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Novel immunomodulatory drugs and neo-

substrates
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Abstract

Thalidomide, lenalidomide and pomalidomide are immunomodulatory drugs (IMiDs) effective in the treatment of
multiple myeloma, myelodysplastic syndrome (MDS) with deletion of chromosome 5q and other hematological
malignancies. Recent studies showed that IMiDs bind to CRBN, a substrate receptor of CRL4 E3 ligase, to induce the
ubiquitination and degradation of IKZF1 and IKZF3 in multiple myeloma cells, contributing to their anti-myeloma
activity. Similarly, lenalidomide exerts therapeutic efficacy via inducing ubiquitination and degradation of CK1α in
MDS with deletion of chromosome 5q. Recently, novel thalidomide analogs have been designed for better clinical
efficacy, including CC-122, CC-220 and CC-885. Moreover, a number of neo-substrates of IMiDs have been
discovered. Proteolysis-targeting chimeras (PROTACs) as a class of bi-functional molecules are increasingly used as a
strategy to target otherwise intractable cellular protein. PROTACs appear to have broad implications for novel
therapeutics. In this review, we summarized new generation of immunomodulatory compounds, their potential
neo-substrates, and new strategies for the design of novel PROTAC drugs.

Keywords: Immunomodulatory drugs, CRL4CRBN E3 ligase, CC-122, CC-220, PROTACs
Background
Thalidomide was notorious for the teratogenic effects
leading to congenital malformations in phocomelia in-
fants [1–5]. Thalidomide and its derivatives can modu-
late functions of T cells and NK cells by inducing the
production of cytokines, including IL-2 (interleukin-2)
and interferon γ [6–9]. Thus, thalidomide and its ana-
logs, including lenalidomide and pomalidomide, are
called immunomodulatory drugs (IMiDs). In addition,
IMiDs have antiangiogenic activity [10, 11]. IMiDs are
widely used in combination with proteasome inhibitors,
steroids, and monoclonal antibodies and playing a piv-
otal role in the treatment of multiple myeloma (MM)
[12–18]. Lenalidomide also showed activities in a num-
ber of hematological malignancies, including myelodys-
plastic syndrome (MDS) with deletion of chromosome
5q (del(5q)) [19–21], mantle cell lymphoma (MCL) [22–
27] and chronic lymphocytic leukemia (CLL) [28–31].
Although IMiDs have been approved for the treatment

of several hematological malignancies, the molecular
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mechanism remained unclear at that time. Lately, the
primary cellular target of thalidomide was identified to
be CRBN, a substrate receptor of Cullin-RING Ligase 4
(CRL4) [32]. IMiDs target CUL4-RBX1-DDB1-CRBN
(CRL4CRBN) E3 ligase to induce the ubiquitination and
proteasomal degradation of Ikaros family zinc finger
proteins, Ikaros (IKZF1) and Aiolos (IKZF3) which are
the lymphoid transcription factors essential for myeloma
cell survival [33–35]. Similarly, lenalidomide induces the
ubiquitination and degradation of CK1α, leading to the
death of del(5q) MDS cells [36].
Recently, novel thalidomide analogs have been developed,

including CC-122 (avadomide), CC-220 (iberdomide) and
CC-885 [36–39] (Fig. 1). These novel CRBN modulators
are in active clinical trials. Moreover, studies have shown
that IMiDs repurpose CRL4CRBN E3 ligase to ubiquitinate
and degrade a series of cellular proteins [40, 41].
In this review, we summarized recent advances on

new generation of IMiDs, their neo-substrates and the
implication for novel therapeutics.
New generation of immunomodulatory drugs
IMiDs contain a conserved glutarimide ring and a variable
phthaloyl ring. The glutarimide ring interacts with a
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Fig. 1 Chemical structure and mechanism of action of IMiDs. a Chemical structure of thalidomide, lenalidomide, pomalidomide, CC-122, CC-885
and CC-220. b IMiDs (purple rhombuses) bind to CRBN, a substrate receptor of CRL4 E3 ligase, to recruit substrates for ubiquitination and
proteasomal degradation. Ub, ubiquitin
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conserved hydrophobic pocket of CRBN. The phthaloyl
ring, together with CRBN, forms binding interface for
neo-substrates [42–44]. Hence, modifications on the vari-
able phthaloyl ring may lead to new generation of IMiDs.

CC-122 (avadomide)
CC-122 is a novel immunomodulatory compound con-
taining the conserved glutarimide for CRBN binding. As a
derivative of thalidomide, CC-122 has pluripotent activ-
ities, including antitumor and modulation of immune cells
[37, 45]. CC-122 binds CRL4CRBN E3 ligase to induce the
degradation of IKZF1 and IKZF3 in MM cells, diffuse
large B-cell lymphoma (DLBCL) cells and xenograft
mouse models established from DLBCL cells [36, 37]. The
degradation of IKZF1 and IKZF3 results in derepression
of IFN-regulated genes, leading to apoptosis of several
DLBCL cell lines and inhibition of tumor growth in xeno-
graft mouse models [37]. In addition, CC-122 costimulates
T cells and induces the production of IL-2 [37].
Based on the above notable antitumor activities and

modulations on immune cells, CC-122 has entered clinical
trials for a number of diseases, including Non-Hodgkin’s
lymphoma (NHL), MM and CLL/SLL (Table 1). Recently,
a multicenter, open-label, and dose-escalation phase 1
clinical trial (NCT01421524) has been conducted to evalu-
ate the safety, tolerability, pharmacokinetics and prelimin-
ary efficacy of CC-122 in patients with MM, NHL and
advanced solid tumors. In the latest report, 34 patients
with NHL, MM or advanced solid tumors were enrolled
[46]. These patients had a median age of 57 years and had
received a median of 3.5 prior anticancer therapies. In the
part A portion of this trial, patients received CC-122 at an
increasing dose of 0.5 to 3.5 mg orally once daily on a 28-
day schedule. The median duration of CC-122 treatment
was 58 days. Fatigue (44%), neutropenia (29%) and diar-
rhea (15%) were the most common treatment-emergent
adverse events (TEAEs). The non-tolerated dose (NTD)
was 3.5mg and maximum tolerated dose (MTD) was 3.0
mg. One of five patients with NHL had a complete re-
sponse (CR) and two of them achieved partial responses.
This study confirmed that CC-122 induces the degrad-
ation of IKZF3 protein in a dose-dependent manner in B
and T cells from peripheral blood. Moreover, B-cell num-
bers in peripheral blood were reduced after 15-day admin-
istration of CC-122. To summarize, CC-122 monotherapy
showed acceptable safety and encouraging pharmacokin-
etics in patients with MM, NHL and solid tumors [46].
A multi-center, open-label, and dose escalation/expan-

sion phase 1 clinical trial (NCT02417285) is ongoing to
test the safety, tolerability and preliminary efficacy of
CC-122 in combination with obinutuzumab in NHL. Ac-
cording to the interim result, 58 patients were enrolled,
including 38 with relapsed or refractory (R/R) follicular
lymphoma (FL), 19 with R/R DLBCL and 1 with R/R
marginal zone lymphoma [47]. These patients received
increasing doses of CC-122 for 5 days per week (5/7
days) in each 28-day cycle in combination with obinutu-
zumab at a dose of 1000 mg on days 2, 8, and 15 of cycle



Table 1 Clinical trials of CC-122 in cancer

Phase Conditions Interventions NCT ID

1 MM, NHL, solid tumors CC-122 NCT01421524

1 DLBCL, iNHL CC-122, obinutuzumab NCT02417285

1 DLBCL, FL CC-122, rituximab, CC-223, CC-292 NCT02031419

1, 2 DLBCL CC-122, R-CHOP NCT03283202

1 NHL CC-122 NCT02509039

1, 2 CLL, SLL CC-122, ibrutinib, obinutuzumab NCT02406742

1, 2 HCC CC-122, nivolumab NCT02859324

2 Melanoma CC-122, nivolumab NCT03834623

Abbreviation: CLL Chronic lymphocytic leukemia, DLBCL Diffuse large B-cell lymphoma, FL Follicular lymphoma, HCC Hepatocellular carcinoma, MM Multiple
myeloma, NHL Non-Hodgkin’s lymphoma, iNHL Indolent NHL, R-CHOP (Rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone), SLL Small
lymphocytic lymphoma
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1, and day 1 of cycles 2 to 8. Among the 38 patients with
R/R FL, the most common TEAEs were neutropenia
(66%), pyrexia (29%) and thrombocytopenia (29%). The
overall response rate (ORR) was 68% and 16 out of these
38 patients (42%) achieved a CR. CC-122 in combination
with obinutuzumab was well-tolerated and showed
promising efficacy in patients with R/R FL [47].
In another ongoing multi-center and open-label phase

1 clinical trial (NCT02031419), combinations of CC-122,
CC-223, CC-292 and rituximab was given in patients
with R/R DLBCL or FL. From the interim result of the
arm D of this study, 37 patients with R/R FL received
CC-122 at a dose of 2 mg or 3 mg for 5/7 days and intra-
venous rituximab at a dose of 375mg/m2 in each 28-
day cycle [48]. Neutropenia (46%) and anemia (24%)
were the most common TEAEs. The ORR was 65% and
8 patients (22%) achieved a CR. Thus, CC-122 in com-
bination with rituximab was well-tolerated and showed
promising clinical activity in patients with R/R FL [48].
A phase 1/2 clinical trial (NCT03283202) will evaluate the

safety and preliminary efficacy of CC-122 combined with R-
CHOP regimen for newly-diagnosed DLBCL patients with
poor risk factor (Table 1). Therefore, CC-122 has shown
clinical potential for the treatment of MM and NHL.

CC-220 (iberdomide)
CC-220 is a new analog of thalidomide developed for
the treatment of relapsed/refractory MM (RRMM) and
systemic lupus erythematosus (SLE). CC-220 has im-
proved efficacy to degrade IKZF1 and IKZF3 through
tighter binding to the CRL4CRBN E3 ligase [38].
Recently, a double-blinded, placebo-controlled, single

dose-escalation phase 1 study (NCT01733875) has been
carried out in healthy volunteers to evaluate safety,
pharmacokinetics and pharmacodynamics of CC-220. In
the latest report, 56 healthy volunteers were enrolled and
randomized into 7 cohorts [49]. In each cohort, six subjects
took a single dose of 0.03 to 6mg CC-220 and two subjects
received placebo orally. In this study, no severe TEAEs
were reported. CC-220 was well tolerated when taken at a
single dose of 6mg orally in these healthy volunteers. Con-
sistently, CC-220 administration causes the degradation of
IKZF1 and IKZF3 in B cells, T cells and monocytes. In
addition, CC-220 inhibited the production of anti-dsDNA
and anti-phospholipid autoantibodies in cultured periph-
eral blood mononuclear cells (PBMCs) from SLE patients
[49]. Thus, this study demonstrated the tolerated safety
and pharmacodynamic activity of CC-220, indicating its
promising clinical development for SLE. Soon afterwards,
two randomized, placebo-controlled, double-blinded, phase
2 studies (NCT02185040, NCT03161483) in SLE patients
were designed to study the safety, tolerability, pharmaco-
kinetics and pharmacodynamics of CC-220 in SLE.
At this time, a multicenter, open-label, and dose-

escalation phase 1/2 study (NCT02773030) in RRMM is
ongoing to evaluate the safety, tolerability, pharmacokinet-
ics and preliminary efficacy of CC-220 when administered
as monotherapy, and in combination with dexamethasone,
with or without daratumumab or bortezomib. According to
the preclinical studies, CC-220 combined with bortezomib
induced deep IKZF1 and IKZF3 degradation at clinically
relevant concentrations and showed synergistically antipro-
liferative effects in MM cell lines, which could be further
enhanced by dexamethasone. In addition, CC-220 in com-
bination with bortezomib induced deeper apoptosis than
combinations of any other clinically approved IMiDs with
bortezomib in MM cell lines. CC-220 also synergistically
enhanced the anti-myeloma activity of daratumumab in
complement-dependent cytotoxicity assays [50]. From the
interim results, 69 patients with RRMM received CC-220 at
an increasing dose of 0.3 to 1.3mg on days 1–21 plus dexa-
methasone at a dose of 20mg or 40mg on days 1, 8,15 and
22 in each 28-day cycle [51]. The ORR was 29% and clinical
benefit rate was 45%. The MTD has not been reached.
Combination of CC-220 and dexamethasone showed favor-
able tolerability with grade 3–4 neutropenia (29%), infec-
tions (25%), and thrombocytopenia (12%) [51]. These
preclinical and clinical data suggest the promising clinical



Table 2 Clinical trials of CC-220

Phase Conditions Interventions NCT ID

1 Healthy volunteers CC-220, placebo NCT01733875

2 SLE CC-220, placebo NCT03161483

2 SLE CC-220, placebo NCT02185040

1,2 MM CC-220, DEX, Dara, BTZ NCT02773030

1 Healthy volunteers CC-220 NCT03135509

1 Healthy volunteers CC-220, radiation NCT03294603

1 Hepatic impairment, Healthy volunteers CC-220 NCT03824678

Abbreviation: SLE Systemic lupus erythematosus, DEX Dexamethasone, Dara Daratumumab, BTZ Bortezomib
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application of CC-220 in combination with bortezomib,
dexamethasone and daratumumab for MM treatment.
In general, current clinical trials on CC-220 mostly

focus on its potential to treat SLE and MM (Table 2).

CC-885
CC-885 is a new CRBN modulator with a strong anti-
proliferation activity in a broad set of tumor cell lines [39].
CC-885 can induce CRL4CRBN-dependent degradation of
Fig. 2 Potential neo-substrates of thalidomide, lenalidomide, pomalidomid
Spheres with crosses inside represent proteins that were not degraded by
in the references. Hollow spheres represent undetermined proteins. The fiv
thalidomide. Len, lenalidomide. Pom, pomalidomide
IKZF1 and the translation termination factor GSPT1, while
neither lenalidomide nor pomalidomide can trigger the de-
pletion of GSPT1, suggesting different substrate spectrum
of CC-885 from lenalidomide or pomalidomide. Moreover,
CC-885 showed sub-nanomolar potency against patient-
derived acute myeloid leukemia (AML) cells, though lenali-
domide and pomalidomide do not have significant activity
in AML [39]. CC-885 may thus have a potential for AML
therapy different from other IMiDs. As CC-885 can induce
e, CC-122 and CC-220. Solid spheres represent potential neo-substrates.
the corresponding compound, at least under the condition described
e compounds were shown in different colors, as indicated. Thal,
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the degradation of GSPT1 while other IMiDs do not, it
may have extra toxicity from other IMiDs. More studies on
the activity and toxicity effects of CC-885 are required.

Potential neo-substrates of immunomodulatory
drugs
Structural studies have revealed that neo-substrates of
IMiDs-CRL4CRBN complex, including IKZF1, IKZF3,
CK1α, ZFP91, share a common structural motif contain-
ing a key glycine [42–44, 52]. Hence, cellular proteins
which contain this structural feature may be targeted
and degraded by IMiDs.
In a recent study, a mass spectrometry-based workflow

was established to detect IMiDs-induced target degradation
in Kelly, SK-N-DZ, human embryonic stem cells and
MM1S cells [40]. These cells were treated with pomalido-
mide, lenalidomide, thalidomide or DMSO as a control re-
spectively, and protein abundance was measured by
multiplexed mass spectrometry. Comprehensive proteomics
analysis identified several potential neo-substrates of IMiDs,
including ZNF653, ZNF827, ZNF692, RNF166, FAM83F,
RAB28, DTWD1, GZF1, ZBTB39, and ZNF98 [40].
Another study screening for C2H2 zinc finger (ZF) do-

mains which might be targeted by IMiDs-CRL4CRBN com-
plex also discovered several neo-substrates [41]. In this
study, cDNAs of 6572 C2H2 ZFs were cloned into a deg-
radation reporter vector to generate a C2H2 ZF library.
This library was transduced into HEK293T cells which
were then treated with pomalidomide, lenalidomide,
Fig. 3 Targeting protein for degradation by Proteolysis-targeting chimeras
rhombus), attached to another small molecule (blue oval) binding to the ta
E3 ligase for ubiquitination and subsequent degradation. b Chemical struct
(adapted from Winter, GE, et al., Science 2015)
thalidomide or DMSO, respectively. These cells were ana-
lyzed by fluorescence-activated cell sorting (FACS) and
high-throughput sequencing. The results showed that 11
ZFs were degraded by IMiDs and 6 of the 11 full length
proteins can be degraded, including IKZF1/IKZF3, ZFP91,
ZNF692, ZNF276, ZNF653, and ZNF827 [41]. The deg-
radation of these transcription factors was also tested in
the presence of CC-122 and CC-220. These potential neo-
substrates have been summarized (Fig. 2).
IMiDs-induced substrate degradation can be affected by

a series of factors, including drug concentrations, expos-
ure time and cell types. Thus, these potential neo-
substrates should be further validated under physiological
or pathological conditions. IMiDs-induced degradation of
target proteins, especially transcription factors previously
perceived to be undruggable, provides a strategy to de-
grade cellular targets, which may have huge potential in
the development of novel therapeutics.

PROTAC: the ubiquitin-proteasome system-
mediated degradation of target proteins
Proteolysis-targeting chimeras (PROTACs) are a class of
bi-functional molecules designed to selectively degrade tar-
get proteins via cellular quality control machinery, such as
the ubiquitin-proteasome system. Typically, these mole-
cules contain an E3 ligase binding moiety, such as thalido-
mide analogs or a ligand to von Hippel-Lindau (VHL) E3
ligase, attached to another small molecule binding to a pro-
tein of interest through a linker (Fig. 3a) [53–55].
(PROTACs). a PROTACs contain an E3 ligase binding moiety (purple
rget protein through a linker. PROTACs can bring target protein to the
ure of thalidomide, JQ1(S) and one published PROTAC, dBET1.
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Based on this design principle, thalidomide was linked
to JQ1 [56], a small molecule binding to Bromodomain-
Containing Protein 4 (BRD4), to generate a bi-functional
molecule called dBET1 (Fig. 3b). This PROTAC induces
CRBN-dependent degradation of BRD4 and subsequent
down-regulation of MYC, leading to cytotoxicity of
AML cells [57]. Similar design of bi-functional degraders
induce degradation of BCR-Abl [58] and Bruton’s tyro-
sine kinase (BTK) [59], showing therapeutic potentials in
the treatment of chronic myeloid leukemia (CML) and
B-cell lymphoma, respectively.
Since 2015, more and more PROTACs have been syn-

thesized to target a broad number of cellular proteins
and most of them were studied in cultured cells or ani-
mal models [57–66]. ARV-110 is an oral PROTAC that
can target androgen receptor (AR) and induce AR deg-
radation. ARV-110 is currently being tested in a phase 1
clinical trial (NCT03888612). This open-label, dose-
escalation phase 1 study will evaluate the safety, toler-
ability, pharmacokinetics, and pharmacodynamics of
ARV-110 in patients with metastatic castration-resistant
prostate cancer who have progressed on at least two
prior systemic therapies.
Unlike tyrosine kinase inhibitors (TKI), PROTACs do

not occupy the binding site and can be recycled. Hence,
in theory relatively fewer compounds can achieve ex-
pectant activities, which will make them more efficient
with less off-target effects. IMiDs-based PROTACs have
become a strategy of drug design for enhancing degrad-
ation of specific cellular targets. More PROTACs are ex-
pected to enter clinical development.
Conclusions and perspectives
IMiDs are widely used clinically to treat MM, MDS with
del(5q) and other hematological cancers. To achieve bet-
ter efficacy, new generation of IMiDs including CC-122,
CC-220, and CC-885 have been developed. CC-122 and
CC-220 have entered into phase 1/2 clinical trials. Fur-
ther studies are required to evaluate their efficacy in the
treatment of several blood malignancies, including MM,
DLBCL and NHL. CC-885 has shown potential efficacy
for AML, which is not achieved by lenalidomide or
pomalidomide. A number of cellular proteins have been
identified to be potential neo-substrates of IMiDs, which
may facilitate development of novel IMiDs. Small
molecule-based PROTACs are undergoing active clinical
development and are increasingly used as a new strategy
for drug design. More PROTACs will be synthesized for
targeted therapy. Since immunotherapy with chimeric
antigen receptor (CAR)-engineered T cells becomes a
highly promising therapeutic modality for cancer therapy
[67–75], it is possible to combine novel IMiDs with
CAR-T cells for more potent therapies of RRMM.
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