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Abstract

Background: The safety, efficacy, pharmacokinetics, and pharmacodynamics of the anti-programmed cell death-1
antibody MEDI0680 were evaluated in a phase I, multicenter, dose-escalation study in advanced solid malignancies.

Methods: MEDI0680 was administered intravenously once every 2 weeks (Q2W) or once every 3 weeks at 0.1, 0.5,
2.5, 10 or 20 mg/kg. Two cohorts received 20 mg/kg once a week for 2 or 4 weeks, then 20 mg/kg Q2W. All were
treated for 12 months or until progression. The primary endpoint was safety. Secondary endpoints were efficacy
and pharmacokinetics. Exploratory endpoints included pharmacodynamics.

Results: Fifty-eight patients were treated. Median age was 62.5 years and 81% were male. Most had kidney cancer
(n = 36) or melanoma (n = 9). There were no dose-limiting toxicities. Treatment-related adverse events occurred in
83% and were grade ≥ 3 in 21%. Objective clinical responses occurred in 8/58 patients (14%): 5 with kidney cancer,
including 1 with a complete response, and 3 with melanoma. The relationship between dose and serum levels was
predictable and linear, with apparent receptor saturation at 10 mg/kg Q2W and all 20 mg/kg cohorts.

Conclusions: MEDI0680 induced peripheral T-cell proliferation and increased plasma IFNγ and associated chemokines
regardless of clinical response. CD8+ T-cell tumor infiltration and tumoral gene expression of IFNG, CD8A, CXCL9, and
granzyme K (GZMK) were also increased following MEDI0680 administration.

Trial registration: NCT02013804; date of registration December 12, 2013.
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Introduction
MEDI0680, previously named AMP-514, is a humanized
IgG4κ anti-programmed cell death-1 (PD-1) monoclonal
antibody developed to block the immune suppressive
PD-1 pathway. The binding of tumoral programmed cell
death ligand-1 and -2 (PD-L1 and PD-L2) to the PD-1 re-
ceptor on T cells suppresses their ability to launch an
antigen-specific antitumor immune response [1–3]. PD-1
expression increases on T cells when they are activated,

and increased PD-1 expression on circulating T cells has
been associated with poor clinical outcome [4]. Blockade
of this ligand binding permits continued activation of T
cells and has been associated with clinical efficacy in
cancer patients [5, 6].
In recent years, antagonistic monoclonal antibodies

(mAbs) targeting PD-1 and PD-L1 have demonstrated
the ability to restore T-cell effector function and reduce
tumor progression [4, 5]. PD-1 targeted immuno-
therapies nivolumab, pembrolizumab, and cemiplimab
have been approved in multiple solid tumor indications
[7–9]. Among these, melanoma and kidney cancer,
specifically renal cell carcinoma (RCC), are considered
two of the most immunogenic types of cancer. The
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efficacy of PD-1-directed therapies in melanoma may be
linked to the high mutational burden associated with
this cancer type [10, 11]. Although kidney cancer has a
lower mutational burden than melanoma [11], nivolu-
mab has shown encouraging results in clinical trials and
has been approved in the US for RCC [8].
Despite encouraging clinical activity, many patients do

not respond to anti-PD-1 mAb therapy or relapse after
an initial response, including some patients with evi-
dence of pretreatment PD-L1 expression, immune-cell
infiltration, or intermediate-to-high tumor mutational
burden [12]. Combinations of anti-PD-1 agents with
other immunotherapy agents may offer an opportunity
to overcome some of these barriers to response to anti-
PD-1 monotherapy. Several combinations are being
investigated in ongoing clinical trials, including nivolu-
mab with BMS-986253 (an anti-interleukin-8 mAb;
NCT03400332), ALT-803 (an interleukin-15 superago-
nist complex; NCT02523469), and interferon-gamma
(IFNγ) (NCT02614456) [13–15] and pembrolizumab
with p53MVA, an antitumor vaccine (NCT03113487,
NCT02432963) [16]. Another possible combination is
with an anti-PD-L1 mAb. Currently, two clinical trials
combining anti-PD-1 with anti-PD-L1 agents are on-
going, including one with MEDI0680 (NCT02936102
and NCT02118337) [17, 18]. The biological rationale for
this combination approach is simultaneous blockade of
PD-1/PD-L1/PD-L2 and PD-1/PD-L1/CD80 interactions
[19–21]. The purpose of the current study is to
characterize the initial safety and clinical efficacy of this
anti-PD-1 mAb, and to confirm its intended pharmaco-
dynamic activity.
Nivolumab and pembrolizumab have shown different

safety and efficacy profiles in varying tumor types,
despite sharing the same mechanism of action [22–27].
Antagonistic antibodies targeting the same protein may
have the same mechanism of action, but differences in
immunogenicity, binding affinity, plasma half-life, and
tissue penetration could affect clinical efficacy, safety,
and pharmacokinetics [28–30]. Anti-PD-1 mAbs vary
due to the degree of antibody humanization and se-
quence differences in their complementarity-determin-
ing regions (CDRs), which determine the precise
epitopes bound on the target [28]. MEDI0680 differs
from nivolumab and pembrolizumab in its CDR
sequence and affinity, which may impact its safety or
clinical activity.
Here we present the clinical results of the dose-escal-

ation phase of the first-time-in-human (FTIH) phase I
study of MEDI0680, including safety, tolerability, and
efficacy in patients with solid tumors (NCT02013804).
We also describe the preclinical characterization of
MEDI0680, as well as its pharmacokinetic and pharma-
codynamic profiles in patients.

Materials and methods
Patients and study design
In this open-label, multicenter, dose-escalation and
expansion study in checkpoint inhibitor-naïve patients
with advanced solid malignancies, MEDI0680 was
administered intravenously every 2 weeks (Q2W) or
every 3 weeks (Q3W) at doses of 0.1, 0.5, 2.5, 10 or 20
mg/kg as indicated in Table 1. Two cohorts received 20
mg/kg every week (QW) for 2 or 4 weeks followed by 20
mg/kg Q2W. Patients were enrolled using a 3 + 3 study
design. One cycle of treatment was defined as 21 days
for patients on the Q3W schedule and as 28 days for pa-
tients on the Q2W schedule. Key eligibility criteria for
the study are shown in Additional file 1: Table S1.
The study design is shown in Additional file 1:

Figure S1a, including dose levels and administration
frequency for each dose cohort. Eligible patients had
advanced solid malignancies that were refractory to
standard therapy or for which no standard therapy
existed. They were enrolled if they had ≥1 measurable
lesion according to Response Evaluation Criteria in
Solid Tumors (RECIST v1.1), had not received previ-
ous anti-PD-1/PD-L1 antibodies (expanded in a
protocol amendment in May 2014 to exclude any
immunotherapy except therapeutic cancer vaccines),
had sufficient organ function, and had an Eastern Co-
operative Oncology Group (ECOG) performance score
of 0 or 1.
Based on accumulating evidence of response to PD-1

inhibition in kidney cancer and melanoma [31–35], the
study protocol was amended to enroll only patients with
these tumor types in cohorts 5–9. Therefore, the major-
ity of patients had kidney cancer (62%) or melanoma
(16%).
Patients received MEDI0680 for 12 months or until

progressive disease; those maintaining disease control
were followed for an additional 12 months. All patients
were followed long-term for survival. Retreatment was
permitted in cases of progression during the 12-month
follow-up period.

Endpoints and assessments
Primary
The primary endpoint was safety, assessed by evaluating
dose-limiting toxicities (DLTs), adverse events (AEs),
serious adverse events (SAEs), laboratory evaluations,
vital signs, physical examinations, and electrocardio-
grams. The National Cancer Institute Common Termin-
ology Criteria for Adverse Events Version 4.03 was used
to classify and grade AEs and SAEs. Laboratory abnor-
malities were monitored from the start of the study until
12 months after the last dose of study drug, or until the
patient withdrew from follow-up.
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Adverse events of special interest (AESIs) included
AEs of hepatic function abnormality meeting the defin-
ition of Hy’s law, Grade ≥ 3 endocrinopathies, Grade ≥ 3
dermatologic AEs, Grade ≥ 3 pneumonitis, and other
Grade ≥ 3 immune-related AEs.

Secondary endpoints
The secondary endpoints of this study are shown in
Additional file 1: Figure S1b and included assessment of
the pharmacokinetics and immunogenicity of
MEDI0680, as well as its efficacy.

MEDI0680 concentrations in patient serum
The serum concentration of MEDI0680 was determined
using a validated electrochemiluminescence (ECL) ligand
binding assay format. Standards, controls, and test sam-
ples were incubated with biotinylated anti-MEDI0680
bound to a streptavidin-coated plate. Following incuba-
tion, ruthenylated anti-IgG4 was added to the plate to
allow the formation of molecular complexes. Unbound
material was removed by washing the plate, adding MSD
read buffer, and detecting bound complexes by ECL
using a SECTOR 6000 MSD imager (MesoScale Discov-
ery). Data were analyzed by linear regression using
Watson LIMS™ software (Thermo Fisher Scientific) and
the concentrations of MEDI0680 in serum were interpo-
lated from a standard curve. The assay lower limit of
quantitation was determined to be 0.5 μg/mL and the
upper limit of quantitation was 100 μg/mL.

Anti-drug antibody responses
Anti-drug antibodies (ADAs) in serum samples were
assessed using validated bridging format ECL assays. For
all assays, the samples were diluted 1:10 in assay diluent
and then incubated with biotinylated and ruthenylated
MEDI0680 to allow the formation of molecular com-
plexes. The negative control was a human serum pool,
and positive control samples were prepared by spiking
the negative control serum pool with ADA. The com-
plexed samples were loaded into wells of a blocked,
streptavidin-coated MSD plate, washed, and the bound
complexes detected by ECL using a SECTOR 6000 MSD
imager (MesoScale Discovery). The data were processed
using Watson LIMS™ software (Thermo Fisher Scien-
tific) and the presence of ADAs was determined based
on an assay-specific cut-point. Samples that screened as
ADA-positive were further assessed using confirmatory
and titer assays.

Efficacy
The clinical efficacy and antitumor activity secondary
endpoints included objective response (OR) and disease
control (DC) based on RECIST v1.1 guidelines, modified
to require confirmation of progressive disease by a

repeat, consecutive assessment no less than 4 weeks
from the date of first documentation. The rationale for
this modification was to discourage premature discon-
tinuation of the investigational agent and provide a more
complete evaluation of its antitumor activity than would
be seen with conventional RECIST criteria. Additional
secondary endpoints assessed were duration of response
(DOR), progression-free survival (PFS), and overall
survival (OS).

Exploratory endpoints
Exploratory endpoints including PD-1 receptor occu-
pancy and the pharmacodynamic profile of MEDI0680
were evaluated to assess the biological activity of the
drug in both peripheral blood and tumor biopsy samples
(Additional file 1: Figure S1b and Table S2).

PD-1 receptor occupancy
Occupancy of the PD-1 receptor by MEDI0680 was
determined using a whole blood drug saturation assay.
Briefly, potassium EDTA anti-coagulated whole blood
samples from study patients were washed and then
incubated with formalin buffer or with a saturating dose
of MEDI0680 (30 μg/mL) at ambient temperature for 30
min. Bound MEDI0680 was detected using a biotin-la-
beled anti-human IgG4 antibody followed by Phycoeryth-
rin (PE)-conjugated streptavidin, after washes in between
binding steps. Fluorochrome labeled anti-human CD3 and
CD45RO antibodies were used to determine PD-1 recep-
tor occupancy on antigen-experienced (CD45RO+) CD3+
T cells. Receptor occupancy was defined as the percentage
of CD3+ CD45RO+ cells bound to MEDI0680 after incu-
bation with formulation buffer divided by the percentage
of MEDI0680 bound CD3+ CD45RO+ cells after
MEDI0680 saturation.

T-cell activation and proliferation markers
Peripheral blood mononuclear cell (PBMC) samples
were cryopreserved and subsequently evaluated in
batches by flow cytometry (BD LSR Fortessa; BD
Biosciences). Monoclonal antibodies and viability dye
used for flow cytometry panels included: Anti-CD3
BV605, clone SK7 (BD Biosciences); Anti-CD4 PerCP-
eFlour710, clone SK3 (eBioscience); Anti-CD8 FITC,
clone SK1 (Biolegend); Anti-CCR7 APC, clone G043H7
(Biolegend); Anti-CD45RA PE-Cy7, clone HIT100
(Biolegend); Anti-CD38 BV421, clone HIT2 (Biolegend);
Anti-human leukocyte antigen (HLA)-DR PE antibody,
clone L243 (Biolegend); Anti-Ki67 BV421, clone B56 (BD
Biosciences); Mouse IgG1 BV421, clone X40 (BD Biosci-
ences); Mouse IgG1 PE, clone MOPC21 (Biolegend);
Zombie Near-IR Fixable dye (Biolegend). Surface marker
staining was followed by intracellular marker staining after
fixation and permeabilization. CD4+ and CD8+ T cells
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were identified after gating on live (Zombie fixable
dye negative) CD3+ cells, and CD4 effector memory
(TEM) cells were defined as CD3 and CD4 double
positive cells that were CCR7– and CD45RA–. Levels
of the activation markers CD38 and HLA-DR, as well
as the intracellular proliferation marker Ki67, were
determined on CD4+ and CD8+ T-cell subsets using
FlowJo® Software (FlowJo LLC) by setting gates based
on a mouse IgG1 isotype control panel.

Circulating cytokines
Plasma samples were assessed for levels of the cytokine
IFNγ and the chemokines CXCL9 (monokine induced by
IFNγ, MIG), CXCL10 (IFNγ-induced protein-10, IP-10),
and CXCL11 (interferon-inducible T-cell alpha chemo-
attractant, I-TAC) using a custom human MULTI-SPOT
cytokine 4-plex assay kit and an SI6000 MSD reader
(MesoScale Discovery). Sample signals were compared to
calibration curves to determine the concentration of each
analyte in plasma samples.

PD-L1 and CD8 immunohistochemistry
Tumor biopsies were collected prior to treatment and
during treatment (cycle 2 between day 1 and day 15);
in addition, archival biopsies were assessed when
available. The PD-L1 status of tumor samples
was determined from 22 evaluable pretreatment fresh
(n = 21) or archival (n = 1) tumor biopsies formalde-
hyde fixed paraffin-embedded (FFPE) using the VEN-
TANA PD-L1 (SP263) immunohistochemistry (IHC)
assay [7]. Samples were classified as having PD-L1
membrane staining of any intensity in ≥ 25% of tumor
cells or < 25% of tumor cells [36]. Immunohistochemi-
cal staining for CD8 was performed on 14 evaluable
fresh paired pre- and on-treatment tumor biopsies
(cycle 2 between day 1 and day 15) using rabbit anti-
human CD8 monoclonal antibody clone SP239
(Spring Bioscience). Images of immunostained slides
were captured using an Aperio digital pathology slide
scanner (Leica Biosystems) and examined at 20× mag-
nification. The numbers of CD8+ lymphocytes per en-
tire tissue field containing tumor were counted
manually, with a minimum of 3 and a maximum
number of 10 fields of view (FOV) counted per case.
Areas of necrosis or tissue artifact were excluded. A
20× Aperio image FOV represents 0.4 mm2; therefore,
mean CD8+ tumor infiltrated lymphocyte (TILs) per
mm2 were calculated by multiplying the mean num-
ber of CD8+ T cells/FOV by 2.5. Non-evaluable spec-
imens were defined as biopsies that did not contain
at least 100 tumor cells or specimens that did not
maintain adherence to slides during the IHC process.

Tumor gene expression
Total RNA was isolated from 11 available and evaluable
fresh frozen tumor biopsy samples collected pre- and
on-treatment (cycle 2 between day 1 and day 15 in the
Q2W or Q3W dosing schedule). The level of RNA tran-
scripts for 171 immune-related genes was measured by
TaqMan real-time polymerase chain reaction (Thermo
Fisher Scientific) using Fluidigm BioMark 96.96 Dynamic
Array chips (Fluidigm Corp). Delta-delta cycle thresholds
(ΔΔCt) were calculated for each pre- and on-treatment
sample pair and shown as Log2 fold change.

Statistical analyses
Maximum tolerated dose (MTD) evaluation was based
on the DLT-evaluable population, defined as patients
who received the protocol-assigned treatment and com-
pleted the DLT evaluation period (≥ 21 days for the
Q3W schedule and ≥ 28 days for the other dosing sched-
ules) or experienced a DLT during this period. Non-eva-
luable patients in the dose-escalation phase could be
replaced. Tolerability and clinical activity evaluations
were based on the as-treated population (all patients re-
ceiving any dose of study drug).
For clinical activity, OR was defined as confirmed

complete response (CR) or partial response (PR), and
DC was defined as CR, PR, or stable disease (SD) for ≥
24 weeks (DCR24). The objective response rate (ORR)
and disease control rate (DCR) were calculated as a per-
centage of the as-treated population.

Results
Preclinical characterization of MEDI0680
MEDI0680 is a humanized mAb of the IgG4 isotype
containing a serine-to-proline amino acid replacement
in the immunoglobulin fragment crystallizable (Fc) hinge
region to stabilize the immunoglobulin and prevent in-
ter-strand fragment antigen-binding (Fab) arm exchange
[37]. The mAb bound to PD-1 on activated human T
cells with a mean apparent half-maximal (EC50) binding
value (reflecting bivalent binding) of 822 ± 220 pM
(Additional file 1: Figure S2a). The dissociation rate con-
stant (KD) for binding of the antibody to recombinant
human PD-1 (monovalent binding) was measured as 29
nM by surface plasmon resonance (Biacore). This bind-
ing was highly specific for PD-1 as MEDI0680 bound
poorly to closely related family members (Additional file
1: Figure S2b and Table S3). The antibody blocked the
binding of recombinant human PD-L1 and PD-L2 to hu-
man PD-1 expressing Chinese hamster ovary (CHO)
cells, with half-maximal inhibitory concentration (IC50)
values of 2.6 nM and 3.6 nM for PD-L1 and PD-L2, re-
spectively (Additional file 1: Figure S3). Consistent with its
PD-1:PD-L1 ligand blocking activity, MEDI0680 enhanced
in-vitro IFNγ production in allogeneic dendritic cell / T
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cell mixed lymphocyte reactions (Additional file 1: Figure
S4a) and killing of Epstein–Barr virus (EBV)-expressing
esophageal squamous cell carcinoma tumor cells by EBV-
reactive primary human T cells (Additional file 1: Figure
S4b). The activity of MEDI0680 in these preclinical assays
supported testing of the drug in this FTIH phase I clinical
trial.

Patient characteristics
From December 2013 to August 2015, a total of 58 eli-
gible patients with solid tumors were enrolled and
treated. Data were collected through November 7, 2017.
Patient baseline characteristics are summarized in Table
1 and patient disposition is shown in Additional file 1:
Table S4.
Five of the 9 patients with melanoma had tumors

bearing known mutations (4 with BRAF mutations and 1
with EGFR mutation).

Safety
An MTD was not reached, thus the highest protocol-de-
fined dose was 20mg/kg Q2W. Treatment-related AEs
occurred in 48 patients (83%) across all cohorts (Table 2).
The most commonly reported (> 10%) treatment-related
AEs of any grade in the study were fatigue (21%), nausea
(16%), decreased appetite (16%), vomiting (14%), anemia
(12%), pyrexia (12%), arthralgia (12%), pruritus (10%),
and asthenia (10%) (Table 3). Grade 1 or 2 treatment-re-
lated AEs occurred in 36/58 (62%) patients. Grade 3 or 4
treatment-related AEs occurred in 12/58 (21%) patients;
the most common were anemia (4 patients [7%]); fatigue
and aspartate aminotransferase increase (each in 2

patients [3%]); and abdominal pain, alanine aminotrans-
ferase (ALT) increase, arthralgia, asthenia, autoimmune
hepatitis, blood alkaline phosphatase increase, blood cre-
atine phosphokinase increase, dehydration, diarrhea, hy-
percalcemia, hyperkalemia, hypertension, lipase increase,
myasthenia gravis, myositis, and urinary tract infection
(each in 1 patient [2%]). Four patients (7%) discontinued
due to treatment-related AEs: 1 due to grade 2 pyrexia;
1 due to grade 3 elevated ALT; 1 due to grade 1 creatin-
ine increase, grade 1 potassium increase, grade 3 fatigue,
and grade 2 myalgia; and 1 due to grade 2 asthenia. No
treatment-related deaths were observed.

AEs of special interest
Grade 3 treatment-related AESIs occurred in 4/58
patients (7%): ALT and AST increases and autoimmune
hepatitis (n = 1, discontinued treatment as described
above); lipase increase (n = 1, resolved); AST increase
and myasthenia gravis (n = 1, both resolved); and
diarrhea (n = 1, resolved; no report of colitis). There
were no Grade 4 or 5 treatment-related AESIs. Pneu-
monitis was not observed.

Clinical activity
The best objective responses at each dose level are
shown in Table 4. In total, 8/58 patients in the as-treated
population (14%) had a confirmed OR: 3 had melanoma
(2 with BRAF mutations) and 5 had kidney cancer, in-
cluding 1 who had a CR. The DCR24 was 17/58 (29%).
Tumor size change from baseline (spider plot) is shown
in Fig. 1a. The timing and duration of response and
onset of progressive disease or new lesions in the

Table 2 Safety summary in the as-treated population

Event, n (%)a Q3W (mg/kg) Q2W (mg/kg) QW × 2
(mg/kg)

QW × 4
(mg/kg)

Total

Cohort 1
0.1
n = 5 (%)

Cohort 2
0.5
n = 5 (%)

Cohort 3
2.5
n = 3 (%)

Cohort 4
10
n = 6 (%)

Cohort 5
20
n = 9 (%)

Cohort 6
10
n = 4 (%)

Cohort 7
20
n = 18
(%)

Cohort 8
20
n = 3 (%)

Cohort 9
20
n = 5 (%)

N = 58 (%)

Any AE 5 (100) 5 (100) 3 (100) 6 (100) 9 (100) 4 (100) 18 (100) 3 (100) 5 (100) 58 (100)

Any grade≥ 3 AE 2 (40) 5 (100) 1 (33) 5 (83) 6 (67) 2 (50) 11 (61) 1 (33) 1 (20) 34 (59)

Any death (grade 5 AE) 1 (20) 0 0 1 (17) 0 0 2 (11) 0 0 4 (7)

Serious AE 2 (40) 4 (80) 0 3 (50) 5 (56) 1 (25) 10 (56) 1 (33) 2 (40) 28 (48)

AE leading to discontinuation 1 (20) 2 (40) 0 1 (17) 2 (22) 0 2 (11) 0 0 8 (14)

Treatment-related AE 5 (100) 4 (80) 3 (100) 5 (83) 5 (56) 4 (100) 15 (83) 3 (100) 4 (80) 48 (83)

Treatment-related grade≥ 3 AE 0 3 (60) 0 0 2 (22) 0 6 (33) 0 1 (20) 12 (21)

Treatment-related death 0 0 0 0 0 0 0 0 0 0

Treatment-related serious AE 0 1 (20) 0 1 (17) 1 (11) 1 (25) 3 (17) 0 1 (20) 8 (14)

Treatment-related AE leading to
discontinuation

0 2 (40) 0 1 (17) 1 (11) 0 0 0 0 4 (7)

Abbreviation: AE adverse event
aPatients were counted once for each category regardless of the number of events
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responding population (swimmer’s plot) is shown in
Fig. 1b. The DOR ranged from 9.1 to 110.7 weeks.
Three of the 8 responders discontinued study treat-
ment without completing the protocol-defined 12
months of treatment; all had kidney cancer. Of these,
1 with CR and 1 with PR discontinued treatment due
to progressive disease, and 1 with PR discontinued
due to new brain metastases.
All 8 responders were in the 10 mg/kg or 20 mg/kg

dose cohorts, where peripheral PD-1 receptor

occupancy and blood drug concentrations reached a
plateau (see pharmacokinetic and receptor occupancy
results below). In these pooled 10 and 20 mg/kg co-
horts, the ORR was 8/45 (18%); all responses were
observed in the Q2W and Q3W groups. The DCR24
was 17/45 (37%) in this subset.
Two patients entered retreatment after the initial 12-

month period (1 receiving 10mg/kg Q3W and the other
receiving 20mg/kg Q2W), but discontinued due to pro-
gressive disease.

Table 3 Any-grade treatment-related AEs occurring in ≥10% of total population and all grade ≥ 3 treatment-related AEs

Q3W (mg/kg) Q2W (mg/kg) QW × 2
(mg/kg)

QW × 4
(mg/kg)

Total

Cohort 1
0.1
(n = 5)

Cohort 2
0.5
(n = 5)

Cohort 3
2.5
(n = 3)

Cohort 4
10
(n = 6)

Cohort 5
20
(n = 9)

Cohort 6
10
(n = 4)

Cohort 7
20
(n = 18)

Cohort 8
20
(n = 3)

Cohort 9
20
(n = 5)

N = 58

Any-grade treatment-related AEa 5 (100) 4 (80) 3 (100) 5 (83) 5 (56) 4 (100) 15 (83) 3 (100) 4 (80) 48 (83)

Fatigue 0 1 (20) 0 1 (17) 1 (11) 1 (25) 7 (39) 1 (33) 0 12 (21)

Decreased appetite 2 (40) 1 (20) 2 (67) 1 (17) 0 0 3 (17) 0 0 9 (16)

Nausea 1 (20) 2 (40) 0 1 (17) 1 (11) 1 (25) 2 (11) 1 (33) 0 9 (16)

Vomiting 2 (40) 1 (20) 0 0 0 1 (25) 3 (17) 1 (33) 0 8 (14)

Anemia 0 1 (20) 0 0 1 (11) 0 3 (17) 0 2 (40) 7 (12)

Arthralgia 0 0 0 0 1 (11) 0 3 (17) 1 (33) 2 (40) 7 (12)

Pyrexia 1 (20) 1 (20) 0 1 (17) 0 1 (25) 2 (11) 0 1 (20) 7 (12)

Asthenia 0 1 (20) 0 0 1 (11) 0 4 (22) 0 0 6 (10)

Pruritus 1 (20) 0 1 (33) 0 1 (11) 0 3 (17) 0 0 6 (10)

Grade≥ 3 treatment-related AEsa 0 3 (60) 0 0 2 (22) 0 6 (33) 0 1 (20) 12 (20)

Anemia 0 1 (20) 0 0 1 (11) 0 1 (6) 0 1 (20) 4 (7)

Fatigue 0 1 (20) 0 0 1 (11) 0 0 0 0 2 (3)

Aspartate aminotransferase increased 0 1 (20) 0 0 0 0 1 (6) 0 0 2 (3)

Asthenia 0 0 0 0 1 (11) 0 0 0 0 1 (2)

Abdominal pain 0 0 0 0 0 0 1 (6) 0 0 1 (2)

Diarrhea 0 0 0 0 0 0 1 (6) 0 0 1 (2)

Autoimmune hepatitis 0 1 (20) 0 0 0 0 0 0 0 1 (2)

Urinary tract infection 0 0 0 0 0 0 1 (6) 0 0 1 (2)

Alanine aminotransferase increased 0 1 (20) 0 0 0 0 0 0 0 1 (2)

Blood alkaline phosphatase increased 0 1 (20) 0 0 0 0 0 0 0 1 (2)

Blood creatine phosphokinase increased 0 0 0 0 0 0 1 (6) 0 0 1 (2)

Lipase increased 0 0 0 0 1 (11) 0 0 0 0 1 (2)

Dehydration 0 0 0 0 1 (11) 0 0 0 0 1 (2)

Hypercalcemia 0 0 0 0 1 (11) 0 0 0 0 1 (2)

Hyperkalemia 0 0 0 0 0 0 1 (6) 0 0 1 (2)

Arthralgia 0 0 0 0 0 0 1 (6) 0 0 1 (2)

Myositis 0 0 0 0 0 0 1 (6) 0 0 1 (2)

Myasthenia gravis 0 0 0 0 0 0 1 (6) 0 0 1 (2)

Hypertension 0 0 0 0 0 0 1 (6) 0 0 1 (2)

All grade ≥ 3 events were grade 3, with the exception of two grade 4 events (one event of increased blood creatine phosphokinase and one event of myositis)
Abbreviation: AE adverse event
aPatients were counted once for each category regardless of the number of events
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MEDI0680 pharmacokinetic and pharmacodynamic profiles
Pharmacokinetics, ADA responses, and PD-1 receptor occupancy
A dose-proportional increase in peak serum
MEDI0680 concentration was observed (Fig. 2a). The
mean terminal half-life was estimated to be 19 days,
with a standard deviation of 5.6 days at 20 mg/kg
Q2W dosing based on simulations in a MEDI0680
population pharmacokinetics model (n = 1000) [38].
Fifty-four patients were evaluated for the development
of post-baseline ADAs and 8 (15%) tested positive
post-dose. Based on samples from 40 patients, a dose-
dependent saturation of PD-1 was observed on CD3+ T
cells, with median PD-1 receptor occupancy ≥70% after 1
cycle of MEDI0680 treatment at 10 or 20mg/kg; the high-
est, most consistent occupancy was obtained with initial
weekly dosing at 20mg/kg (Fig. 2b).

T-cell activation and proliferation, and cytokine levels in
peripheral blood
Among total CD4+ and CD8+ T cells from patients
receiving < 10mg/kg, 10mg/kg or 20mg/kg, at least a 2-
fold median increase in the percentage of Ki67+ T cells
and activated CD38high/HLA-DRhigh CD4+ TEM cells was
observed on day 8 post-treatment during the first cycle
(Fig. 3a and Additional file 1: Figure S5). Consistent with
MEDI0680-dependent peripheral T-cell activation, plasma
levels of IFNγ and CXCL9 (MIG), CXCL10 (IP-10), and
CXCL11 (I-TAC) were increased on-treatment with a me-
dian 1.5-fold change among patients receiving 10 or 20
mg/kg MEDI0680, with the exception of CXCL11 in pa-
tients dosed within the 10mg/kg cohorts, where no on-
treatment median change was observed (Fig. 3b). There
was no correlation between increased peripheral bio-
markers and clinical response at any MEDI0680 dose level
(Additional file 1: Figure S6).

PD-L1 expression and T-cell density and activation in tumor
biopsies
Among 22 evaluable pretreatment tumor biopsies, 2/22
(9.1%) were scored PD-L1 ≥ 25% and 20/22 (91%) were
PD-L1 < 25%. None of the responders had evaluable tissue
for PD-L1 staining. The PD-L1 ≥ 25% biopsies were from
a non-squamous non-small cell lung cancer (NSCLC)
patient and a melanoma patient; the former was not
evaluable for clinical response and the latter had progres-
sive disease as the best OR. Of the 20 patients with
PD-L1 < 25%, 2 were not evaluable for clinical response,
10 had SD, and 8 had progressive disease. CD8+ T-cell
density and gene expression were evaluated from 14
paired pre- and on-treatment fresh tumor biopsies to de-
termine MEDI0680 activity. During treatment, 8/14 (57%)
samples across all dose cohorts showed a 2-fold or greater
increase in intratumoral CD8+ T-cell density as measured
by IHC (Fig. 3c and d). This was consistent with an in-
crease in CD8A gene expression and genes associated with
T-cell effector function (Fig. 3e). On-treatment, 2-fold or
greater increases in gene expression of IFNG, CXCL9 (a
T-cell chemoattractant), and GZMK (a marker of cytolytic
T-cell activity) were also observed (Fig. 3e). Although as-
sociation with clinical response could not be determined
due to a small sample size of evaluable tumor biop-
sies, MEDI0680 treatment did elicit T-cell infiltration
and/or expansion and showed pharmacodynamic evi-
dence of immune-related antitumor activity.

Discussion
In this FTIH phase I study, MEDI0680 had a tolerable
safety profile and demonstrated clinical activity. No treat-
ment-related deaths were observed and the majority of
treatment-related AEs were mild to moderate (62% grade
1/2 and 21% grade 3/4). Four patients (7%) discontinued

Table 4 Best overall response in the as-treated population

Response, n (%) Q3W (mg/kg) Q2W (mg/kg) QW x 2
(mg/kg)

QW x 4
(mg/kg)

Total

Cohort 1
0.1
n = 5 (%)

Cohort 2
0.5
n = 5 (%)

Cohort 3
2.5
n = 3 (%)

Cohort 4
10
n = 6 (%)

Cohort 5
20
n = 9 (%)

Cohort 6
10
n = 4 (%)

Cohort 7
20
n = 18 (%)

Cohort 8
20
n = 3 (%)

Cohort 9
20
n = 5 (%)

N = 58 (%)

Objective response 0 0 0 1 (17) 3 (33) 1 (25) 3 (17) 0 0 8 (14)

CR 0 0 0 0 1 (11)b 0 0 0 0 1 (2)

PR 0 0 0 1 (17)c 2 (22)d 1 (25)e 3 (17)b 0 0 7 (12)

SD 0 0 1 (33) 2 (33) 2 (22) 1 (25) 6 (33) 2 (67) 4 (80) 18 (31)

PD 3 (60) 3 (60) 1 (33) 1 (17) 3 (33) 2 (50) 5 (28) 1 (33) 1 (20) 20 (35)

Non-evaluablea 2 (40) 2 (40) 1 (33) 2 (33) 1 (11) 0 4 (22) 0 0 12 (21)

Abbreviations: CR complete response, PD progressive disease, PR partial response, SD stable disease
aIncludes patients who discontinued study before first disease assessment and patients for whom not all target lesions were evaluated
bKidney cancer
cMelanoma
dKidney cancer (n = 1), melanoma with BRAF mutation (n = 1)
eMelanoma with BRAF mutation
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MEDI0680 due to treatment-related AEs. An MTD was
not reached.
PD-1 receptor occupancy appeared to reach a peak in

the 10mg/kg Q2W and 20mg/kg Q3W cohorts.
Additional patients were recruited at the 20 mg/kg Q2W
dose level, including a cohort with weekly dosing for 2
weeks followed by Q2W dosing (20 mg/kg QWx2) and

one with weekly dosing for 4 weeks followed by Q2W
dosing (20 mg/kg QWx4) to increase confidence that re-
ceptor saturation had peaked. No significant differences
in receptor occupancy between these groups at cycle 2,
day 1 were observed, although median values were nu-
merically higher for the 20 mg/kg cohorts compared to
the 10 mg/kg Q2W group. Likewise, pharmacokinetic

(a)

(b)

Fig. 1 Response to MEDI0680 therapy. a Tumor size change from baseline in the as-treated population. b The timing and duration of response
and onset of progressive disease or new lesions in the responding population. Blue bars indicate treatment initiation to censoring date or
progression date. One patient with kidney cancer and PR had an ongoing response but did not have a disease assessment at the time of the
last dose
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profiling showed similar trough serum drug levels be-
tween the 10 and 20mg/kg doses, but with numerically
higher values for the latter. Considering peripheral PD-1
receptor occupancy and drug levels together with
peripheral pharmacodynamic data showing comparable
drug activity and similar tolerability profiles at the 10
mg/kg and 20mg/kg dose levels, 20 mg/kg Q2W was
declared the highest protocol-defined dose. Because cir-
culating drug must penetrate tumors against interstitial

fluid pressure gradients and despite endocytic consump-
tion within tumors [39], the 20mg/kg Q2W dose is ex-
pected to provide the optimal PD-1 receptor occupancy
within tumor tissues themselves.
The safety profile observed in this study was consistent

with that of other drugs targeting the PD-1 pathway in
patients with solid tumors [40–43]. For example, in a
phase I study of 30 patients (with various advanced solid
tumors) treated with pembrolizumab 1–10mg/kg Q2W

(a)

(b)

Fig. 2 Pharmacokinetic and receptor occupancy analysis of MEDI0680. a Pharmacokinetic analysis of MEDI0680 in patient serum. Data represent
time points up to 150 days. Abbreviation: LLOQ lower limit of quantitation. b PD-1 receptor occupancy by MEDI0680 on CD45 RO+ CD3 T cells
among patients treated at various drug doses and schedules, as indicated. Measurements were done at baseline, during the first cycle of
MEDI0680 treatment, and on the first day after the completion of the first cycle
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(a)

(b)

(c)

(d)

(e)

Fig. 3 (See legend on next page.)
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or 2–10mg/kg Q3W, 70% of patients had treatment-re-
lated AEs (all grade 1 or 2) [27]. In another phase I study
of advanced malignancies that included 107 patients
with advanced melanoma, Topalian and colleagues
showed an 84% incidence of treatment-related AEs
with nivolumab 0.1–10 mg/kg Q2W; the events were
grade 3/4 in 22% of patients [31]. In the current
study, grade 3 treatment-related AESIs occurred in
7% of patients; no grade 4 or 5 AESIs were observed.
There were no reports of pneumonitis.
In the current study, confirmed objective clinical re-

sponses were seen in 8/58 (14%) patients. All responses
were in patients with melanoma or kidney cancer, includ-
ing a single confirmed CR. A response rate of 8/45 (18%)
was seen in patients receiving 10–20mg/kg. Because the
trial comprised 11 tumor types and 9 doses, it is not pos-
sible to directly compare the response rates seen with
MEDI0680 to those of other PD-1 antibodies. However,
the 34 patients with kidney cancer and 8 patients with
melanoma treated at the 10–20mg/kg dose levels indicate
the response may be similar to other PD-1 antibodies ap-
proved for those indications. A 15% (5/34) response rate
was seen in kidney cancer patients receiving 10–20mg/kg
doses. Among patients with advanced/metastatic RCC,
nivolumab showed response rates of 27% in a phase I
study, 9–22% in a phase Ib study, and 20–22% in a phase
II study [43–45]. Pembrolizumab demonstrated an ORR
of 34% in a phase II study as first-line treatment in
advanced clear cell RCC [27]; this may be numerically
higher than response rates seen for nivolumab as well as
MEDI0680 in the current study due to the enrollment of
patients that had not received prior systemic therapy. In
melanoma patients receiving 10–20mg/kg in this study,
MEDI0680 demonstrated a 38% (3/8) response rate.
Pembrolizumab showed response rates of 26% and 38% in
advanced melanoma in two phase I studies of 173 and 135
patients, respectively [24, 32]. Response rates with nivolu-
mab in advanced melanoma were 28% in the study of solid
tumors described above, and 40% in a large phase III
randomized trial [31, 33].
As secondary and exploratory endpoints, the pharmaco-

kinetic and pharmacodynamic profiles of MEDI0680 were
explored and examined for association with clinical

response. Doses of 10–20mg/kg showed a maximum PD-
1 receptor occupancy ≥70%, comparable to the peak occu-
pancy reported for nivolumab [46]. PD-1 targeting by
MEDI0680 showed consistent immunological modulation
across dose levels, with a frequent increase of activated
CD4+ TEM cells (CD38high/HLA-DRhigh) and enhanced
proliferation (Ki67 positivity) of CD4+ and CD8+ T cells.
This is consistent with the induction of peripheral T-cell
activation and proliferation markers monitored in other
anti-PD-1 clinical trials [46, 47]. In plasma, MEDI0680 in-
creased circulating IFNγ and IFNγ-induced cytokines
(CXCL9, 10, and 11) as previously reported [48]. Similar
to these findings, Das et al. examined gene transcription
changes in isolated peripheral blood T cells from melan-
oma patients treated with nivolumab and found changes
indicative of natural killer (NK) cell expansion and cyto-
lytic function that included upregulation of the IFNG tran-
script [49]. They also found increased serum levels of the
IFNγ-inducible cytokine CXCL10; in their study, CXCL9
and CXCL11 were not examined. However, they found
neither increased plasma IFNγ cytokine levels nor upregu-
lation of Ki67 transcript or protein in nivolumab-treated
patients, as was found in the current study with
MEDI0680. This discrepancy could be the result of differ-
ences in the time of assessment and/or sensitivity of
plasma cytokine assays used. Peripheral biomarker modu-
lation by MEDI0680 was observed in all patients regard-
less of clinical response, although some had only minimal
changes. A lack of correlation between peripheral immune
response to PD-1 inhibitors and clinical response has been
reported in melanoma patients treated with pembrolizu-
mab [46], although results in NSCLC patients treated with
anti-PD-1 therapies suggest that an early versus late in-
duction of immune activation in a specific subpopulation
of CD8+ T cells (Ki67+ PD-1+) may enrich for response
[47].
In evaluable tumor biopsies, MEDI0680 showed intra-

tumoral pharmacodynamic activity as evidenced by the
induction of CD8+ T-cell infiltration and/or expansion
and increases of IFNG and IFNγ-inducible gene
expression consistent with the mechanisms of action of
anti-PD-1 blocking agents. Increased CD8+ T-cell
infiltration/proliferation, PD-1, PD-L1, granzyme B, and

(See figure on previous page.)
Fig. 3 Peripheral and intratumoral measures of MEDI0680 activity. a Peripheral CD4+ and CD8+ T-cell activation and proliferation among
treatment groups, as indicated. Shown are the fold changes in the percentages of CD4+ and CD8+ Ki67+ and CD4+ TEM CD38high/HLA-DRhigh

cells in whole blood post-treatment. Abbreviation: TEM effector memory T cells. b Change in plasma cytokines among treatment groups, as
indicated. Shown are the fold change in the plasma levels of IFNγ, CXCL-9, CXCL-10, and CXCL-11 at day 8 post-treatment with MEDI0680.
c Examples of PD-L1+ and CD8+ IHC images (20× magnification) from matched pre- and on-treatment biopsies from an RCC patient. The tumor
at screening is characterized by abundant CD8+ TILs and PD-L1 on immune cells but not on tumor cells (* symbols on IHC images). The
on-treatment tumor has greater CD8+ T-cell infiltration and PD-L1 immunoreactivity on both immune and tumor cells (*). d Levels of CD8+ TILs
in tumor biopsies pre- and on-treatment at various dose levels. Abbreviation: hpf high power field. (e) Log2 fold change in on-treatment versus
pretreatment CD8A, IFNG, CXCL9, and GZMK gene expression in RCC and melanoma tumor biopsies. A 1.5-fold change is indicated by the
dotted line
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phosphorylated STAT1 positive immune cells in melan-
oma tumors have been observed by IHC or gene expres-
sion after treatment with pembrolizumab or nivolumab
in other trials [50, 51]. In these studies, pretreatment or
on-treatment levels of T cells within the tumor or at the
tumor margin demonstrated predictive value for
response to anti-PD-1 therapy [50, 51]. Other trials with
PD-1 inhibitors have also identified pretreatment and
post-treatment immune cell correlates with response to
therapy [52–62]. For example, Daud et al. showed that
patients whose melanoma tumors contained ≥ 20%
CD8+ T cells with a CTLA-4 high/PD-1 high phenotype
demonstrated a significantly higher ORR to anti-PD-1
blockade compared to those whose tumors contained
< 20% of these cells [56]. Inoue et al. described higher
pretreatment CD8+/Treg and CD8+/CD4+ expression
ratios and higher lytic enzyme (GZMA) and major
histocompatibility complex class I (HLA-A) expression
correlating with anti-PD-1 mAb response in melan-
oma [57]. Likewise, others have demonstrated that
pretreatment IFNγ-related immune gene signatures
predicted response to anti-PD-1 therapy in head and
neck squamous cell carcinoma, gastric cancer, and
melanoma [48, 49, 51]. Collectively, these findings
suggest that upregulation of CD8+ T cells and
markers of effector T-cell function are common phar-
macodynamic biomarkers of anti-PD-1 blockade, and
pre- or post-treatment intratumoral levels in some
settings are associated with clinical response.
In conclusion, this study demonstrated that MEDI0680

is a clinically active anti-PD-1 antibody with a tolerable
safety profile. Maximum receptor occupancy was
achieved at doses where most patients showed evidence
of peripheral and intratumoral immune-cell activation.
MEDI0680 is currently undergoing clinical testing in
combination with the anti-PD-L1 mAb durvalumab
versus nivolumab monotherapy in patients with kidney
cancer (NCT02118337).

Additional file

Additional file 1: Figure S1. Study design and pharmacokinetic/
pharmacodynamic assessment. (a) phase I study design. (b) Overview of
pharmacokinetic and pharmacodynamic profile assessment. Figure S2.
MEDI0680 binding and specificity for PD-1. (a) MEDI0680 binding to
activated primary human T cells. (b) Binding specificity of MEDI0680 to
recombinant human proteins that share amino acid sequence homology
with PD-1. Figure S3. Inhibition of ligand binding to native PD-1 by
MEDI0680. (a) Blockade by MEDI0680 of recombinant human PD-L1 or
(b) recombinant human PD-L2 binding to CHO cells expressing human
PD-1 protein. Figure S4. In vitro T-cell activation and cytotoxicity
mediated by MEDI0680. (a) IFNγ release into cell culture media of
allogeneic dendritic cell–T cell mixed lymphocyte reactions. (b) Cellular
cytotoxicity mediated by EBV-reactive CD8 T cells over time, as
determined by non-invasive electrical impedance measurement in an
xCelligence RTCA MP instrument as a surrogate for cell death. Figure S5.
Representative examples of flow cytometry of peripheral blood from

patients treated with MEDI0680. (a) Ki67 staining in CD4+ and CD8+ T
cells at cycle 1 day 1 pre-treatment (C1D1) and at cycle 1 day 8 post-
treatment, as indicated. (b) HLA-DR and CD38 co-staining on CD4+
effector memory T cells (CD4+ TEM) at the same time points. Figure S6.
Lack of correlation between changes in peripheral pharmacodynamic
markers and objective clinical response. (a) Fold change in the indicated
cytokine and chemokine markers in all cohorts or (b) only in the 10 and
20mg/kg cohorts or (c) the fold change in T-cell proliferation and CD4+
TEM CD38high HLA-DRhigh (activated) T cells with respect to objective
clinical responses are shown. Table S1. Key eligibility criteria. Table S2.
Patient characteristics and samples evaluated for pharmacodynamic
analysis. Table S3. In silico identification of PD-1 paralogs using the
protein Basic Local Alignment Search Tool BLASTp. Table S4. Study
disposition (as-treated population). (ZIP 5.02 mb)
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