not extensive enough for us.

Petsc4py (PETSc)

petsc4py is a Python wrapper around PETSc, which “is a suite of data structures and rou-
tines for the scalable (parallel) solution of scientific applications modeled by partial dif-
ferential equations”  [13]. Regarding distributed arrays its scope is as focused as scalapy 
to its certain problem domain—here: solving partial differential equations. The class for 
distributed arrays petsc4py.PETSc.DMDA is limited to one, two and three dimensions 
as PETSc uses a highly problem-fitted distribution scheme. We in contrast need n-dimen-
sional arrays with arbitrary distribution schemes. Hence, petsc4py is not suitable for us.

Code architecture
Choosing the right level of parallelization

d2o distributes numerical arrays over a cluster in order to parallelize and therefore to 
speed up operations on the arrays themselves. An application that is built on top of d2o 
can profit from its fast array operations that may be performed on a cluster. However, 
there are various approaches how to deploy an algorithm on a cluster and d2o imple-
ments only one of them. In order to understand the design decisions of d2o and its posi-
tion respective to other packages, cf. "Alternative packages" section , we will now discuss 
the general problem setting of parallelization and possible approaches for that. Thereby 
we reenact the decision process which led to the characteristics d2o has today.
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Vertical and horizontal scaling

Suppose we want to solve an expensive numerical problem which involves operations on 
data arrays. To reduce the computation time one can in principle do two things. Either 
use a faster machine—vertical scaling—or use more than one machine—horizontal scal-
ing. Vertical scaling has the advantage that existing code does not need to be changed,2 
but in many cases this is not appropriate. Maybe one already uses the fastest possible 
machine, scaling up is not affordable or even the fastest machine available is still too 
slow. Because of this, we choose horizontal scaling.

High‑ and low‑level parallelization

With horizontal scaling we again face two choices: high- and low-level parallelization. With 
high-level parallelization, many replicas of the algorithm run simultaneously, potentially on 
multiple machines. Each instance then works independently if possible, solving an isolated 
part of the global problem. At the end, the individual results get collected and merged. The 
python framework pathos [14] provides functionality for this kind of procedure.

An example of high-level parallelization is a sample generator which draws from a 
probability distribution. Using high-level parallelization many instances of the genera-
tor produce their own samples, which involves very little communication overhead. The 
sample production process itself, however, is not sped up.

In low-level parallelization, several nodes work together on one basic task at a time. 
For the above sample generator, this means that all nodes work on the same sample at a 
time. Hence, the time needed for producing individual samples is reduced; they are seri-
ally generated by the cluster as a whole.

Downsides

Both of these approaches have their drawbacks. For high-level parallelization the algo-
rithm itself must be parallelizable. Every finite algorithm has a maximum degree of 
intrinsic parallelization.3 If this degree is lower than the desired number of processes 
then high-level parallelization reaches its limits. This is particularly true for algorithms 
that cannot be parallelized by themselves, like iterative schemes. Furthermore, there can 
be an additional complication: if the numerical problem deals with extremely large 
objects it may be the case that it is not at all solvable by one machine alone.4

Now let us consider low-level parallelization. As stated above, we assume that the 
solution of the given numerical problem involves operations on data arrays. Examples 
for those are unary,5 binary6 or sorting operations, but also more advanced procedures 
like Fourier transformations or (other) linear algebra operations. Theoretically, the abso-
lute maximum degree of intrinsic parallelization for an array operation is equal to the 
array’s number of elements. For comparison, the problems we want to tackle involve at 
least 108 elements but most of the TOP500  [15] supercomputers possess 106 cores or 

2 This is true if scaling up does not involve a change of the processor architecture.
3 For the exemplary sample generator the maximum degree of parallelization is the total number of requested samples.
4 In case of the sample generator this would be the case if even one sample would be too large for an individual 
machine’s RAM.
5 E.g. the positive, negative or absolute values of the array’s individual elements or the maximum, minimum, median or 
mean of all its elements.
6 E.g. the sum, difference or product of two data arrays.
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less. At first glance this seems promising. But with an increasing number of nodes that 
participate in one operation the computational efficiency may decrease considerably. 
This happens if the cost of the actual numerical operations becomes comparable to the 
generic program and inter-node communication overhead. The ratios highly depend on 
the specific cluster hardware and the array operations performed.

Problem sizes

Due to our background in signal reconstruction and grid-based simulations, we decide to 
use low-level parallelization for the following reasons. First, we have to speed up problems 
that one cannot parallelize algorithmically, like fixed-point iterations or step-wise simula-
tions. Second, we want to scale our algorithms to higher resolutions while keeping the 
computing time at least constant. Thereby the involved data arrays become so big that a 
single computer would be oversubscribed. Because of this, the ratio of array size to desired 
degree of parallelization does not become such that the computational efficiency would 
decrease considerably. In practice we experience a good scaling behavior with up to ≈103 
processes7 for problems of size 81922, cf. "Performance and scalability" section. Hence, for 
our applications the advantages of low-level parallelization clearly outweigh its drawbacks.

d2o as layer of abstraction

Compared to high-level parallelization, the low-level approach is more complicated to 
implement. In the best case, for the former one simply runs the serial code in parallel on 
the individual machines; when finished one collects and combines the results. For the lat-
ter, when doing the explicit coding one deals with local data portions of the global data 
array on the individual nodes of the cluster. Hence, one has to keep track of additional 
information: for example, given a distribution scheme, which portion of the global data 
is stored on which node of the cluster? Keeping the number of cluster nodes, the size and 
the dimensionality of the data arrays arbitrary implies a considerable complication for 
indexing purposes. By this, while implementing an application one has to take care of two 
non-trivial tasks. On the one hand, one must program the logic of distributing and col-
lecting the data; i.e. the data handling. On the other hand, one must implement the appli-
cation’s actual (abstract) algorithm. Those two tasks are conceptually completely different 
and therefore a mixture of implementations should be avoided. Otherwise there is the risk 
that features of an initial implementation—like the data distribution scheme—become 
hard-wired to the algorithm, inhibiting its further evolution. Thus it makes sense to insert 
a layer of abstraction between the algorithm code and the data distribution logic. Then the 
abstract algorithm can be written in a serial style from which all knowledge and methodol-
ogy regarding the data distribution is encapsulated. This layer of abstraction is d2o.

Choosing a parallelization environment

To make the application spectrum of d2o as wide as possible we want to maximize its 
portability and reduce its dependencies. This implies that—despite its parallel architec-
ture—d2o must just as well run within a single-process environment for cases when no 
elaborate parallelization back end is available. But nevertheless, d2o must be massively 

7 This was the maximum number of processes available for testing.
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scalable. This relates to the question of which distribution environment should be used. 
There are several alternatives:

  • Threading and multiprocessing: These two options limit the application to a single 
machine which conflicts with the aim of massive scalability.

  • (py)Spark  [16] and hadoop  [17]: These modern frameworks are very powerful but 
regrettably too abstract for our purposes, as they prescind the location of individual 
portions of the full data. Building a numpy-like interface would be disproportionately 
hard or even unfeasible. In addition to that, implementing a low-level interface for 
highly optimized applications which interact with the node’s local data is not conven-
ient within pySpark. Lastly, those frameworks are usually not installed as standard 
dependencies on scientific HPC clusters.

  • MPI [5, 6]: The Message Passing Interface is available on virtually every HPC cluster 
via well-tested implementations like OpenMPI [18], MPICH2 [19] or Intel MPI [20]. 
The open implementations are also available on commodity multicore hardware 
like desktops or laptops. A Python interface to MPI is given by the Python module 
mpi4py [21]. MPI furthermore offers the right level of abstraction for hands-on con-
trol of distribution strategies for the package developers.

Given these features we decide to use MPI as the parallelization environment for d2o. 
We stress that in order to fully utilize d2o on multiple cores, a user does not need to 
know how to program in MPI; it is only necessary to execute the program via MPI as 
shown in the example in "Distributed arrays" section.

Internal structure

Composed object

A main goal for the design of d2o was to make no a-priori assumptions about the spe-
cific distribution strategies that will be used in order to spread array data across the 
nodes of a cluster. Because of this, d2o’s distributed array—d2o.distributed_

data_object—is a composed object; cf. Fig. 1.
The distributed_data_object itself provides a rich user interface, and makes sanity 

and consistency checks regarding the user input. In addition to that, the distributed_
data_object possesses an attribute called data. Here the MPI processes’ local portion of 
the global array data is stored, even though the distributed_data_object itself will never 
make any assumptions about its specific content since the distribution strategy is arbi-
trary in the first place. The distributed_data_object is the only object of the d2o library 
that a casual user would interact with.

For all tasks that require knowledge about the certain distribution strategy every dis-
tributed_data_object possesses an instance of a d2o.distributor subclass. This 
object stores all the distribution-scheme and cluster related information it needs in 
order to scatter (gather) data to (from) the nodes and to serve for special methods, e.g. 
the array-cumulative sum. The distributed_data_object builds its rich user interface on 
top of those abstracted methods of its distributor.

The benefit of this strict separation is that the user interface becomes fully detached 
from the distribution strategy; may it be block-cyclic or slicing, or have neighbor ghost 
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cells or not, et cetera. Currently there are two fundamental distributors available: a 
generic slicing-8 and a not-distributor. From the former, three special slicing distributors 
are derived: fftw9, equal10 and freeform.11 The latter, the not-distributor, does not do any 
data-distribution or -collection but stores the full data on every node redundantly.

Advantages of a global view interface

d2o’s global view interface makes it possible to build software that remains completely 
independent from the distribution strategy and the used number of cluster processes. 
This in turn enables the development of 3rd party libraries that are very end-use-case 
independent. An example for this may be a mathematical optimizer; an object which 
tries to find for a given scalar function f an input vector �x such that the output y = f (�x) 
becomes minimal. It is interesting to note that many optimization algorithms solely use 
basic arithmetics like vector addition or scalar multiplication when acting on �x. As such 
operations act locally on the elements of an array, there is no preference for one distribu-
tion scheme over another when distributing �x among nodes in a cluster. Two different 
distribution schemes will yield the same performance if their load-balancing is on a par 
with each other. Further assume that f is built on d2o, too. On this basis, one could now 
build an application that uses the minimizer but indeed has a preference for a certain 
distribution scheme. This may be the case if the load-balancing of the used operations is 
non-trivial and therefore only a certain distribution scheme guarantees high evaluation 
speeds. While the application’s developer therefore enforces this scheme, the minimizer 
remains completely unaffected by this as it is agnostic of the array’s distribution strategy.

Basic usage
In the subsequent sections we will illustrate the basic usage of d2o in order to explain 
its functionality and behavior. A more extended discussion is given in "Appendix 1". Our 
naming conventions are:

  • instances of the numpy.ndarray class are labeled a and b,
  • instances of d2o.distributed_data_object are labeled obj and p.

In addition to these examples, the interested reader is encouraged to have a look into 
the distributed_data_object method’s docstrings for further information; cf. the project’s 
web page https://gitlab.mpcdf.mpg.de/ift/D2O.

Initialization

Here we discuss how to initialize a distributed_data_object and compare some of its 
basic functionality to that of a numpy.ndarray. First we import the packages. 

8 The slicing is done along the first array axis.
9 The fftw-distributor uses routines from the pyFFTW [8, 22] package [8] for the data partitioning.
10 The equal-distributor tries to split the data in preferably equal-sized parts.
11 The local data array’s first axis is of arbitrary length for the freeform-distributor.

https://gitlab.mpcdf.mpg.de/ift/D2O
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1 In [1]: import numpy as np
2 In [2]: from d2o import distributed_data_object

Now we set up some test data using numpy. 

1 In [3]: a = np.arange (12).reshape ((3, 4))
2 In [4]: a
3 Out[4]: array ([[ 0, 1, 2, 3],
4 [ 4, 5, 6, 7],
5 [ 8, 9, 10, 11]])

One way to initialize a distributed_data_object is to pass an existing numpy array. 

1 In [5]: obj = distributed_data_object(a)
2 In [6]: obj
3 Out[6]: <distributed_data_object >
4 array ([[ 0, 1, 2, 3],
5 [ 4, 5, 6, 7],
6 [ 8, 9, 10, 11]])

The output of the obj call shows the local portion of the global data available in this 
process.

Arithmetics

Simple arithmetics and point-wise comparison work as expected from a numpy array. 

1 In [7]: (2 ∗ obj , obj ∗ ∗ 3, obj >= 5)
2 Out[7]: (<distributed_data_object >
3 array ([[ 0, 2, 4, 6],
4 [ 8, 10, 12, 14],
5 [16, 18, 20, 22]]),
6 <distributed_data_object >
7 array ([[ 0, 1, 8, 27],
8 [ 64, 125, 216, 343],
9 [ 512, 729, 1000, 1331]]) ,

10 <distributed_data_object >
11 array ([[False , False , False , False],
12 [False , True , True , True],
13 [ True , True , True , True]], dtype=bool))

Please note that the distributed_data_object tries to avoid inter-process communica-
tion whenever possible. Therefore the returned objects of those arithmetic operations are 
instances of distributed_data_object , too. However, the d2o user must be careful when 
combining distributed_data_objects with numpy arrays. If one combines two objects with a 
binary operator in Python (like +, −, ∗, \, % or ∗∗, it will try to call the respective method (__
add__, __sub__, etc.) of the first object. If this fails, i.e. if it throws an exception, Python 
will try to call the reverse methods of the second object (__radd__, __rsub__, etc.): 

1 In [8]: a + 1; # calls a.__add__ (1) -> returns a numpy array
2 In [9]: 1 + a; # 1. __add__ not existing -> a.__radd__ (1)

 Depending on the conjunction’s ordering, the return type may vary when combining numpy 
arrays with distributed_data_objects. If the numpy array is in the first place, numpy will try 
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to extract the second object’s array data using its __array__ method. This invokes the dis-
tributed_data_object’s get_full_data method that communicates the full data to every 
process. For large arrays this is extremely inefficient and should be avoided by all means. 
Hence, it is crucial for performance to assure that the distributed_data_object’s methods will 
be called by Python. In this case, the locally relevant parts of the array are extracted from the 
numpy array and then efficiently processed as a whole. 

1 In [10]: a + obj # numpy converts obj -> inefficient
2 Out[10]: array ([[ 0, 2, 4, 6], # note: numpy.ndarray
3 [ 8, 10, 12, 14],
4 [16, 18, 20, 22]])
5

6 In [11]: obj + a # obj processes a -> efficient
7 Out[11]: <distributed_data_object >
8 array ([[ 0, 2, 4, 6],
9 [ 8, 10, 12, 14],

10 [16, 18, 20, 22]])

Array indexing

The distributed_data_object supports most of numpy’s indexing functionality, so it is 
possible to work with scalars, tuples, lists, numpy arrays and distributed_data_objects as 
input data. Every process will extract its locally relevant part of the given data-object and 
then store it; cf. "Array indexing" section. 

1 In [12]: obj
2 Out[12]: <distributed_data_object >
3 array ([[ 0, 1, 2, 3],
4 [ 4, 5, 6, 7],
5 [ 8, 9, 10, 11]])
6

7 In [13]: obj[1] # extract a row
8 Out[13]: <distributed_data_object >
9 array([4, 5, 6, 7])

10

11 In [14]: obj[1,-2] # extract single entry
12 Out[14]: 6
13

14 In [15]: obj[::2, 1::2] # slicing notation
15 Out[15]: <distributed_data_object >
16 array ([[ 1, 3],
17 [ 9, 11]])
18

19 # sets data using slicing
20 In [16]: obj[::2, 1::2] = [[111, 222], [333, 444]]
21 In [17]: obj
22 Out[17]: <distributed_data_object >
23 array ([[ 0, 111, 2, 222],
24 [ 4, 5, 6, 7],
25 [ 8, 333, 10, 444]])

By default it is assumed that all processes use the same key-object when accessing 
data. See "Local keys" section  for more details regarding process-individual indexing.



Page 10 of 34Steininger et al. J Big Data  (2016) 3:17 

Distribution strategies

In order to specify the distribution strategy explicitly one may use the “distribu-
tion_strategy” keyword: 

1 In [18]: obj = distributed_data_object(
2 a, distribution_strategy=’equal ’)
3 In [19]: obj.distribution_strategy
4 Out[19]: ’equal ’

See "Copy methods" section  for more information on distribution strategies.

Distributed arrays

To use d2o in a distributed manner, one has to create an MPI job. This example shows 
how four MPI processes hold individual parts of the global data and how distributed 
read & write access works. The script is started via the command: 

mpirun -n 4 python get_set_data.py

1 # get_set_data .py
2 from mpi4py import MPI
3 import numpy as np
4 from d2o import distributed_data_object
5 # Get the process ’ rank number (0,1,2,3) from MPI
6 rank = MPI.COMM_WORLD.rank
7

8 # Initialize some data
9 a = np.arange (16).reshape ((4,4))

10 # Initialize the distributed_data_object
11 obj = distributed_data_object(a)
12

13 # Print the process ’ local data
14 print (rank , obj.get_local_data ())
15 # extract data via slicing
16 print (rank , obj [0:3:2 , 1:3]. get_local_data ())
17

18 b = -np.arange (4).reshape ((2,2))
19 obj [2:4 ,1:3] = b # Write b into obj
20

21 # Print the process ’ local data
22 print (rank , obj.get_local_data ())
23

24 # Consolidate the data
25 full_data = obj.get_full_data ()
26 if rank == 0: print (rank , full_data)

The distributed_data_object gets initialized in line 11 with the following array: 

array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]]))

 Here, the script is run in four MPI processes; cf. mpirun -n4 [...]. The data is 
split along the first axis; the print statement in line 14 yields the four pieces: 
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(0, array([[ 0, 1, 2, 3]]))
(1, array([[ 4, 5, 6, 7]]))
(2, array([[ 8, 9, 10, 11]]))
(3, array([[12, 13, 14, 15]]))

 The second print statement (line 16) illustrates the behavior of data extraction; 
obj[0:3:2, 1:3] is slicing notation for the entries 1, 2, 9 and 10.12 This expression 
returns a distributed_data_object where the processes possess the individual portion of 
the requested data. This means that the distribution strategy of the new (sub-)array is 
determined by and aligned to that of the original array.

(0, array([[1, 2]]))
(1, array([], shape=(0, 2), dtype=int64)) # empty
(2, array([[ 9, 10]]))
(3, array([], shape=(0, 2), dtype=int64)) # empty

 The result is a distributed_data_object where the processes 1 and 3 do not possess any 
data as they had no data to contribute to the slice in obj[0:3:2, 1:3]. In line 19 we 
store a small 2 × 2 block b in the lower middle of obj. The process’ local data reads: 

(0, array([[ 0, 1, 2, 3]]))
(1, array([[ 4, 5, 6, 7]]))
(2, array([[ 8, 0, -1, 11]]))
(3, array([[12, -2, -3, 15]]))

 Finally, in line 25 we use obj.get_full_data() in order to consolidate the distrib-
uted data; i.e. to communicate the individual pieces between the processes and merge 
them into a single numpy array. 

(0, array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 0, -1, 11],
[12, -2, -3, 15]]))

Performance and scalability
In this section we examine the scaling behavior of a distributed_data_object that uses 
the equal distribution strategy. The timing measurements were performed on the C2PAP 
Computing Cluster [23].13 The software stack was built upon Intel MPI 5.1, mpi4py 2.0, 
numpy 1.11 and python 2.7.11. For measuring the individual timings we used the Python 
standard library module timeit with a fixed number of 100 repetitions.

Please note that d2o comes with an extensive suite of unit tests featuring a high code-
coverage rate. By this we assure d2o’s continuous code development to be very robust 
and provide the users with a reliable interface definition.

12 This notation can be decoded as follows. The numbers in a slice correspond to start:stop:step with stop 
being exclusive. obj[0:3:2,1:3] means to take every second line from the lines 0, 1 and 2, and to then take from 
this the elements in collumns 1 and 2.
13 The C2PAP computing cluster consists of 128 nodes, each possessing two Intel Xeon CPU E5-2680 (8 cores 2.70 GHz 
+ hyper-threading, 64 KiB L1 per core, 256 KiB L2 cache per core, 20 MiB L3 cache shared for all 8 cores) and 64 GiB 
RAM each. The nodes are connected via Mellanox Infiniband 40 Gbits/s.
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Regarding d2o’s performance there are two important scaling directions: the size of 
the array data and the number of MPI processes. One may distinguish three different 
contributions to the overall computational cost. First, there is data management effort 
that every process has to cover itself. Second, there are the costs for inter-MPI-process 
communication. And third, there are the actual numerical costs.

d2o has size-independent management overhead compared to numpy. Hence, the 
larger the arrays are for which d2o is used, the more efficient the computations become. 
We will see below that there is a certain array size per node—roughly 216 elements—
from which on d2o’s management overhead becomes negligible compared to the purely 
numerical costs. This size corresponds to a two-dimensional grid with a resolution of 
256 × 256 or equivalently 0.5 MiB of 64-bit doubles. In "Scaling the array size" section 
we focus on this very ratio of management overhead to numerical costs.

d2o raises the claim to be able to operate well running with a single process as well 
as in a highly parallelized regime. In "Weak scaling: proportional number of processes 
and size of data" section, the scaling analysis regarding the MPI process count is done 
with a fixed local array size for which the process overhead is negligible compared to the 
numerical costs. For this weak scaling analysis we are interested in the costs arising from 
inter-process communication compared to those of actual numerics.

In the following three sections, we study the strong scaling of d2o where the perfor-
mance is a result of the combination of all three cost contributions. "Strong scaling: var-
ying number of processes with a fixed size of data" section covers the case in which the 
number of MPI processes is increased while the array size is left constant. In "Strong 
scaling: comparison with DistArray" section we compare d2o’s to DistArray’s [7] per-
formance and finally, in section  Strong scaling: real-world application speedup—the 
Wiener filter we benchmark d2o’s strong-scaling behavior when applied to a real-world 
application: a Wiener filter signal reconstruction.

A discussion on d2o’s efficient Python iterators can be found in "Appendix 2".

Scaling the array size

One may think of d2o as a layer of abstraction that is added to numpy arrays in order 
to take care of data distribution and collection among multiple MPI processes. This 
abstraction comes with inherent Python overhead, separately for each MPI process. 
Therefore, if one wants to analyze how the ratio of management overhead to actual 
numerical effort varies with the data size, only the individual process’ data size is impor-
tant. Because of this, all timing tests for this subsection were carried out with one MPI 
process only.

A common task during almost all numerical operations is to create a new array object 
for storing its results.14 Hence, the speed of object creation can be crucial for overall 
performance there. Note that in contrast to a numpy array which basically just allocates 
RAM, several things must be done during the initialization of a distributed_data_object. 
The Python object instance itself must be created, a distributor must be initialized which 
involves parsing of user input, RAM must be allocated, the distributed_data_object must 
be registered with the d2o_librarian (cf. "The d2o librarian" section), and, if activated, 

14 Exceptions to this are inplace operations which reuse the input array for the output data.
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inter-MPI-process communication must be done for performing sanity checks on the 
user input.

By default the initialization requires 60 μs to complete for a distributed_data_object 
with a shape of (1,) when run within one single MPI process. Using this trivial shape 
makes the costs for memory allocation negligible compared to the others tasks. Hence, 
those 60 μs represent d2o’s constant overhead compared to numpy, since a comparable 
numpy array requires ≈0.4 μs for initialization.

In order to speed up the initialization process one may disable all sanity checks on the 
user input that require MPI communication, e.g. if the same datatype was specified in all 
MPI processes. Even when run with one single process, skipping those checks reduces 
the costs by 27 μs from 60 to 33 μs .

Because of the high costs, it is important to avoid building distributed_data_objects 
from scratch over and over again. A simple measure against this is to use inplace opera-
tions like obj+= 1 instead of obj = obj + 1 whenever possible. This is generally a 
favorable thing to do—also for numpy arrays—as this saves the costs for repeated mem-
ory allocation. Nonetheless, also non-inplace operations can be improved in many cases, 
as often the produced and the initial distributed_data_object have all of their attributes 
in common, except for their data: they are of the same shape and datatype, and use the 
same distribution strategy and MPI communicator; cf. p = obj + 1. With obj.
copy() and obj.copy_empty() there exist two cloning methods that we imple-
mented to be as fast as allowed by pure Python. Those methods reuse as much already 
initialized components as possible and are therefore faster than a fresh initialization: for 
the distributed_data_object from above obj.copy() and obj.copy_empty() con-
sume 7.9 and 4.3 µ, respectively.

Table 3 shows the performance ratio in percent between serial d2o and numpy. The 
array sizes range from 20 = 1 to 225 ≈ 3.3 · 107 elements. In the table, 100% would mean 
that d2o is as fast as numpy.

The previous section already suggested that for tasks that primarily consist of ini-
tialization work—like array creation or copy_empty—d2o will clearly follow behind 
numpy. However, increasing the array size from 220 to 222 elements implies a considera-
ble performance drop for numpy’s memory allocation. This in turn means that for arrays 
with more than 222 elements d2o’s relative overhead becomes less significant: e.g. np.
copy_empty is then only a factor of four faster than obj.copy_empty().

Functions like max and sum return a scalar number; no expensive return-array must 
be created. Hence, d2o’s overhead is quite modest: even for size 1 arrays, d2o’s relative 
performance lies above 50 %. Once the size is greater than 218 elements the performance 
is higher than 95 %.
obj[::-2] is slicing syntax for “take every second element from the array in reverse 

order”. It illustrates the costs of the data-distribution and collection logic that even plays 
a significant role if there is no inter-process communication involved. Again, with a 
large-enough array size, d2o’s efficiency becomes comparable to that of numpy.

Similarly to obj[::-2], the remaining functions in the table return a distributed_
data_object as their result and therefore suffer from its initialization costs. However, 
with an array size of 216 elements and larger d2o’s relative performance is at least greater 
than approximately 65 %.
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An interesting phenomenon can be observed for obj + 0 and obj + obj: As for 
the other functions, their relative performance starts to increase significantly when an 
array size of 216 is reached. However, in contrast to obj+= obj which then immedi-
ately scales up above 95%, the relative performance of the non-inplace additions tempo-
rarily decreases with increasing array size. This may be due to the fact that given our test 
scenario 218 elements almost take up half of the cache of C2PAP’s Intel E5-2680 CPUs. 
d2o’s memory overhead is now responsible for the fact, that its non-inplace opera-
tions—which need twice the initial memory—cannot profit that strongly from the cache 
anymore, whereas the numpy array still operates fast. Once the array size is above 222 
elements numpy’s just as d2o’s array-object is too large for profiting from the cache and 
therefore become comparably fast again: the relative performance is then greater than 
98%.

Thus, when run within a single process, d2o is ideally used for arrays larger than 
216 = 65536 elements which corresponds to 512 KiB. From there the management over-
head becomes less significant than the actual numerical costs.

Weak scaling: proportional number of processes and size of data

Now we analyze the scaling behavior of d2o when run with several MPI processes. 
Repeating the beginning of "Performance and scalability" section , there are three contri-
butions to the execution time. First, the fixed management overhead that every process 
has to cover itself, second, the communication overhead and third, the actual numerical 
costs. In order to filter out the effect of a changing contribution of management over-
head, in this section we fix the MPI processes’ local array size to a fixed value. Hence, 
now the global data size is proportional to the number of MPI processes.

Table  4 shows the performance of various array operations normalized to the time 
d2o needs when running with one process only. Assuming that d2o had no communica-
tion overhead and an operation scaled perfectly linearly with array size, the performance 
would be rated at 100 %.

In theory, operations that do not inherently require inter-process communication like 
point-wise array addition or subtraction ideally scale linearly. And in fact, d2o scales 
excellently with the number of processes involved for those functions: here we tested 
copy, copy_empty, sum(axis = 1), obj + 0, obj + obj, obj += obj and 
sqrt.

Comparing sum(axis = 0) with sum(axis = 1) illustrates the performance  
difference between those operations that involve inter-process communication and 
those that don’t: the equal distribution strategy slices the global array along its first 
axis in order to distribute the data among the individual MPI processes. Hence, 
sum(axis = 0)—which means to take the sum along the first axis—does intrinsically 
involve inter-process communication whereas sum(axis = 1) does not. Similarly to 
sum(axis = 0) also the remaining functions in Table 4 are affected by an increasing 
number of processes as they involve inter-process communication.

But still, even if—for example in case of sum(axis = 0)—the relative performance 
may drop to 28.2 % when using 256 processes, this means that the operation just took 
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3.5 times longer than the single-process run, whereat the array size has been increased 
by a factor of 256. This corresponds to a speedup factor of 72.2.

Strong scaling: varying number of processes with a fixed size of data

Similarly to the previous "Weak scaling: proportional number of processes and size of 
data" section , we vary the number of processes but now fix the data size globally instead 
of locally. This corresponds to the real-life scenario in which the problem size and reso-
lution are already set—maybe by environmental conditions—and now one tries to 
reduce the run time by using more cores. Since the size of the local data varies with the 
number of processes, the overall scaling behavior is now a mixture of the varying ratio 
between management overhead and process-individual numerical costs, and the fact 
that an increasing amount of CPU cache becomes available at the expense of increased 
communication effort. Table 5 shows the benchmarking results for the same set of oper-
ations as used in the previous section on weak scaling and the results are reasonable. 
Those operations in the list that inherently cannot scale strongly as they consist of purely 
node-individual work, namely the initialization and copy_empty, show that 
their performance just does not increase with the number of processes. In contrast, 
operations without communication effort benefit strongly from the increasing total 
amount of CPU cache combined with smaller local arrays; above all copy which is about 
3 times faster than what one would expect from linear scaling to 256 processes.15

In theory, the strong-scaling behavior is the combination of the size- and weak-scaling 
we discussed in sections "Scaling the array size" and "Weak scaling: proportional num-
ber of processes and size of data". In order to verify whether the strong-scaling behavior 
makes sense, we estimate the strong-scaling performance using the information from 
size- and weak-scaling.

We choose the sum() method as our test case. During the reduction phase, the n 
MPI-processes exchange their local results with each other. This corresponds to add-
ing n times a fixed amount of communication time to the total computing time needed. 
Hence, we perform a linear fit to the weak-scaling data; cf. Table  4. Furthermore, we 
assume that the local computation time is roughly proportional to the local-array size. 
This is true for sufficiently large array sizes, since then numpy scales linearly and d2o is 
in a good efficiency regime, cf. Table 3. Again we performed a linear fit but now on the 
size-scaling timing data. Combining those two linear fits leads to the following run-time 
formula for applying sum() to an array with shape (4096, 4096):

In the case of linear scaling, t(n) is expected to be equal to t(1)/n. Hence, the relative per-
formance p(n) is the ratio between the two:

15 This very strong scaling is indeed realistic: when analyzing pure numpy arrays one gets speedups in the order of mag-
nitude of even 800 %.

(1)t(n) = (0.0065n+ 1.57/n) s

(2)p(n)estimated =

t(1)
n

t(n)
=

241.8

240.8+ n2
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Comparing the estimate with the actually measured relative performance—cf. Tables 1, 
2, 3, 4, 5 shows that even under those rough assumptions the strong scaling behavior of 
sum() can be explained as the combination of size- and weak scaling within about 20 % 
accuracy.

Strong scaling: comparison with distArray

In "Alternative packages" section  we discussed several competitors to d2o Because of 
their similarities, we conducted the strong scaling tests—as far as possible16—also with 
DistArray and compare the performance. In Table 6 the results are shown for the subset 
of all operations from the previous sections that where available for DistArray, too.

While being at least on a par for numerical operations when being run single-threaded, 
d2o outperforms DistArray more and more with an increasing number of processes. 
Furthermore, it is conspicuous that DistArray does not seem to support inplace array 
operations. Because of this, the inplace addition obj+=obj is way slower with DistAr-
ray than with d2o which is on a par with numpy in most cases, cf. Tables 3, 4 and 5.

The fact that d2o is way more efficient when doing numerics on very small arrays—
like obj+0 using 256 processes—indicates that d2o’s organizatorial overhead is much 
smaller than that of DistArray. Supporting evidence for this is that the initialization of 
an empty DistArray (copy_empty) becomes disproportionately costly when increasing 
the number of processes used.

Strong scaling: real‑world application speedup—the Wiener filter

d2o was initially developed for NIFTy [3], a library for building signal inference algo-
rithms in the framework of information field theory (IFT) [24]. Within NIFTy v2 all of 
the parallelization is done via d2o; the code of NIFTy itself is almost completely agnos-
tic of the parallelization and completely agnostic of MPI.

16 DistArray does, for example, not support negative step-sizes for slicing ([::-2]) and also the special method bin-
count is not available.

Table 1 Strong scaling behavior: estimate vs. measurement

#processes : n 1 (%) 4 (%) 8 (%) 16 (%) 32 (%) 64 (%) 128 (%) 256 (%)

p(n)estimated 100 94.2 79.3 48.7 19.1 5.58 1.45 0.37

p(n)measured 100 91.7 74.1 60.9 24.4 7.05 1.82 0.45

Table 2 Execution time scaling of  a Wiener filter reconstruction on  a grid of  size 
8192× 8192

#nodes 1 1 1 1 2 4 8 16 32
#processes : n 1 2 3 4 8 16 32 64 128

t [S] 1618 622.0 404.2 364.2 181.7 94.50 46.79 18.74 8.56

sn = 2t2/tn 0.769 2.00 3.08 3.42 6.85 13.2 26.6 66.4 145

qn = 1/(1+ log( n
sn
)) 0.900 1.00 1.01 0.94 0.94 0.92 0.93 1.02 1.06
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A standard computational operation in IFT-based signal reconstruction is the Wiener 
filter [25]. For this performance test, we use a Wiener filter implemented in NIFTy to 
reconstruct the realization of a Gaussian random field—called the signal. Assume we 
performed a hypothetical measurement which produced some data. The data model is

where R is a smoothing operator and noise is additive Gaussian noise. In Fig. 2 one sees 
the three steps:

  • the true signal we try to reconstruct,
  • the data one gets from the hypothetical measurement, and
  • the reconstructed signal field that according to the Wiener filter has most likely pro-

duced the data.

Table 2 shows the scaling behavior of the reconstruction code, run with a resolution of 
8192× 8192. Here, n is the number of used processes and tn the respective execution time. 
The relative speedup sn = 2t2/tn

17 is the ratio of execution times: parallel versus serial. In 
the case of exactly linear scaling sn is equal to n. Furthermore we define the scaling quality 
q = 1/(1+ log(n/sn)), which compares sn with linear scaling in terms of orders of magni-
tude. A value q = 1 represents linear scaling and q ≥ 1 super-linear scaling.

This benchmark illustrates that even in  a real-life application super-linear scaling 
is possible to achieve for a sufficiently large number of processes. This is due to the 
operations that are needed in order to perform the Wiener filtering: basic point-wise 

(3)data = R(signal)+ noise

17 Since the combination of NIFTy and pyfftw exhibits an unexpected speed malus for one process, we chose the two-
process timing as the benchmark’s baseline.

Table 4 Weak scaling: d2o’s relative performance to the single-process case when increas-
ing both, the number of processes and the global array size proportionally

The arrays used for this tests had the global shape (n ∗ 2048, 2048) with n being the number of processes. By this the local 
data size was fixed to 222 elements, which is equal to 32 MiB. “100 %” in the table corresponds to the case were the speedup 
is equal to the number of processes. Example: the 95.1% for copy_empty on 256 processes correspond to a speedup‑
factor of 243.5. In order to guide the eye, values < 30% are printed italic, values ≥ 90% are printed bold‑italics. Please see 
"Weak scaling: proportional number of processes and size of data" section  for discussion

Process count 1 (%) 2 (%) 3 (%) 4 (%) S (%) 16 (%) 32 (%) 64 (%) 128 (%) 256 (%)

initialization 100.0 90.9 87.9 87.8 74.6 67.6 54.9 45.7 34.6 19.9

copy .empty 100.0 97.5 96.2 97.5 97.6 103.6 97.8 97.7 97.6 95.1
max 100.0 97.5 96.6 95.6 90.9 84.0 72.1 56.2 39.1 24.3

sum 100.0 98.0 95.3 93.5 87.3 79.2 65.1 48.3 32.2 19.2

sum(axis=0) 100.0 100.2 96.7 96.5 90.9 78.1 74.6 58.0 42.7 28.2

sum(axis=1) 100.0 105.2 103.2 102.2 100.6 100.0 98.3 95.8 93.2 88.6

obj[::-2] 100.0 70.4 65.9 64.0 46.2 46.6 42.8 33.6 31.1 25.3

copy 100.0 104.7 103.1 101.3 101.3 105.3 101.4 101.2 101.3 101.5
obj + 0 100.0 105.1 102.6 100.6 99.9 103.5 100.2 100.0 99.7 100.1
obj + obj 100.0 105.2 102.5 100.1 100.0 103.7 100.1 100.1 99.8 100.2
obj + = obj 100.0 102.3 99.3 98.6 98.2 101.8 98.2 98.2 98.2 98.4
sqrt 100.0 102.0 100.6 100.1 99.6 99.1 99.2 99.2 8.6 98.0
bincount 100.0 103.0 101.2 99.9 98.8 97.6 94.1 88.3 79.4 65.8
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arithmetics that do not involve any inter-process communication and Fourier trans-
formations that are handled by the high-performance library FFTW [26]. While the 
problem size remains constant, the amount of available CPU cache increases with the 
number of processes, which explains the super-linear scaling, cf. "Strong scaling: varying 
number of processes with a fixed size of data" section.

Summary and outlook
We introduced d2o, a Python module for cluster-distributed multi-dimensional numer-
ical arrays. It can be understood as a layer of abstraction between abstract algorithm 
code and actual data-distribution logic. We argued why we developed d2o as a package 
following a low-level parallelization ansatz and why we built it on MPI. Compared to 
other packages available for data parallelization, d2o has the advantage of being ready 
for action on one as well as several hundreds of CPUs, of being highly portable and cus-
tomizable as it is built with Python, that it is faster in many circumstances, and that it is 
able to treat arrays of arbitrary dimension.

For the future, we plan to cover more of numpy’s interface such that working with d2o 
becomes even more convenient. Furthermore we evaluate the option to build a d2o dis-
tributor in order to support scalapy’s block-cyclic distribution strategy directly. This will 
open up a whole new class of applications d2o then can be used for.

d2o is open source software licensed under the GNU General Public License v3 (GPL-
3) and is available by https://gitlab.mpcdf.mpg.de/ift/D2O.

obj1

Attributes:
• data: <numpy.ndarray>
• index: 1
• shape: (256, 256)
• distribution strategy: ’equal’
• distributor: equal distributor 1
• . . .

obj2

Attributes:
• data: <numpy.ndarray>
• index: 2
• shape: (256, 256)
• distribution strategy: ’equal’
• distributor: equal distributor 1
• . . .

obj3

Attributes:
• data: <numpy.ndarray>
• index: 3
• shape: (4, 4, 4)
• distribution strategy: ’not’
• distributor: not distributor 1
• . . .

equal distributor 1

Attributes:
• global shape: (256, 256)
• local shape: (64, 256)
• . . .

not distributor 1

Attributes:
• global shape: (4, 4, 4)
• local shape: (4, 4, 4)
• . . .

d2o librarian

Attributes:
• library:

– 1: obj1
– 2: obj2
– 3: obj3
– . . .

distributor factory

Attributes:
• distributor store:

– equal distributor 1
– not distributor 1
– . . .

Fig. 1 Object structure. Here the main object composition structure of d2o is shown. distributed data 
objects are composed objects, cf. "Composed object" section. All tasks that need information related to the 
distribution strategy areoutsourced to a distributor. In this figure, three distributed data objects are shown 
where obj1 and obj2 share the same distributor. This is possible because they are essentially identical: they 
have thesame global shape, datatype, and distribution strategy. Since it is expensive to instantiate new 
distributors, the distributed data objects get their instance from the distributor_factory that takescare of 
caching those distributors that have already been created. Furthermore, we illustrate the d2o_librarian that 
keeps weak references to the individual distributed data objects and assigns a uniquecluster-wide identifier 
to them: the index

https://gitlab.mpcdf.mpg.de/ift/D2O
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Fig. 2 Wiener filter reconstruction. Top left true signal to be reconstructed. Top right data which is the result 
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tional) probability density function forthe signal given the data P(signaljdata)
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Appendix 1: Advanced usage and functional behavior
Here we discuss specifics regarding the design and functional behavior of d2o. We set 
things up by importing numpy and d2o.distributed_data_object: 

1 In [1]: import numpy as np
2 In [2]: from d2o import distributed_data_object

Distribution strategies

In order to see the effect of different distribution strategies one may run the following 
script using three MPI processes. In lines 13 and 19, the distribution_strategy 
keyword is used for explicit specification of the strategy. 

mpirun -n 3 python distribution_schemes.py

1 # distribution_schemes .py
2 from mpi4py import MPI
3 import numpy as np
4 from d2o import distributed_data_object
5 rank = MPI.COMM_WORLD.rank
6

7 a = np.arange (16).reshape ((4, 4))
8 if rank == 0: print ((rank , a))
9

10 # use ’not ’, ’equal’ and ’fftw’
11 for strategy in [’not’, ’equal’, ’fftw’]:
12 obj = distributed_data_object(
13 a, distribution_strategy =strategy)
14 print (rank , strategy , obj.get_local_data ())
15

16 # use the ’freeform ’ slicer
17 a += rank
18 obj = distributed_data_object(
19 local_data=a, distribution_strategy=’freeform ’)
20 print (rank , ’freeform ’, obj.get_local_data ())
21

22 full_data = obj.get_full_data ()
23 if rank == 0: print (rank , ’freeform ’, full_data)

The printout in line 8 shows the a array. 
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(0, array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]]))

 The “not” distribution strategy stores full copies of the data on every node: 

(0, ’not’, array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]]))

(1, ’not’, array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]]))

(2, ’not’, array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]]))

 The “equal”, “fftw” and “freeform” distribution strategies are all subtypes of 
the slicing distributor that cuts the global array along its first axis. Therefore they only 
differ by the lengths of their subdivisions. The “equal” scheme tries to distribute the 
global array as equally as possible among the processes. If the array’s size makes it nec-
essary, the first processes will get an additional row. In this example the first array axis 
has a length of four but there are three MPI processes; hence, one gets a distribution of 
(2, 1, 1): 

(0, ’equal’, array([[0, 1, 2, 3],
[4, 5, 6, 7]]))

(1, ’equal’, array([[ 8, 9, 10, 11]]))
(2, ’equal’, array([[12, 13, 14, 15]]))

 The “fftw” distribution strategy is very similar to “equal” but uses functions from 
FFTW[8]. If the length of the first array axis is large compared to the number of pro-
cesses they will practically yield the same distribution pattern but for small arrays they 
may differ. For performance reasons FFTW prefers multiples of two over a uniform dis-
tribution, hence one gets (2, 2, 0): 

(0, ’fftw’, array([[0, 1, 2, 3],
[4, 5, 6, 7]]))

(1, ’fftw’, array([[ 8, 9, 10, 11],
[12, 13, 14, 15]]))

(2, ’fftw’, array([], shape=(0, 4), dtype=int64))

 A “freeform” array is built from a process-local perspective: each process gets its 
individual local data. In our example, we use a+rank as the local data arrays—each 
being of shape (4, 4)—during the initialization of the distributed_data_object. By this, a 
global shape of (12, 4) is produced. The local data reads: 
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(0, ’freeform’, array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]]))

(1, ’freeform’, array([[ 1, 2, 3, 4],
[ 5, 6, 7, 8],
[ 9, 10, 11, 12],
[13, 14, 15, 16]]))

(2, ’freeform’, array([[ 2, 3, 4, 5],
[ 6, 7, 8, 9],
[10, 11, 12, 13],
[14, 15, 16, 17]]))

 This yields a global shape of (12, 4). In oder to consolidate the data the method obj.
get_full_data() is used, cf. "Getting and setting data" section. 

(0, ’freeform’, array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15],
[ 1, 2, 3, 4],

[ 5, 6, 7, 8],
[ 9, 10, 11, 12],
[13, 14, 15, 16],
[ 2, 3, 4, 5],
[ 6, 7, 8, 9],
[10, 11, 12, 13],
[14, 15, 16, 17]]))

Initialization

There are several different ways of initializing a distributed_data_object. In all cases its 
shape and data type must be specified implicitly or explicitly. In the previous section we 
encountered the basic way of supplying an initial data array which then gets distributed: 

1 In [3]: a = np.arange (12).reshape ((3, 4))
2 In [4]: obj = distributed_data_object(a)
3 # equivalent to line above
4 In [5]: obj = distributed_data_object(global_data=a)

The initial data is interpreted as global data. The default distribution strategy18 is a 
global-type strategy, which means that the distributor which is constructed at initializa-
tion time derives its concrete data partitioning from the desired global shape and data 
type. A more explicit example for an initialization is: 

18 Depending on whether pyfftw is available or not, the equal- or the fftw-distribution strategy is used, respectively; cf. 
"Distribution strategies" section.
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1 In [6]: obj = distributed_data_object(global_data=a,
2 dtype= np.complex )

In contrast to a’s data type which is integer we enforce the distributed_data_object to 
be complex. Without initial data—cf. np.empty—one may use the global_shape 
keyword argument: 

1 In [7]: obj = distributed_data_object(global_shape =(2,3),
2 dtype=np.float)
3 # equivalent to line above
4 In [8]: obj = distributed_data_object(global_shape =(2,3))

If the data type is specified neither implicitly by some initial data nor explicitly via 
dtype, distributed_data_object uses float as a default19. In contrast to global-type, 
local-type distribution strategies like “freeform” are defined by local shape informa-
tion. The aptly named analoga to global_data and global_shape are local_
data and local_shape, cf. "Distribution strategies" section : 

1 In [9]: obj = distributed_data_object(
2 local_data=a,
3 distribution_strategy=’freeform ’)

If redundant but conflicting information is provided—like integer-type initialization 
array vs. dtype=complex—the explicit information gained from dtype is preferred 
over implicit information provided by global_data/local_data. On the contrary, 
if data is provided, explicit information from global_shape/local_shape is dis-
carded. In summary, dtype takes precedence over global_data/local_data 
which in turn takes precedence over global_shape/local_shape.

Please note that besides numpy arrays, distributed_data_objects are valid input for 
global_data/local_data, too. If necessary, a redistribution of data will be per-
formed internally. When using global_data this will be the case if the distribution 
strategies of the input and ouput distributed_data_objects do not match. When distrib-
uted_data_objects are used as local_data their full content will be concentrated on 
the individual processes. This means that if one uses the same distributed_data_object as 
local_data in, for example, two processes, the resulting distributed_data_object will 
have twice the memory footprint.

Getting and setting data

There exist three different methods for getting and setting a distributed_data_object ’s 
data:

  • get_full_data consolidates the full data into a numpy array,
  • set_full_data distributes a given full-size array,

19 This mimics numpys behavior.
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  • get_data extracts a part of the data and returns it packed in a new distributed_
data_object

  • set_data modifies parts of the distributed_data_object ’s data,
  • get_local_data returns the process’ local data,
  • set_local_data directly modifies the process’ local data.

In principle, one could mimic the behavior of set_full_data with set_data but 
the former is faster since there are no indexing checks involved. distributed_data_objects 
support large parts of numpy’s indexing functionality, via the methods get_data and 
set_data.20 This includes simple and advanced indexing, slicing and boolean extrac-
tion. Note that multidimensional advanced indexing is currently not supported by the 
slicing distributor: something like 

1 In [10]: a = np.arange (12).reshape(3, 4)
2 In [11]: obj = distributed_data_object(a)
3 In [12]: obj
4 Out[12]: <distributed_data_object >
5 array ([[ 0, 1, 2, 3],
6 [ 4, 5, 6, 7],
7 [ 8, 9, 10, 11]])
8

9 # Simple indexing
10 In [13]: obj[2,1]
11 Out[13]: 9
12

13 # Advanced indexing
14 In [14]: index_tuple = (np.array([1, 1, 2, 2, 2, 2]),
15 np.array([2, 3, 0, 1, 2, 3]))
16 In [15]: obj[index_tuple]

17 Out[15]: <distributed_data_object >
18 array([ 6, 7, 8, 9, 10, 11])
19

20 # Slicing
21 In [16]: obj[:, ::-2]
22 Out[16]: <distributed_data_object >
23 array ([[ 3, 1],
24 [ 7, 5],
25 [11, 9]])
26

27 # Boolean extraction
28 In [17]: obj[obj >5]
29 Out[17]: <distributed_data_object >
30 array([ 6, 7, 8, 9, 10, 11])

will throw an exception.

20 These are the methods getting called through Python’s obj[...]=... notation.
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All those indexing variants can also be used for setting array data, for example: 

1 In [18]: a = np.arange (12).reshape(3, 4)
2 In [19]: obj = distributed_data_object(a)
3 In [20]: obj[obj >5] = [11, 22, 33, 44, 55, 66]
4 In [21]: obj
5 Out[21]: <distributed_data_object >
6 array ([[ 0, 1, 2, 3],
7 [ 4, 5, 11, 22],
8 [33, 44, 55, 66]])

Allowed types for input data are scalars, tuples, lists, numpy ndarrays and distributed_
data_objects. Internally the individual processes then extract the locally relevant portion 
of it.

As it is extremely costly, d2o tries to avoid inter-process communication whenever 
possible. Therefore, when using the get_data method the returned data portions 
remain on their processes. In case of a distributed_data_object with a slicing distribution 
strategy the freeform distributor is used for this, cf. "Distribution strategies" section.

Local keys

The distributed nature of d2o adds an additional degree of freedom when getting (set-
ting) data from (to) a distributed_data_object. The indexing discussed in "Getting and 
setting data" section  is based on the assumption that the involved key- and data-objects 
are the same for every MPI node. But in addition to that, d2o allows the user to specify 
node-individual keys and data. This, for example, can be useful when data stored as a 
distributed_data_object must be piped into a software module which needs very specific 
portions of the data on each MPI process. If one is able to describe those data portions 
as array-indexing keys—like slices—then the user can do this data redistribution within 
a single line. The following script—executed by two MPI processes—illustrates the point 
of local keys. 

1 # local_keys.py
2 from mpi4py import MPI
3 import numpy as np
4 from d2o import distributed_data_object
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5 rank = MPI.COMM_WORLD.rank
6

7 # initializing some data
8 obj = distributed_data_object(np.arange (16) ∗ 2)
9

10 print (rank , obj)
11

12 # getting data using the same slice on both processes
13 print (rank , obj.get_data(key=slice(None , None , 2)))
14

15 # getting data using different slices
16 print (rank , obj.get_data(key=slice(None , None , 2+rank),
17 local_keys=True))
18

19 # getting data using different distributed_data_objects
20 key_tuple = (distributed_data_object ([1, 3, 5, 7]),
21 distributed_data_object ([2, 4, 6, 8]))
22 key = key_tuple[rank]
23 print (rank , obj.get_data(key=key , local_keys=True))

The first print statement shows the starting data: the even numbers ranging from 0 to 

30: 

(0, <distributed_data_object>
array([ 0, 2, 4, 6, 8, 10, 12, 14]))

(1, <distributed_data_object>
array([16, 18, 20, 22, 24, 26, 28, 30]))

 In line 13 we extract every second entry from obj using slice(None, None, 
2). Here, no inter-process communication is involved; the yielded data remains on the 
original node. The output of the print statement reads: 

(0, <distributed_data_object>
array([ 0, 4, 8, 12]))

(1, <distributed_data_object>
array([16, 20, 24, 28]))

 In line 17 the processes ask for different slices of the global data using the keyword 
local_keys=True: process 0 requests every second element whereas process 1 
requests every third element from obj. Now communication is required to redistribute 
the data and the results are stored in the individual processes. 

(0, <distributed_data_object>
array([ 0, 4, 8, 12, 16, 20, 24, 28]))

(1, <distributed_data_object>
array([ 0, 6, 12, 18, 24, 30]))

 In line 23 we use distributed_data_objects as indexing objects. Process 0 requests the 
elements at positions 1, 3, 5 and 7; process 1 for those at 2, 4, 6 and 8. The peculiarity 
here is that the keys are not passed to obj as a complete set of local distributed_data_
object instances. In fact, the processes only hand over their very local instance of the 
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keys. d2o is aware of this and uses the d2o_librarian in order to reassemble them, 
cf. "The d2o librarian" section. The output reads: 

(0, <distributed_data_object>
array([ 2, 6, 10, 14]))

(1, <distributed_data_object>
array([ 4, 8, 12, 16]))

 The local_keys keyword is also available for the set_data method. In this case 
the keys as well as the data updates will be considered local objects. The behaviour is 
analogous to the one of get_data: The individual processes store the locally relevant 
part of the to_key using their distinct data[from_key].

The d2o librarian

A distributed_data_object as an abstract entity in fact consists of a set of Python 
objects that reside in memory of each MPI process. Global operations on a distrib-
uted_data_object necessitate that all those local instances of a distributed_data_object 
receive the same function calls; otherwise unpredictable behavior or a deadlock could 
happen. Let us discuss an illustrating example, the case of extracting a certain piece of 
data from a distributed_data_object using slices, cf. "The d2o librarian" section. Given 
a request for a slice of data, the MPI processes check which part of their data is cov-
ered by the slice, and build a new distributed_data_object from that. Thereby they 
communicate the size of their local data, maybe make sanity checks, and more. If this 
get_data(slice(...)) function call is not made on every process of the cluster, 
a deadlock will occur as the ‘called’ processes wait for the ‘uncalled’ ones. However, 
especially when using the local_keys functionality described in "Local keys" sec-
tion algorithmically one would like to work with different, i.e. node-individual distrib-
uted_data_objects at the same time. This raises the question: given only one local Python 
object instance, how could one make a global call on the complete distributed_data_
object entity it belongs to? For this the d2o_librarian exists. During initialization 
every distributed_data_object registers itself with the d2o_librarian which returns 
a unique index. Later, this index can be used to assemble the full distributed_data_object 
from just a single local instance. The following code illustrates the workflow. 

mpirun -n 4 python librarian.py
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1 # librarian.py
2 from mpi4py import MPI
3 import numpy as np
4 from d2o import distributed_data_object , d2o_librarian
5

6 comm = MPI.COMM_WORLD
7 rank = comm.rank
8

9 # initialize four different distributed_data_objects
10 obj = distributed_data_object(np.arange (16).reshape ((4,4)))
11 obj_list = (obj , 2 ∗ obj , 3 ∗ obj , 4 ∗ obj)
12

13 # every process gets its part of the respective full array
14 individual_object = obj_list[rank]
15 individual_index = individual_object.index
16 index_list = comm.allgather(individual_index)
17

18 for index in index_list:
19 # resemble the current d2o on every node
20 current_object = d2o_librarian[index]
21 if rank == 0: print(’Index: ’ + str(index))
22 # take a slice of data
23 print (rank , current_object [:, 2:4]. get_local_data ())

The output reads: 

Index: 1
(0, array([[2, 3]]))
(1, array([[6, 7]]))
(2, array([[10, 11]]))
(3, array([[14, 15]]))
Index: 2
(0, array([[4, 6]]))
(1, array([[12, 14]]))
(2, array([[20, 22]]))
(3, array([[28, 30]]))
Index: 3
(0, array([[6, 9]]))
(1, array([[18, 21]]))
(2, array([[30, 33]]))
(3, array([[42, 45]]))
Index: 4
(0, array([[ 8, 12]]))
(1, array([[24, 28]]))
(2, array([[40, 44]]))
(3, array([[56, 60]]))

The d2o-librarian’s core-component is a weak dictionary wherein weak references to 
the local distributed_data_object instances are stored. Its peculiarity is that those weak 
references do not prevent Python’s garbage collector from deleting the object once no 
regular references to it are left. By this, the librarian can keep track of the distributed_
data_objects without, at the same time, being a reason to hold them in memory.

Copy methods

d2o’s array copy methods were designed to avoid as much Python overhead as possi-
ble. Nevertheless, there is a speed penalty compared to pure numpy arrays for a sin-
gle process; cf. "Performance and scalability" section  for details. This is important as 
binary operations like addition or multiplication of an array need a copy for returning 
the results. A special feature of d2o is that during a full copy one may change certain 
array properties such as the data type and the distribution strategy: 

1 In [22]: a = np.arange (4)
2 In [23]: obj = distributed_data_object(a) # dtype == np.int
3 In [24]: p = obj.copy(dtype=np.float ,
4 distribution_strategy =’not’)
5 In [25]: (p.distribution_strategy , p)
6 Out[25]: (’not’, <distributed_data_object >
7 array ([ 0., 1., 2., 3.]))
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When making empty copies one can also change the global or local shape: 

1 In [26]: obj = distributed_data_object(global_shape =(4,4),
2 dtype=np.float)
3 # only the shape gets changed
4 In [27]: obj.copy_empty(global_shape =(2,2))
5 Out[27]: <distributed_data_object >
6 array ([[ 6.90860823e-310, 9.88131292e-324],
7 [ 9.88131292e-324, 1.97626258e-323]])

Fast iterators

A large class of problems requires iteration over the elements of an array one by one [27]. 
Whenever possible, Python uses special iterators for this in order to keep computational 
costs at a minimum. A toy example is 

1 In [28]: l = [9, 8, 7, 6]
2 In [29]: for item in l:
3 print item
4 ....:
5 9
6 8
7 7
8 6

Inside Python, the for loop requests an iterator object from the list l. Then the loop 
pulls elements from this iterator until it is exhausted. If an object is not able to return 
an iterator, the for loop will extract the elements using __getitem__ over and over 
again. In the case of distributed_data_objects the latter would be extremely inefficient as 
every __getitem__ call incorporates a significant amount of communication. In order 
to circumvent this, the iterators of distributed_data_objects communicate the process’ 
data in chunks that are as big as possible. Thereby we exploit the knowledge that the 
array elements will be fetched one after another by the iterator. An examination of the 
performance difference is done in "Appendix 2".

Appendix 2: Iterator performance
As discussed in "Fast iterators" section, iterators are a standard tool in Python by which 
objects control their behavior in for loops and list comprehensions [27]. In order to 
speed up the iteration process, distributed_data_objects communicate their data as 
chunks chosen to be as big as possible. Thereby d2o builds upon the knowledge that ele-
ments will be fetched one after another by the iterator as long as further elements are 
requested.21 Additionally, by its custom iterator interface d2o avoids that the full data 
consolidation logic is invoked for every entry. Because of this, the performance gain is 
roughly a factor of 30 even for single-process scenarios as demonstrated in the following 
example: 

21 This has the downside, that if the iteration was stopped prematurely, data has been communicated in vain.
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1 In [1]: length = 1000
2 In [2]: obj = distributed_data_object(np.arange(length))
3

4 In [3]: def using_iterators(obj):
5 for i in obj:
6 pass
7

8 In [4]: def not_using_iterators(obj):
9 for j in xrange(length):

10 obj[j]
11

12 In [5]: %timeit not_using_iterators(obj)
13 10 loops , best of 3: 104 ms per loop
14

15 In [6]: %timeit using_iterators(obj)
16 100 loops , best of 3: 2.92 ms per loop
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