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Abstract

The heat conduction problems for anisotropic bodies are studied taking into account
the uncertainties in the material orientation. The best estimations of the upper and
lower bounds of the considered energy dissipation functional are based on developing
new approach consisting in solution of some optimization problems and finding the
extremal internal material structures, which realize minimal and maximal dissipation.
The motivation of this study comes from paper making processes, and more precisely,
drying process, which consumes about 50% of the energy fed into the paper machine.
The understanding of the effect of uncertainties in the process arises from structural
properties of paper will provide the possibility to optimize the drying system.
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Introduction
The problems of incompleteness of data and uncertainties are typical for anisotropic
solids and structures having chaotic orientation of small material particles such as grains,
crystal or short nanofibers. Different possible compositions of elementary particles with
various orientations result in different values of such integral characteristics as a total
dissipation energy in the heat conduction problems, total potential energy in the ther-
moelasticity and thermoconductivity problems. Taking into account the conditions of
uncertainties concerning the material orientations it is very important to obtain various
estimations of the considered functionals and in particular limiting estimates known as
double-sided or bilateral estimates (see book by Banichuk and Neittaanmäki [1]).
The motivation of this study arises from understanding of paper making processes.

As is well known that paper product have an anisotropic fibrous structure which prop-
erties depend on the making process and its parameters (velocity, tension, etc.). The
understanding of heat conduction behaviour in anisotropic material is very critical for
optimization of the system. During paper making, the drying process consumes about
50% of the energy fed into the paper machine; it is the single largest consumer of energy
in the paper manufacturing process.
To model the drying of a moving paper web, several models exist in the literature

(see e.g. Karlsson [2], Lampinen and Toivonen [3] and Lu and Shen [4]). For a thorough
engineering-oriented discussion on paper drying, see the book edited by Karlsson [5]. In
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our study, we have assumed, that the material is not moving. Moreover, we consider the
fundamental mathematical setup of the problem, that the results can be applied widely.
In this article, the problem of estimation of dissipation energy characteristics is consid-

ered for anisotropic body constituting of the locally orthotropic material. It is assumed
that an orientation of the principle axes of orthotropy is not known beforehand at each
point of the body and can be distributed by various ways in different parts of the body
including chaotic orientation. The search for double-sided estimates is reduced to the
solution of optimization problems and finding the extremal orientations of the orthotropy
axes.

Heat conduction problem for bodies from locally orthotropic material
Let us consider heat conduction problem for solid body occupied the domain � (see
Figure 1) with the boundary � = �g + �i where �g ∩ �i = 0. The material of the body is
anisotropic with respect to the heat conduction process described by the known relations
(see e.g. Landau and Lifshitz [6] and Nowacki [7])

q = D × ∇ϕ, ϕ = θ−1 (1)

where θ is a temperature, q is a vector of the heat flux and D is a heat conduction tensor
of the second rank. In the case of absence of the source of heat in the domain �, we will
use the boundary conditions, governing equation and the quality functional (dissipation
of energy) in the following form

(ϕ)�g = ϕ0, (n × D × ∇ϕ)�i = 0 (2)

∇ × (D × ∇ϕ) = 0 x ∈ � (3)

J =
∫

�

∇ϕ × D × ∇ϕd� (4)

Figure 1 Domain�with given temperature �i (solid) and thermally insulated �g (dashed) boundary
conditions.
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where ϕ0 is a given function specified on�g , n is an outwards unit normal vector specified
on the part �i, (·) between the vectors means the scalar product and the symbol ∇ is the
gradient operator, i.e.

∇ϕ =
{

∂ϕ

∂x1
,

∂ϕ

∂x2
,

∂ϕ

∂x3

}
.

In accordance with the variational principle (see e.g. Berdichevsky [8]), the actual distri-
bution of the function ϕ realizes a minimum for the functional J on the set of admissible
functions satisfying the first boundary condition in (2), if

J → min
ϕ

(5)

Note the second boundary condition in (2) plays the role of transversality condition
for the functional (4) and is satisfied ‘automatically’ for extremum solution. Note that
Equation 3 is the Eulerian equation for the functional (4).
In what follows we will suppose that the material is locally orthotropic and the orien-

tation of the axes of orthotropicity is unknown beforehand. Let us fix the unit vectors
e01, e02, e03 of orthogonal coordinate system x1, x2, x3 which is considered as a global system
(see Figure 2). The principal directions unit vectors e1, e2, e3 of the heat conduction tensor
D of orthotropic material (axes of local symmetry) at the arbitrary point (x1, x2, x3) ∈ �

are related with the global coordinate vectors e01, e02, e03 by means of the rotation tensor
Q = Q(x) as

ei = Q ∗ e0i = Q × e0i (i = 1, 2, 3) (6)

QT × Q = Q × QT = E (7)
where the symbol T means the operation of transposition and E = {δij} - unit tensor,
where δij is a Kronecker symbol (i, j = 1, 2, 3) and (∗) is a tensor operation of the rota-
tion. In the axes of symmetry of the orthotropic material, the heat conduction tensor D is
written as

D = Dijei ⊗ ej = D0
ijQ × e0i ⊗ Q × e0j = Q ∗

(
D0
ije0i ⊗ e0j

)
= Q ∗ D0 (8)

Figure 2 Transformation of global unit vectors to the local material principle vectors by rotation
tensorQ.
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where ⊗ is the tensor product and

D0 = D0
ij × e0i ⊗ e0j (9)

The expression for the heat conduction tensor D can be rewritten in the form

D = D0
ijQ × e0i ⊗ Q × e0j = Q ×

(
D0
ije0i ⊗ e0j

)
× QT = Q × D0 × QT (10)

If κi and e0i i.e. eigenvalues and eigenvectors of the tensor D0, i.e.

D0 × e0i = κ
0
i e0i (11)

then κ
0
i and ei = Q × e0i i.e. eigenvalues and eigenvectors of the tensor D = Q ∗ D0, i.e.

D × ei = κ
0
i ei (12)

Taking into account Equations 7, 8 and 11, we will have Equation 12. In fact,

D × ei = (
Q ∗ D0) × (

Q ∗ e0i
) = Q ∗ (

D0 × e0i
) = κ

0
i Q ∗ e0i = κ

0
i ei (13)

For given tensor D0, the values of the functionals J depend on the realization of Q =
Q(x) and corresponding actual values of ϕ = ϕ(x), minimizing the functional of energy
dissipation (4) under constraints (2) (for considered Q(x), i.e.

J (Q,ϕ∗) = min
ϕ

J (Q,ϕ) (14)

Uncertainties in orientation of orthotropicmaterial anddouble-sided estimates
If there is no data concerning material orientation, i.e. the tensor-function Q = Q(x)
(x ∈ �), characterizing material distribution is unknown, then it is very important to
obtain the lower and upper bounds of J , i.e. to find the limit double-sided estimates Jmin
and Jmax, such that

Jmin ≤ J (Q,ϕ∗) ≤ Jmax (15)

for any realization of Q satisfying the condition (7).
To obtain reliable estimations of the dissipation energy functional J and other impor-

tant characteristics, we apply in the paper an approach based on the solution of two
optimization problems. The following problem is devoted to finding the lower estimate

Jmin = min
Q

J (Q,ϕ∗) = min
Q

min
ϕ

J (Q,ϕ) (16)

and another problem consists in the searching of the upper bounds

Jmax = max
Q

J (Q,ϕ∗) = max
Q

min
ϕ

J (Q,ϕ) (17)

where min and max with respect to Q in Equations 16 and 17 are determined under con-
straint (7). Operation min with respect to ϕ in Equations 16 and 17 is performed taking
into account boundary conditions from Equation 2.
In what follows, we will study the proposed approach and problems of searching the

extremum of J with respect to Q

J → extr
Q

(18)

and analyze extremum conditions and behavior equations.



Banichuk et al. Journal of Uncertainty Analysis and Applications 2014, 2:19 Page 5 of 10
http://www.juaa-journal.com/content/2/1/19

Extremal conditions for orthotropic material orientation
To derive extremum conditions, defining the orthogonal tensor of rotation Q = Q(x)
and characterizing the extremal orientations of orthotropy axes let us use the method of
Lagrange multipliers and construct augmented functional

JL = J + JP (19)

JP =
∫

�

P · ·
(
QT × Q − E

)
d� (20)

J =
∫

�

∇ϕ × (
Q ∗ Q0) × ∇ϕd� =

∫
�

∇ϕ ×
(
Q · D0 × QT

)
× ∇ϕd� (21)

where (··) between tensors mean double scalar product and symmetric tensor of second
rank P = P(x) (x ∈ �) is Lagrange multiplier, specifying in � and corresponding to the
condition of orthogonality (see Equation 7). The dissipation energy functional J can be
also rewritten as

J =
∫

�

B · ·
(
Q × D0 × QT

)
d� (22)

Here, by means of B, we denote the following symmetric second rank tensor

B = ∇ϕ ⊗ ∇ϕ, BT = B (23)

and the symbol ⊗ is the tensor product.
Let us derive the following expressions for the first variations δJ and δJP with respect to

variation δQ of rotation tensor Q. We will have

δJ =
∫

�

B · ·
(
δQ × D0 × QT + Q × D0 × δQT

)
d� = 2

∫
�

δQ · ·
(
D0 × QT × B

)
d�

(24)

and

δJP =
∫

�

P · ·
(
δQT × Q + QT × δQ

)
d� = 2

∫
�

δQ · ·
(
P × QT

)
d� (25)

Taking into account the expressions (19) to (21), (24) and (25), we will find the
expression for the total variation δQ in the following form

δJL = δJ + δJP = 2
∫

�

δQ · ·
(
D0 × QT × B + P × QT

)
d� (26)

Using the extremum condition

δJL = 0 (27)

and arbitrariness of Q, i.e. arbitrariness of δQ, we will have

D0 × QT × B + P × QT = 0, x ∈ � (28)

Multiplying the relation (28) on Q and using formulae (10) and (23) we find

D × ∇ϕ ⊗ ∇ϕ = −Q × P × QT, x ∈ � (29)

This relation means the symmetry of the second rank tensor

(D × ∇ϕ) ⊗ ∇ϕ

written in the left-hand side of the equality (29), i.e.

(D × ∇ϕ) ⊗ ∇ϕ = ∇ϕ ⊗ (D × ∇ϕ) (30)
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The equality (30) is satisfied if the vectors D × ∇ϕ and ∇ϕ are parallel, i.e.

D × ∇ϕ = λ∇ϕ (31)

where λ is some scalar value.

Double-sided estimates based on derived extremal conditions
The necessary extremum condition (31) for dissipation energy functional J with respect
to rotation tensorQ, defining an extremal distribution ofQ and expressing the collinearity
of the vectors ∇ϕ and

D × ∇ϕ =
(
Q × D × QT

)
× ∇ϕ

is an eigenvalue problem. Consequently, the vector ∇ϕ is one of the eigenvectors of the
heat conduction tensor D:

D × ∇ϕ = λi∇ϕ, i = 1, 2, 3 (32)

Taking into account that the eigenvalues λi of the tensors D and D0 are equal (see
Equations 11 and 13) and given, we assume

λ1 = λmin < λ2 < λ3 = λmax (33)

Substituting (32) into the Euler Equation (3) of the functional J , we obtain the equations
that determine the stationary distribution of scalar function ϕ = ϕ(x) :

∇ × (λi∇ϕ) = 0, (i = 1, 2, 3), x ∈ � (34)

in the case of specified rotation tensor Q according to the equation(
Q × D0 × QT

)
× ∇ϕ = λi∇ϕ (35)

The elliptical partial differential Equation (34) with the boundary conditions

(ϕ)�g = ϕ0, (λin × ∇ϕ)�i = 0 (36)

corresponding to conditions (2) with the relations (32) constitute the conventional bound-
ary value problem describing, as it is well known, homogeneous or nonhomogeneous
isotropic processes of the heat conductivity. Under some known additional constraints
superimposed on the boundary shape � = �g + �i, where �g ∩ �i = 0, we have the
existence and uniqueness of the solution of (34) and (36) with given λi.
If we assume that the same way of extremum orientation of the principle axes of

orthotropy is realized for all domain �, then λi is constant in � and the considered heat
conduction process is described by the classical boundary value problem

	ϕ = 0, x ∈ � (37)

(ϕ)�g = ϕ0, (n × ϕ)�i = 0 (38)

for Laplace equation with mixed (in general case) boundary conditions. Here 	 is a
Laplace operator acting in a three-dimensional space.
Note that the equality in Equation 37 means that in the case of the body with extremum

orthotropy the heat conduction process is described by the same equation as in the
isotropic case. If the domain � consists of several subdomains �i such that

� = ∪�i, �i ∩ �j = 0 (i 
= j) (39)
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and for each separate subdomain �i, the same extremum way of material orienta-
tion is taken, then the isotropic heat conduction process is realized for all considered
subdomains.
Let us assume that the orthotropic material is distributed in accordance with the same

extremum rule in the domain�. Then wewill have the ‘isotropic’ boundary value problem
(37) and (38), and consequently the state variable ϕ (inverse temperature) is independent
of λi. As a result, we obtain the following minimal and maximal values of the considered
quality functional J :

min
Q

J = λminI (40)

max
Q

J = λmaxI (41)

where

I =
∫

�

(∇ϕ)2 d� (42)

Thus, the double-sided estimates of the energy dissipation functionals can be written as

λmin ≤ J
I

≤ λmax (43)

Two-dimensional case of extremal material orientation
Separately, consider the two-dimensional case with plane domain �. In this case

∇ϕ =
{

∂ϕ

∂x1
,

∂ϕ

∂x2

}
, x = {x1, x2} ∈ � (44)

Then the element of orthogonal tensor Q are represented in the form

Q11 = Q22 = cosα Q21 = −Q12 = sinα (45)

where α is the angle of rotation of the specified tensor Q. On the basis of Equation 35,
we obtain an explicit expression relating the angle α = α(x1, x2) with the function ϕ =
ϕ(x1, x2). In Figure 3, the orientation of local orthotropicity is presented. For definiteness,
assume that the vector ∇ϕ, presented in Equation 44, correspond to the eigenvalue λi.
Then the eigenvector k, corresponding to the eigenvalue λj(i 
= j) is

k =
{

∂ϕ

∂x2
,− ∂ϕ

∂x1

}
(46)

which is orthogonal to the eigenvector ∇ϕ from Equation 44. We form a scalar product
of both sides of the vector equality (32) with the vector k. We will have

k × D × ∇ϕ = 0 (47)

This relation contains two separate cases. The first case

cos 2α = C, sin 2α = S (48)

where

C = −

(
D0
11 − D0

22
) {(

∂ϕ

∂x1

)2
−

(
∂ϕ

∂x2

)2
}

+ 4D0
12

∂ϕ

∂x1
∂ϕ

∂x2

(∇ϕ)2
√(

D0
11 − D0

22
)2 + 4

(
D0
12

)2 (49)
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Figure 3 Orientation of local orthotropicity in a two-dimensional case.

and

S =
2

(
D0
11 − D0

22
) ∂ϕ

∂x1
∂ϕ

∂x2
− 2D0

12

{(
∂ϕ

∂x1

)2
−

(
∂ϕ

∂x2

)2
}

(∇ϕ)2
√(

D0
11 − D0

22
)2 + 4

(
D0
12

)2 (50)

corresponds to the smaller eigenvalue λ1(λ1 < λ2). The second case

cos 2α = −C, sin 2α = −S (51)

corresponds to the larger eigenvalue λ2(λ2 > λ1).

Examples of double-sided estimates
Suppose at first that the orthotropic material occupies the three-dimensional domain �

situated between the internal sphere of radius r1, where r1, r2(r1 < r2) is given values. The
temperature of θ = θ1 is defined at the internal boundary and the temperature θ = θ2
is given at the external boundary, where θ1 < θ2. Note that θi, (i = 1, 2) are given and
positive values. Thus, we consider the following boundary conditions:

ϕ = ϕ1 = 1
θ1
, r = r1

ϕ = ϕ2 = 1
θ2
, r = r2 (52)

where ϕ1 < ϕ2. Here, we use spherical coordinate system with the origin at r = 0.
From the properties of symmetry, it follows that the extremum orientations of the axes of
orthotropy with

λ1 = λmin and λ3 = λmax

corresponding respectively to the cases

J → min
Q

and J → max
Q
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are realized in radial direction. Besides, the gradient of ϕ, i.e. vector ∇ϕ, and also the heat
flux vector q are directed along the radius vector at each point of the domain�. Note that
the heat flux q is absent in circumferential directions. The following values characterize
the extremal distribution of material:

qmin = λminNr0, qmax = λmaxNr0 (53)

λminI ≤ J ≤ λmaxI

N = ϕ2 − ϕ1
r2 − r1

, r0 = r
|r|

where

I =
∫

�

(∇ϕ)2 d� = 4
3
πN (ϕ2 − ϕ1)

(
r21 + r1r2 + r22

)
(54)

and r0 is a unit vector, oriented in radial direction.
Next let us consider the problem of finding the double-side estimates when a simply

connected domain � occupied by the orthotropic material is a rectangular parallel-piped
with the upper and lower faces at x3 = −c and x3 = c and side faces at x1 = ±a and
x2 = ±b. We use the Cartesian coordinate system (x1, x2, x3) and we assume that the tem-
perature θ is given at the lower and upper faces and the side faces are thermally insulated,
i.e. the boundary conditions have the form:

ϕ = ϕ1 = 1
θ1
, x3 = −c and ϕ = ϕ2 = 1

θ2
, x3 = c (55)

and

q × n = n × D × ∇ϕ = 0 at x1 = ±a, x2 = ±b (56)

where θ1 > 0, θ2 > 0 and (θ1 > θ2). Extremal material distribution and corresponding
heat conduction processes are characterized by the existenec of level surfaces x3 is con-
stant (−c < x3 < c ∈ �) with a constant distribution of variable ϕ (constant temperature
θ ). The gradient of ϕ is parallel to x-axis. Therefore the axes of orthotropy with minimal
eigenvalue λ = λmin (in the case J → minQ) and with maximal eigenvalue λ = λmax (in
the case of J → maxQ) are oriented in a parallel way with respect to the axis x3. Such ori-
entation provides, respectively, either the minimium or the maximum of dissipation. For
considered problem we will have

qmin = λmin�x03, q = λmax�x03 (57)

min
Q

J = λminI, max
Q

J = λmaxI

� = ϕ2 − ϕ1
2c

, ∇ϕ = �x03, x03 = x3
|x3|

where

I =
∫

�

(∇ϕ)2 d� = 2ab
c

(ϕ2 − ϕ1)
2 (58)

and x03 is an unit vector of the x3-axis, obtained when the vector x3 is divided by its length
|x3|.

Conclusions
In the case, when the coefficient Dij and the considered eigenvalues λi are independent
of x = (x1, x2, x3), then the anisotropic behaviour equation is reduced to the Laplace
equation which describes the heat conduction of homogeneous isotropic body. Since the
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theory of the heat conduction of isotropic homogeneous solids is well developed and
solution of the corresponding boundary value problem has been found (analytically and
numerically) for most problems of practical importance, then this reduction allows to
consider the above problem of obtaining of double-sided estimates to be solved.
Taking into account the conditions of uncertainties concerning material orientations,

we obtain various estimations of the considered functionals and in particular limiting
estimates known as double-sided or bilateral estimates. The search of double-sided esti-
mates as it was shown is reduced to the solution of optimization problems and finding
the extremal orientation of the orthotropy axes. The results can be applied for example
to the optimization of the paper drying process, which has a significant role in energy
consumption of the paper production.
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