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Abstract

Background: Cancer surgery is necessary and life-saving. However, the majority of patients develop postoperative
recurrence and metastasis, which are the main causes of cancer-related deaths. The postoperative stress response
encompasses a broad set of physiological changes that have evolved to safeguard the host following major tissue
trauma. These stress responses, however, intersect with cellular mediators and signaling pathways that contribute to
cancer proliferation.

Main: Previous descriptive and emerging mechanistic studies suggest that the surgery-induced prometastatic
effect is linked to impairment of both innate and adaptive immunity. Existing studies that combine surgery and
immunotherapies have revealed that this combination strategy is not straightforward and patients have
experienced both therapeutic benefit and drawbacks. This review will specifically assess the immunological
pathways that are disrupted by oncologic surgical stress and provide suggestions for rationally combining
cancer surgery with immunotherapies to improve immune and treatment outcomes.

Short conclusion: Given the prevalence of surgery as frontline therapy for solid cancers, the emerging data
on postoperative immunosuppression and the rapid development of immunotherapy for oncologic treatment, we
believe that future targeted studies of perioperative immunotherapy are warranted.
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Background
Solid cancers are the second leading cause of death world-
wide, accounting for 8.8 million deaths in 2016. The most
common causes of solid cancer death are cancers of lung
(1.69 million deaths), liver (788,000 deaths), colorectal
(774,000 deaths), stomach (754,000 deaths) and breast
(571,000 deaths) (WHO statistics). Major thoracic or ab-
dominal surgery is the mainstay of treatment for these top
5 solid cancers to extend the patient’s life. Unfortunately,
disease recurs within 5 years in the majority of these pa-
tients and they tend to not respond to frontline therapies
[1]. Minimal residual disease are occult tumors that persist
in the patient following curative surgery.

Since the initial observation of the prometastatic ef-
fects of surgery by surgeons in 1913 [2], numerous pre-
clinical tumor models have demonstrated that surgical
resection contributes to the development of metastatic
disease [3, 4] with the frequency of metastatic deposits
correlating with the degree of surgical trauma [3]. Des-
pite these early promising findings, limited mechanistic
advances have been made. In clinical studies, complica-
tions in the postoperative period have been shown to as-
sociate with increased development of metastatic disease
and poor cancer survival [5, 6]. Various perioperative
changes have been proposed to describe the promotion
of metastases following surgery, including tumor cell
dissemination into nearby blood vessels and lymphatics
[7, 8], local and systematic release of growth factors [9,
10], and cellular immune suppression [11–15].
There is increasing mechanistic evidence to suggest pri-

mary tumor surgical resection disrupts the host immune
system. These effects lie within the “postoperative period”,
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which lasts days [16] to weeks [16, 17] following tumor sur-
gical resection and has been suggested to create an im-
munosuppressive window for the expansion and escape of
occult tumors [11]. The postoperative period is a relatively
short timeframe compared to the much longer duration of
primary tumor development and progression. However, re-
cent mechanistic studies demonstrate that this short period
of surgery-induced immunosuppression is critically import-
ant in shaping the probability of postoperative metastatic
disease [11, 14, 18]. This review will focus on the innate
and adaptive immunological pathways that are disrupted by
oncologic surgical stress and provide suggestions for ration-
ally combining cancer surgery with immunotherapies to
improve immune and treatment outcomes.

Main
Molecular and cellular mediators of postoperative
immune suppression
While surgical resection provides effective debulking
treatment for solid tumors, the end-result is substantial
tissue and vasculature trauma. This is due to unavoid-
able tumor and normal tissue dissection and the poten-
tial removal of organs during major tumor resection
[19]. At the cellular level, surgery-induced necrotic cell
death leads to the release of sequestered cellular factors.
These factors make up the “alarmins” that alert the im-
mune system to the presence of tissue damage. Follow-
ing the detection of alarmins by pathogen recognition
receptors, innate immune cells initiate inflammatory
pathways, chemotaxis, antimicrobial defenses, and adap-
tive immune cell responses [19]. After the early trauma
response to tissue injury, pro- and anti-inflammatory re-
sponses are temporally regulated by soluble mediators
and innate and adaptive immune cells. Cellular immune
suppression following cancer surgery has been shown to
peak at 3 days and occasionally lasting several weeks
[11, 16, 17]. This suppression is multi-factorial, and is
characterized by the release of growth factors (VEGF,
PDGF, TGF-β), clotting factors, stress hormones (gluco-
corticoids, catecholamines [20], prostaglandins [21]) and
cytokines into the extracellular compartments. Com-
monly, Th1 cytokines are suppressed following surgery
(decrease in IL-2, IL-12 and IFN-γ) [21], leading to a
shift towards Th2 immunity (increase in IL-6/8 [20, 21],
IL-10 [21] and TNF-α [11]) (Fig. 1). However, several
studies have observed an opposite effect of surgery when
comparing in vivo plasma to in vitro induced production
levels of Th1 cytokines. Using high sensitivity ELISA
kits, Ben-Eliyahu’s group observed a significant increase
in plasma IFN-γ levels following surgery. It is hypothe-
sized that this inverse pattern of cytokine secretion de-
tected following surgery could be due to differences in
the sampling technique. Plasma cytokine measurements
reflect physiological amounts of cytokines secreted by

the natural composition of cells in vivo, while in vitro-
induced cytokine readings are measured from isolated
cell populations following non-physiological levels of
LPS/PHA stimulation [15]. The overall effect of these
secreted factors is the rapid expansion of regulatory
myeloid (myeloid derived suppressor cells - MDSC, M2
macrophages) and T regulatory cells (Treg) (Fig. 1). Tis-
sue trauma, in general, triggers a number of changes in
phenotype and function, including enhanced activation
of Tregs and expansion of MDSC. Following cancer sur-
gery specifically, Zhou et al. detected elevated peripheral
Treg levels on postoperative day 7 in breast cancer pa-
tients undergoing radical mastectomy [22]. In cervical
cancer patients undergoing laparoscopy, elevated levels of
both MDSC and Tregs lead to a Th1, Th2, Th17 and Treg
cytokine imbalance. In these patients, perioperative
multi-dose treatment with the COX-2 inhibitor Parecoxib
was found to reduce postoperative immunosuppression
through restoration of cytokine levels [23]. In contrast to
the above studies describing expansion of Tregs, periph-
eral Treg populations obtained from ovarian cancer pa-
tients were observed to diminish significantly at
postoperative day 3, followed by an augmentation at day
7. Furthermore, accumulation of Treg populations postop-
eratively was found to be tumor stage dependent, as pa-
tients with early stage I/II tumors showed decrease Treg
population, while those with late stage III/IV tumors ex-
hibited greater amounts by comparison [24].
As integral members of the innate immune system,

Natural Killer (NK)-cells are involved in the direct kill-
ing of cells displaying abnormalities linked to infection,
malignancy or transplantation [25, 26]. Immunosurveil-
lance of the host by NK-cells for malignant cells results
in direct cytotoxicity and the production of cytokines to
enhance the immune response [26]. Postoperative
NK-cell cytotoxic dysfunction has been demonstrated in
preclinical [11, 27–30] and clinical studies [11, 17, 29].
NK-cell functional impairment is associated with progres-
sive metastatic disease in animal experimental models
[4, 11, 31, 32]. In human patients with solid malignan-
cies, inferior NK-cell function following surgery correlates
with poor prognosis [33–35]. Even with the numerous re-
ports documenting postoperative NK-cell suppression, very
few studies have characterized the underlying mechanism
of this impairment [4, 32, 36]. We provided the first in vivo
evidence linking surgery to the metastasis of cancers via
NK-cells through adoptive transfer of surgically stressed
and control NK-cells into NK-deficient recipient mice,
showing that surgically stressed NK-cells cannot protect
from a lung tumor challenge. The impairment in NK-cell
function was also linked to MDSC accumulation [11]. Spe-
cifically, postoperative expansion of granulocytic MDSC
impair NK-cells through the ROS/arginase I/IL-4Rα axis
[37]. In human studies, postoperative NK-cell cytotoxicity
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was markedly reduced following major surgical resection
of the primary tumor in patients with colorectal cancer
[11]. The impairment in NK-cell function also directly
correlates with MDSC expansion [37] (Fig. 1).
T-cell dysfunction following physical injury and/or sur-

gical trauma has been shown to impair host defenses and
increase susceptibility to infection [38–40]. Postoperative
dysfunctional T-cell responses have been shown to include
the inability to recall antigens, diminished membrane ex-
pression of the T-cell receptor (TCR) and loss of the zeta
(ζ) chain, decreased proliferation and production of IFN-γ

along with other impairments [41, 42]. An important sub-
set of T-cells, the CD8+ T-cells has recently been in the
spotlight in the cancer immunology/immunotherapy field.
We demonstrated the impact of surgical stress on the
development and maintenance of an acquired T-cell
mediated anti-tumor immune response in the context of
adjuvant vaccination. We demonstrated that surgical
stress results in reduced proliferation and function as
shown by a decrease in the number of CD8+ T-cell that
produce cytokines (IFN-γ, TNF-α, Granzyme B), in re-
sponse to dopachrome tautomerase, a tumor associated

Fig. 1 Mechanisms of postoperative immunosuppression. Surgical debulking initiates inflammatory, neuroendocrine and metabolic events, which
result in altered cytokine levels (decrease in IL-2, IL-12 and IFN-γ; increase in IL-6/8, IL-10 and TNF-α) and release of growth factors (VEGF - green
oval, PDGF - blue oval, TGF-β - pink oval), clotting factors, and stress hormones (catecholamines - yellow circle, prostaglandins - purple circle).
While essential for wound healing and pain management, these events lead to the expansion of Tregs, MDSC, and M2 macrophages. Increase in
these regulatory immune cells leads to augmented expression of PD-1/CTLA-4, decreased T-cell proliferation, and impaired NK-cell cytotoxicity,
resulting in an overall state of immunosuppression. In conjunctions with surgical trauma, other postoperative factors, including sepsis, blood loss,
hypothermia, anesthetics, analgesics and anastomotic complications contribute to immunosuppression. Abbreviations: VEGF, vascular endothelial
growth factor; PDGF, platelet-derived growth factor; TGF-β; Transforming growth factor beta; Tregs, regulatory T cells; MDSC, myeloid derived
suppressor cells; PD-1, programmed cell death protein 1; CTLA-4, cytotoxic T lymphocyte associated protein 4
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antigen (TAA). In a prophylactic cancer vaccination
model, surgical stress completely abolishes tumor protec-
tion conferred by vaccination in the immediate postopera-
tive period. In a clinically relevant surgical resection model,
vaccinated mice receiving tumor debulking with a positive
margin and additional surgical stress had diminished sur-
vival compared to mice with positive margin resection
alone. Significantly, MDSC population numbers and func-
tional impairment of TAA-specific CD8+ T-cells were
altered in surgically stressed mice [12]. Similarly, a mech-
anistic role for MDSC-induced arginine depletion after
physical injury as a cause of global T-cell dysfunction has
been described [38]. Translational studies involving cancer
patients displayed global reduction in function and number
of T cells postoperatively [43]. In addition to these findings,
Treg expansion following surgery has been shown to in-
crease the expression of the checkpoint inhibitor PD-1 on
T-cells and NK-cells. This is turn promoted up-regulation
of caspase-3 and facilitating immunosuppression and
apoptosis induced reduction of cytotoxic immune popula-
tions [44] (Fig. 1).

Current combination studies of surgery and
immunotherapy
In light of these findings on cancer surgery-induced im-
mune dysfunction, perioperative immune modulation
has been attempted to reverse postoperative metastatic
disease (Fig. 2). Emerging preclinical and clinical stud-
ies reveal that postoperative immune suppression is re-
versible. The perioperative period (the time before and
after surgery) has been described as a window of oppor-
tunity for cancer cells to proliferate and metastasize
[16, 45]. Patients recovering from surgery during this
critical period have traditionally not received adjuvant
chemotherapy or radiotherapy due to the detrimental
effect of these interventions on wound repair and fur-
ther immune suppression. On the other hand, the peri-
operative period potentially provides a window of
opportunity to strengthen the immune system and at-
tenuate the development of cancer recurrences [16] .
We will discuss in this review promising and rational
combination of surgery and immunotherapy that could
reduce or prevent recurrent tumors following cancer
surgery.

Cytokine therapy and TLR agonists
Early immunotherapies such as the recombinant cyto-
kines IL-2, IL-12, or IFN-α have been used to stimulate
expansion and activation of effector lymphocytes [46].
Although effective in reducing immune suppression and
metastatic disease in animal models and in early phase
clinical trials, severe and systemic toxicity, pyrogenic re-
actions and high dose related septic shock reactions have
been observed. Thus, the delivery of these cytokines

have faced considerable obstacles for therapeutic use in
the perioperative setting [47–49]. Overcoming these
deleterious effects, modified synthetic agents expressing
reduced or limited toxicity with highly effective, multi-
cytokine responses have recently been approved for clin-
ical use [47, 50]. Activating NK-cells, B-cells and plasma-
cytoid dendritic cells [50], the toll-like receptor-9
(TLR-9) agonist CpG oligodeoxynucleotide demon-
strated efficacy in preclinical models in both prophylac-
tic and therapeutic treatment settings [50, 51].
Significantly decreasing metastatic expansion in rats, the
synthetic TLR-4 agonist glucopyranosyl lipid-A (GLA-
SE) functions through a primarily NK-cell-mediated
mechanism increasing both NK-cell number and func-
tion [47]. Designed to enhance Th1 immunity with lim-
ited adverse effects such as those observed with other
biological TLR-4 ligands [48, 49], GLA-SE treatment
lead to increased plasma levels of IL-15, IFN-γ, and
plasma levels of IL-6 but not IL-1β, while not affecting
physical or behaviour changes in rats [47].
Despite the paucity of data and clinical limitations,

several clinical trials using preoperative low dose re-
combinant IFN-α [52] and IL-2 [53–56] have demon-
strated less NK- and T-cell suppression and improved
prognosis following surgery in patients undergoing
colorectal cancer [56] and hepatic metastasis resection
[57]. In a study using preoperative IL-2, 86 colorectal
cancer (CRC) patients with stage II/III disease were
randomized to receive low dose IL-2 twice a day for 3
consecutive days before surgery or no treatment. There
were significantly fewer recurrences in the IL-2 group
(21.4% vs 43.1%, p < 0.05) and improved overall survival
(OS) at a median follow-up of 54 months [56]. In an-
other IL2 perioperative study, 50 CRC surgical patients
with Stage IV disease were randomized to receive pre-
operative low dose IL-2 or no treatment. The median
progression-free survival (PFS) and OS were signifi-
cantly longer in the preoperative IL-2 treated group
[57]. While these studies were not powered to assess
oncologic outcomes, a Phase II trial in 120 surgical pa-
tients with renal cell carcinoma demonstrated a signifi-
cant improvement in 5 year PFS with preoperative IL-2
treatment (74% vs. 62%, p = 0.02) [53]. Importantly, in
all of these studies, preoperative IL-2 was well tolerated
with adverse events limited to pyrexia (Grade I-III).
These preclinical and clinical results are promising and
suggest that modified or low dose recombinant cyto-
kine/TLR agonist therapy that can enhance the immune
system warrant further study for perioperative adminis-
tration (Fig. 2).

β-adrenergic blockers and COX2 inhibitors
In a recently completed proof-of-concept trial, 38 early-
stage breast cancer patients received perioperative
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Propranolol (β-adrenergic inhibitor) and Etodolac
(COX-2 inhibitor) combination treatment to inhibit the
release of surgery-induced catecholamines and prosta-
glandins. Transcriptome profiling of patient tumors re-
vealed reduced pro-metastatic and pro-inflammatory
pathways, providing the rationale to pursue future large
clinical trials to evaluate the clinical impact of peri-
operative Propranolol and Etodolac. These beneficial effects
were suggested to occur through an NK-cell mediated
mechanism, as circulating NK-cells expressed enhanced ex-
pression of tumor cell lysis promoting marker CD11a
[58] (Fig. 2). In colorectal hepatic metastatic mouse

models, both mild (small incision) and extensive (small
incision and laparotomy) surgical procedures displayed
proportional increase in metastatic susceptibility, which
subsided significantly following combination Propranolol
and Etodolac treatment [59]. While the beneficial effects of
these inhibitors are promising, future safety and effi-
cacy trials are required in order to understand the effects
of perioperative Propranolol and Etodolac on patients
with pre-existing contraindications and co-morbidities,
including diabetes, asthma, cardiovascular and auto-
immune disease in order to modulate drug dose, duration
and concentration [58].

Fig. 2 Combination strategies of surgery and immunotherapy. The perioperative time-frame provides a therapeutic window, which can be
exploited to reduce postoperative immunosuppression and tumor growth. Perioperative use of Propranolol (β-Adrenergic inhibitor) in
combination with Etodolac (COX-2 inhibitor) has been shown to reduce pro-metastatic and pro-inflammatory pathways while enhancing
expression of NK-cell activation marker CD11a. Perioperative use of oncolytic viruses demonstrates lytic capability towards tumor cells, while
restoring and enhancing NK- and T-cell immune cell function postoperatively. Use of PD-1/CTLA-4 inhibitors (with or without combination with
microbiota) have also shown promising effects on postoperative T-cell dysfunction. Similar postoperative beneficial immune effects were
observed following DC and tumor cell-based vaccines and TLR agonists. Abbreviations: PD-1, programmed cell death protein 1; DC, dendritic
cells; COX-2, Prostaglandin-endoperoxide synthase 2; CTLA-4, cytotoxic T lymphocyte associated protein 4; TLR, toll like receptor
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Checkpoint inhibitors
Checkpoint inhibitors against PD-1 have been shown to
relieve postoperative T-cell dysfunction. However, while
such inhibitors increased IFN-γ production, T-cell prolif-
eration remained limited. To improve upon this, the use
of prostaglandin inhibitors in combination with PD-1 in-
hibitors was found to restore postoperative T-cell func-
tion completely [60]. Utilizing the functional properties
of platelets, in situ activation of platelets following adhe-
sion combined with anti-PD-1 was found to reduce re-
sidual tumor cell presence and formation of metastatic
loci in both primary melanoma and triple negative breast
cancer (TNBC) patients through robust activation of
T-cell mediated antitumor immunity [61]. Similar to the
effects of anti-PD-1 treatment in the postoperative
period, increased T-cell activation has been demon-
strated following the administration of CTLA-4 inhibi-
tors in preclinical and clinical metastatic settings.
Padmanee Sharma’s group demonstrated enhanced ex-
pression of the inducible costimulatory molecule (ICOS)
on CD4+ T-cells in both peripheral and tumor tissue
populations in the setting of neoadjuvant delivery of ipi-
limumab in urothelial carcinoma. In addition, an in-
crease in tumor infiltration of CD3+, CD8+, and CD4+

T-cells expressing granzyme was reported. Following a
retrospective analyses in a separate patient group with
either unresectable stage III or metastatic/recurrent
stage IV melanoma, improved overall survival correlated
with a consistent increase in CD4+ICOShi T- cell popula-
tions at 12 weeks following 4 dosing cycles of ipilimu-
mab [62].
In a CT26 lung metastasis mouse model, the combin-

ation treatment of ipilimumab with poxvirus MVA-
BN-HER2 increased overall survival to greater than
100 days. This significant increase in survival time was
associated with the quality of the immune response, as
the presence of the virus was observed to induce the ex-
pression of IFN-γ, TNF-α, and IL-2 on CD8+ T-cells
[63]. Despite the promising results for delivering check-
point inhibitors to recover surgery-induced immune dys-
function, the expression of PD-1 has been shown to vary
significantly on T-cells and NK-cells between different
postoperative days, which could impact the efficacy of
checkpoint blockade in the postoperative period.
Overcoming these limitations, neoadjuvant treatment

with anti-PD-1 and anti-CD137 was shown to signifi-
cantly enhance overall survival efficacy beyond 100 days
in both murine 4 T1.2 TNBC and E0771 mammary car-
cinoma models compared to adjuvant treatment. This
significant survival enhancement was associated with
IFN-γ production and increased presence of gp70
tumor-specific CD8+ T-cells in the blood following
treatment and well beyond surgery [64]. Similarly, a small
study evaluating the safety and efficacy of neoadjuvant

anti-CTLA-4 inhibitor ipilimumab in regionally advanced
melanoma patients demonstrated the immunomodulatory
role of the inhibitor on MDSC, Treg and effector T-cell
populations in both the circulation and tumor microenvir-
onment. Six weeks post-treatment, a significant decrease
in circulating MDSC populations was associated with im-
proved progression free survival (PFS). Unexpectedly, in-
creased circulating Treg populations, but not tumor-
associated populations, improved PFS. Further improve-
ment was associated with an increase in tumor infiltrating
and activated CD4+ and CD8+ T-cells populations, and
generation of memory T-cells [65]. In a pilot study exam-
ining the effect of neoadjuvant anti-PD-1 inhibitor nivolu-
mab in resectable non-small cell lung cancer patients,
major pathological responses were observed in both PD-L1
positive and negative tumors that were associated with in-
creased proliferation of both tumor infiltrating and periph-
eral T-cells. In addition, rapid expansion of mutation-
associated, neoantigen-specific T-cells was observed as early
as 2 to 4 weeks following initial nivolumab administration
demonstrating the additional benefit of neoadjuvant treat-
ment [66].
Altogether, these collective preclinical and transla-

tional studies on perioperative administration of check-
point inhibitors demonstrate significant enhancements
in antitumor responses. We speculate that neoadjuvant/
preoperative injection of anti-PD-1 inhibitors might be
advantageous to activate tumor infiltrating T-cells prior
to surgery and to avoid the reduction of PD-1 expression
on immune cells in the postoperative period. However,
further testing of checkpoint inhibitors in combination
with surgery in various tumor types and larger cohorts
of patients will be required to asses the relative contribu-
tion of various immune cell subsets to improved patient
prognosis.

Oncolytic viruses
Compared to cytokines and TLR agonists, oncolytic viruses
(OV) like regular viruses provoke a more physiological and
multi-dimensional immune response following their in vivo
delivery [11, 67]. We and others have shown that OV can en-
gage and mature conventional dendritic cells (DC) amongst
other innate cells, which in turn activate NK- and T-cells
[11, 67–69]. The complex constellation of cytokines and che-
mokines released in response to a virus infection would be
very difficult to characterize and reproduce as a cytokine
cocktail for perioperative injection. Additionally, the OV pro-
vides the benefit of direct cytolysis of metastatic tumor cells
on top of its immune stimulating abilities [67] (Fig. 2). Lastly,
the enhanced release of growth factors such as vascular
endothelial factor (VEGF) following surgery, may allow for
better infection and replication of OV in tumor cells [70, 71].
Therefore, there is a compelling rationale to attempt OV
therapy in the perioperative period.
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Given that OV can stimulate NK-cells and cancer sur-
gery impairs NK-cells, we investigated the capacity of pre-
operative OV to prevent the development of postoperative
metastases secondary to postoperative NK-cell dysfunction.
In preclinical mouse models of solid tumors with major
surgical resection, we determined that preoperative admin-
istration of oncolytic vaccinia virus, parapox ovis (ORF)
and rhabdoviruses (Maraba MG1, VSVd51) can recover
postoperative NK-cell dysfunction followed by reduction in
postoperative metastases [11, 67]. We determined that the
reduction in tumors was indeed due to NK-cell mediated
tumor lysis following its activation by OVs [11]. Mechanis-
tically, we demonstrated that NK-cell activation in the con-
text of OV infection is preceded by conventional (DC)
activation and MDSC expansion [11, 67] .
In human studies, a single intravenous (iv) dose of

oncolytic vaccinia virus before surgical resection re-
sulted in improved postoperative NK-cell cytotoxicity
in patients with metastatic colorectal tumors to the
liver [11]. Although this study was not powered to as-
sess prognosis, these results demonstrated for the first
time that oncolytic vaccina virus markedly increases
NK-cell activity in cancer surgery patients. In the same
patient population and clinical setting, iv delivery of
oncolytic reovirus resulted in the identification of reo-
virus genome in resected liver tumor tissue, but not
normal liver tissue. Significantly, surgical patients suf-
fered most commonly from mild flu-like symptoms
with no reported grade 3 or 4 toxicities [72]. In a separ-
ate study of oncolytic Herpes Simplex Virus (HSV)
treatment, virus was injected intratumorally before and
after surgery in patients with recurrent Glioblastoma
Multiforme. Similar to the reovirus study, viral replication
and immune cell infiltration was detected in resected tu-
mors. Importantly, patients tolerated HSV well and did not
suffer from virus related encephalitis [73]. While the use of
perioperative OV in clinical studies has shown promising
effects on reversing surgery induced immunosuppression
through lytic activity and inducing immune response, there
are theoretical safety concerns associated with viremia in
human cancer surgical patients. For example, reversion of
attenuated OV back to wild type virus may increase
non-specific targeting of healthy cells. Furthermore, con-
cerns associated with potential viral spread to the operating
team may limit the use of OV in combination with cancer
surgery [67]. However, the human reports outlined above
using a variety of OV in numerous solid tumors with
minimal side effects demonstrate the feasibility and safety
of perioperative OV administration into cancer surgery
patients.

Cancer vaccines
Cancer vaccines based on modified DC have also been
administered in combination with surgery. Stimulation

of DCs through recombinant human
granulocyte-macrophage colony-stimulating factor (GM-
CSF), IL-4 and TNF-α followed by sensitization with au-
tologous tumor cells was found to significantly increase
postoperative CD8+ T-cell production, in addition to IL-2
and IFN-γ secretion. The overall effect was the induction
of anti-tumor responses towards various tumor antigens
and reduction of tumor proliferation [74]. To improve
tumor targeting and patient survival, sequential postoper-
ative combination of DC vaccines with cytokine-induced
killer cell therapy (CIK) was used. This augmented the se-
cretion of Th1 cytokines with a significant increase in
IL-12 and IFN-γ in both gastric and colorectal cancer pa-
tients [75]. In similar studies using just postoperative de-
livery of autologous CIK cells, Pan et al., displayed
improved overall survival and disease-free survival in
TNBC patients. Mechanistically, the CIK based vaccine
resulted in the intratumoral release IL-2, IFN-γ, and TNF-
α thereby increasing immunosurveillance and antitumor
immunity [76] (Fig. 2).
Using oncolytic Newcastle Disease Virus (NDV) to infect

autologous tumor cells ex vivo from glioblastoma, colorectal
and renal cell carcinoma patients, followed by postoperative
injection of this OV modified tumor vaccine, researchers
found enhanced survival in vaccinated patients compared
to unvaccinated cohorts [43, 77, 78]. By means of an onco-
lytic rhabdovirus engineered to express TAA and using a
prime-boost tumor vaccination approach, it was determined
that TAA specific T-cell immune responses can be gener-
ated to protect mice from melanoma tumor challenge and
lead to a significant diminution in lung metastases. Specific
in vivo depletion of cytotoxic CD8+ T-cells during the boost
vaccination abolished the therapeutic efficacy of the vaccine,
highlighting their mediating role [79–81].
The perioperative use of DC and OV-based vaccines also

presents a set of delivery challenges. As DC sensitization
with autologous tumor cells would require cells from the
tumor itself, a proper representation of the unique and spe-
cific tumor antigens in the tumor can only be achieved
through surgical debulking. Using the resected tumor bulk
to stimulate DCs would provide greater specificity and effi-
cacy of metastatic tumor antigen targeting [74]. Therefore,
a postoperative adjuvant delivery strategy of DC-based
tumor vaccines makes the most sense. OV-based tumor
vaccines present the same set of challenges as OV therapy.
There exists the potential for a postoperative systemic in-
flammatory response, the risk of viral spread to members of
the operating room team and risk of meningitis with epi-
dural analgesia if the OV based vaccine is administered
prior to surgery. However, the NDV based vaccine ap-
proach has not resulted in any adverse events for treated
patients and the prime boost approach with oncolytic rhab-
dovirus in human late stage melanoma patients is ongoing
with no safety concerns reported [82].
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Other perioperative factors that contribute to immune
suppression
The use of anesthetics and analgesics are necessary
components of surgical resection for pain management.
However, these agents have been shown to reduce NK-
and T-cell proliferation and function in both rat models
and healthy human volunteers via the release of en-
dogenous opioids and stress related molecules [83].
Using clinically relevant doses of morphine, both direct
and antibody dependent cellular cytotoxicity-mediated
NK-cell killing was not only shown to decrease in
healthy human volunteers [84], but to also accelerate
human breast tumor growth in in vivo xenogeneic
mouse models through promotion of cell cycle progres-
sion, angiogenesis and endothelial cell proliferation
[85]. Chemical derivatives of morphine, such as fen-
tanyl have been shown to increase the development of
rat lung metastasis due to reduced NK-cell cytotoxicity
[86]. In contrast to these findings, morphine has also
been reported to inhibit metastatic spread and induce
NK-cell activation under postoperative conditions using
rat tumor models [87]. Similarly, intravenous adminis-
tration of fentanyl in healthy human volunteers was
found to significantly enhance NK-cell cytotoxicity, in
addition to increasing CD16+ and CD8+ lymphocyte
numbers [88] (Fig. 1).
Alongside perioperative pain management, further peri-

operative factors such as intraoperative blood loss,
hypothermia and postoperative sepsis have been shown to
contribute to postoperative immune suppression. Modern
surgical practice ensures minimization of these adverse out-
comes, however, despite precautions, 6–10% of advanced
cancer patients experience blood loss [89], 8.5% of cancer
related deaths are correlated to development of sever sepsis
[90], and 70% of cancer surgical patients experience
hypothermia (defined as core body temperature < 36°C)
[91]. The occurrence of these complications has been out-
lined in multiple clinical studies to reduce cancer specific
survival following surgery. The occurrence of hypothermia
was associated with increased risk of early complications,
infection, and reduced overall survival in stage IIIC and IV
ovarian cancer patients undergoing abdominal surgery
[92]. In colon cancer bearing rat models, perioperative
hypothermia was found to accelerate tumor growth [93],
in addition to suppressing NK-cell activity [27]. In con-
trast, we recently demonstrated that neither intraoperative
blood loss or hypothermia affect the prometastatic effects
of surgical stress [94]. However, the development of post-
surgical sepsis enhances postoperative tumor progression
through an NK-cell-mediated mechanism, which was re-
lieved following the addition of poly(I:C), a double-
stranded RNA mimetic [94].
Specific to CRC surgery, additional perioperative fac-

tors such as changes in the gut microbiome of the

patient leading to depletion of short-chain fatty acids [95]
and the development of anastomotic complications have
been associated with increased risk of local tumor recur-
rence [96] (Fig. 1). In vitro treatment of MDA-MB-231
cancer cells with peritoneal fluid from CRC patients ex-
periencing anastomotic complications was shown to im-
pact both tumor invasiveness and proliferation [97]. These
oncological stimulatory effects were suggested to result
from the proinflammatory response towards peritoneal in-
fection, facilitating tumor recurrence through secretion of
multiple tumor stimulatory factors including IL-6 and
VEGF [98]. In mouse models, gut microbiota was found
to play a significant role in modulating the immune re-
sponse towards checkpoint inhibitor immunotherapy. Fol-
lowing oral administration of Bifidobacterium to B16. SIY
melanoma mice, Sivan et al., demonstrated equal tumor
control compared to anti-PD-1 treatment and significantly
enhanced antitumor response in combination with
anti-PD-1. Enhanced DC function leading to increased
CD8+ T-cell priming and tumor infiltration was suggested
to be the underlying mechanism of combination therapy
[99]. Similarly, modulation of CTLA-4 efficacy in
MCA205 sarcoma mouse models and patients with meta-
static melanoma and non-small cell lung carcinoma were
found to be dependent on the presence of B. fragilis or B.
thetaiotaomicron influencing antitumor response through
IL-2 dependent Th1 immunity, while simultaneously lim-
iting anti-CTLA-4-mediated intestinal adverse effects
[100] (Fig. 2).

Conclusions
Perioperative window of opportunity for immunotherapy
Cancer surgery is the standard-of-care for patients with
solid tumors. Despite its curative intent, the majority of
patients relapse with postoperative disease. Because the
patient seems to be at maximum risk for immunosup-
pression during the immediate postoperative period, this
may represent a therapeutic window of opportunity dur-
ing which novel immunomodulatory treatments aimed
at reducing perioperative tumor growth may be used.
There are currently no standard perioperative anti-can-
cer therapies aimed at preventing postoperative metasta-
ses due to concerns associated with wound repair and
patient recovery. Emerging mechanistic data in both pre-
clinical and translational studies using novel therapies
that can activate both the innate and adaptive immune
responses have shown promise. Early clinical trials con-
firm the feasibility of these strategies, but these therapies
must be rigorously tested for safety and efficacy and then
translated into rationally designed clinical trials powered
to assess oncologic outcomes. Through further mechanis-
tic investigation on sequential combination of immuno-
therapy with surgery and creation of precise treatment
profiles associated with individual patient responses, we
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envision a future where the protection of cancer patients
against postoperative tumor growth becomes part of the
accepted therapeutic paradigm. Based on the described
studies, we propose a practice-changing paradigm – that
cancer patients bearing solid tumors may be further pro-
tected against recurrent disease by receiving perioperative
immunotherapy in combination with standard-of-care
surgery. This combination treatment strategy has the po-
tential to improve survival in countless cancer surgical pa-
tients each year.
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