ERRATUM

Open Access

Erratum to: Modeling Alexander disease with patient iPSCs reveals cellular and molecular pathology of astrocytes

Takayuki Kondo¹, Misato Funayama¹, Michiyo Miyake¹, Kayoko Tsukita¹, Takumi Era², Hitoshi Osaka³, Takashi Ayaki⁴, Ryosuke Takahashi⁴ and Haruhisa Inoue^{1*}

Erratum:

The original version of this article [1] unfortunately contained a mistake. The information in Table 1 was misrepresented.

In Table 1 in the information related to Alex2 clone, E63K should read E69K and in the information related to Alex3 clone, R276L (c.827G>T) should read L264P (c.791_792TG>CT). Additionally, the second column header has been modified from "clinical character" to "Diagnosis".

An updated version of Table 1 has been provided below.

Author details

¹Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan. ²Department of Cell Modulation, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2-2-1 Honjo, Tyuou-ku, Kumamoto 860-0811, Japan. ³Department of Pediatrics, Jichi Medical School, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan. ⁴Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.

Received: 14 August 2016 Accepted: 25 August 2016 Published online: 16 September 2016

References

 Kondo T, et al. Modeling Alexander disease with patient iPSCs reveals cellular and molecular pathology of astrocytes. Acta Neuropathol Commun. 2016;4:69. doi: 10.1186/s40478-016-0337-0.

* Correspondence: haruhisa@cira.kyoto-u.ac.jp

¹Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan Full list of author information is available at the end of the article

© 2016 The Author(s). **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Table 1 Summary of iPSCs in this study

Clone name	Diagnosis	GFAP genotype	Sex	Age at onset	Age at sampling
HC1	healthy	wild	female	-	36
HC2	healthy	wild	female	-	67
HC3	healthy	wild	male	-	74
Alex1	Alexander disease type I	R239C (c.729C>T)	male	2	6
Alex2	Alexander disease type I	E69K (c.205G>A)	female	3	10
Alex3	Alexander disease type II	L264P (c.791_792TG>CT)	female	33	45

Abbreviations: GFAP Glial fibrillary acidic protein, HC Healthy control Alex1 was generated from patient fibroblasts (GM16825) from Coriell Institute (Camden, NJ)