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Abstract

Background: Settlements induced by tunneling in inner urban areas can easily damage above ground structures.
This already has to be considered in early planning of tunneling routes. Assessing the risk of damages to structures
on hypothetical tunneling routes inflicted by such settlements beforehand enables routes’ comparability. Hereby, it
facilitates the choice of the optimal tunneling route in terms of potential damages and of suitable countermeasures.
Risk analyses of structures establishing the assessment obtain relevant data from various sources. Some data even has
to be gathered manually. Virtual building models could ease this process and facilitate analyses for entire districts as
they combine several required information in a single data set. Commonly, these are yet modelled very coarse.
Relevant details like facade openings, which highly affect a structures stiffness, are not included.

Methods: In this paper, we propose a system which detects windows in facade images. This is used to subsequently
enrich existing virtual building models allowing for a precise risk assessment. For this, we apply a sliding window
detector which employs a cascaded classifier to obtain windows in images patches.

Results: Our system yields sufficient results on facade images of several countries showing its general applicability
despite regional and architectural variation in the facades’ and windows’ appearance. In an ensuing case study, we
assess the risk of damages to structures based on detections of our system using different analysis methods.

Conclusions: We contrast these results to assessments using manually gathered data. Hereby, we show that the
detection rate of our proposed system is sufficient for a reliable estimation of a structure’s damage class.

Keywords: Window detection, Cascaded classifier, Damage risk assessment

Background
The risk assessment of settlement induced damages to
structures is a relevant thread in almost all phases of a
tunneling project starting from early route planning up
to the boring process itself. Virtual building models offer
the potential to automate this process. Publicly available
models, though, lack features which are indispensable for
required risk analyses. Most land registry offices provide
3D models of buildings for large urban areas. However,
these commonly constitute coarse block models of build-
ings which may be extended by simplified roof shapes as
shown in Fig. 1. Any further information about facade ele-
ments is usually not included. Web services like Google
Earth or OpenStreetMaps offer similar models. Although

*Correspondence: marcel.neuhausen@ruhr-uni-bochum.de
1Chair of Computing in Engineering, Faculty of Civil and Environmental
Engineering, Ruhr-University Bochum, Bochum, Germany
Full list of author information is available at the end of the article

some buildings are modeled manually resulting in more
detailed facade and roof shapes, facade elements are not
explicitly modeled but mapped to the model as textures
only. Accordingly, facade elements like windows are cur-
rently not included into publicly available models. Since
windows account for the major proportion of openings
in a facade, they are but crucial for analyses regarding a
structure’s stiffness. Those neglecting windows are inac-
curate and insufficient for our purpose (Neugebauer et al.
2015; Schindler 2014). A subsequent enrichment of exist-
ing models by windows or more specifically the facade’s
opening-ratio, thus, is inevitable for a proper assess-
ment. Currently, determining the opening-ratio is done
manually. Assessors survey construction plans for each
building along possible tunneling alignments to derive
their opening-ratio. This is time consuming and demands
high human effort resulting in high costs. In addition,
many construction plans of older buildings are already
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Fig. 1 3D block model. Block model with simplified roof shapes of a
group of buildings located near the tunneling alignment of the
subway project Wehrhahn-Linie provided by the land registry office
of Düsseldorf

obsolete which necessitates a manual on-site inspection
and drastically increases the effort. To reduces time and
cost, an automated solution is desirable.
Images of facades are publicly available for almost all

urban areas from web services like Google Street View
or can easily be gathered. For this reason, we propose
a pattern recognition approach to detect windows in
facade images. This allows for automatically inferring
the opening-ratio from existing structures. Through this,
required information can be provided to risk analyses with
significantly less effort. Accordingly, alternative tunnel-
ing routes can be evaluated already in early phases of
planning which enables the selection of an optimal route.
It can be taken to be optimal if it minimizes structural
damages to buildings inflicted by settlements. Structural
damages are considered relevant if they cause a tilt and
potentially induce cracks in structural and non-structural
members that impair appearance, serviceability or even
bearing capacities.
Our general approach is visualized in Fig. 2. First, exter-

nal openings in facades are detected by pattern recog-
nition techniques (a). Second, expected settlements are
computed employing relevant parameters from construc-
tion drawings or 3D city models. Next, this informa-
tion is integrated into models for damage assessment (c).
In general two types of models must be distinguished
here. While simple models, advantageous for quick pre-
assessments, account for openings by a generalized factor
distributing the openings over the total facade evenly
(LTSM), more extensive models allow for individual sizes
and locations of openings in 2D finite element simulation
explicitly.
The remainder of this paper is organized as follows:

In section “Related work” we discuss techniques for risk
analyses as well as previously made window detection
approaches. Section “Detecting windows in facade
images” gives insight into our detection system consist-
ing of a soft cascaded classifier (see section “Soft cascaded

classifier”) in combination with a sliding window detec-
tor (see section “Sliding window detector”). In section
“Results” we evaluate the performance of our proposed
system and discuss its limitations. The obtained insights
and results are then used in the context of a case study
(section “Case study”) to test our detection system and
risk analyses on real data from a tunneling scenario of
the reference subway project Wehrhahn-Linie (WHL) in
Düsseldorf, Germany. In the course of this, we compare
our results to common methods and highlight the advan-
tages with respect to nowadays idealization of structures.
Finally, we conclude our findings and provide an outlook
(see section “Discussion”).

Related work
For damage assessment of tunneling induced settlements
a variety of established methods is recently at hand; (Obel
et al. 2017) includes a summary. In short, section “Damage
risk assessment” recalls the basics regarding application.
Window detection is a challenging task which has not

sufficiently been solved yet. Although it is of high rele-
vance for several research areas, it is mostly referred to as a
subtask of 3D building reconstruction. In recent decades a
comprehensive body of literature arose concerning the 3D
reconstruction of existing buildings. Approachesmade are
highly versatile. In section “Building reconstruction” we
discuss the suitability of different kinds of input data with
respect to window detection. Furthermore, we outline
previously made approaches to window detection and
address their application areas and limitations.

Damage risk assessment
Settlements as a damage causing event are usually
assessed by means of analytical models (Peck 1969;
Attewell et al. 1986). Most frequently Peck’s model is
applied (Peck 1969). Accordingly transversal to the tun-
nel’s axis settlements are suggested to follow a Gaussian
curve (bell-shaped) which is characterized by parts in
sagging and hogging depending on the curvature (cf.
Fig. 3). However in practice, an analytical assessment is
often accompanied and double-checked by continuous
structural monitoring on site (Schindler et al. 2016; Mark
et al. 2012).
Building damages are commonly referred to strains

exceeding certain limits. For assessment, strains are com-
puted on simple or deep beams assuming linear elastic
material behavior for convenience as usual for numer-
ical analysis of tunnels (Kämper et al. 2016), or more
sophisticated considering non-linear effects, too. The
obtained strains are compared to limit strains characteris-
tic for non-cracked conditions as well as micro or macro
cracking of brittle materials like concrete and masonry
(Mark and Schütgen 2001). Table 1 assigns damage cat-
egories to typical tensile limit strains. While strains in
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Fig. 2 Single steps for the risk assessment during tunnelling. Window detection (a); structural idealisation and settlement prediction (b); models for
damage assessment and damage criteria (c)

categories 0-2 just visually impair structural aesthetics,
strains in category 3 already influence the serviceabil-
ity. Finally, in category 4 even the bearing capacity of a
structure is affected (Boscardin and Cording 1989).
The so-called Limiting Tensile Strain Method (LTSM)

idealizes facades to beams and assesses damage risks
employing bending and shear strains (Burland and Wroth

Fig. 3 Relation between settlement and structure. Shape of the
settlement trough with sagging and hogging areas and input
parameters for the LTSM

1974). With respect to a position in hogging or sag-
ging the strains are generally computed from Eqs. 1-2
assuming green-field (gf ) conditions. Therein, the resul-
tant diagonal strains are split into bending (b) and shear
(d) components.

ε
gf
b,hog = �

gf
hog/L

L/12H + (HbEfα)/2LG
; ε

gf
d,hog = �

gf
hog/L

1 + (L2G)/(6H2bEfα)

(1)

ε
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gf
sag/L
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The relative settlement� denotes themaximum vertical
distance between the settlement trough and a straight hor-
izontal line of length L connecting two reference points
usually associated with the outermost building edges, the
points of inflection or the maximum extent of the trough
(cf. Fig. 3). A structure’s position regarding the trough is
accounted for by means of an eccentricity e. It equals the
distance from the strain maximum to the facade’s cen-
ter of gravity. The height H from the basement to the
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Table 1 Relation of damage category and limiting tensile strain,
according to Boscardin and Cording (1989)

Category of damage Degree of severity Limiting strain [%]

0 Negligible 0 − 0.05

1 Very slight 0.05 − 0.075

2 Slight 0.075 − 0.15

3 Moderate 0.15 − 0.3

4 Severe ≥ 0.3

eaves is 12m at maximum. Recalculations of practically
relevant configurations above that limit have shown no
significant stiffness gains for soft soils (Neugebauer et al.
2015). The ratio of Young’s to shear modulus (E/G-ratio)
is usually set to 2.5 regarding the constitutive relation-
ship of linear elastic materials (Burland and Wroth 1974).
Table 2 lists a reduction factor regarding the effective
stiffness at foundation with respect to an opening-ratio
in masonry structures. The opening-ratio is the quota of
openings (windows and doors) of a total facade but lim-
ited to 50% since with higher ratios frame constructions
made from reinforced concrete elements would be typical.
The opening-ratio allows for linear interpolation in gen-
eral. Schindler (2014) documents the relevance of reduced
effective stiffness with openings in facades.
In case of deep beam models damage of facades is typ-

ically assessed employing plane finite elements since it is
necessary to consider details to gain a realistic prognosis
of the total settlement induced strain distribution. Simul-
taneously it comes along with higher numerical effort
concerning modelling and computation which is justified
only in case of important structures having a significant
damage potential as it is with low coverage.
Compared to the analytical approach employing beam

models significant differences occur regarding both,mate-
rial model and handling of soil-structure interaction (SSI).
On request, the linear elastic material model can be
enhanced to a nonlinear one accounting for isotropic
damage and hence delivers more accurate damages prog-
noses (Schindler 2014). The SSI is approximated with
non-linear springs for the soil (stiffness C) that account
for an initial slip by means of a gap (Schindler 2014).
Additional to vertical springs, horizontal springs cover

Table 2 Stiffness reduction factor fα according to opening ratio
(Neugebauer et al. 2015)

Opening ratio (OR)[%] Stiffness reduction factor

0 1

10 1/2

30 1/4

50 1/8

contact of foundation and soil by friction and its coef-
ficient μ. Figure 4 shows the principle exemplified by a
linear spring’s stiffness with initial slip without bedding.

Building reconstruction
Previously made building reconstruction approaches can
be roughly categorized by means of the required kind of
input data to review their suitability for window detec-
tion. Surveys by Baltsavias (2004) and Brenner (2005)
cover approaches using airborne photography and laser
scans. Due to the perspective, data acquisition even for
large areas is easily feasible compared to the collection
of data from the ground. As airborne data usually only
contains satisfactory information about large structures
like buildings and streets its potential for building recon-
struction is limited. The reconstruction of simple build-
ing and roof shapes is possible but in consequence of
the highly distorted facades through bird’s-eye view, the
detection and reconstruction of its elements is imprac-
tical. In addition to airborne data acquisition a survey
of Haala and Kada (2010) mainly addresses terrestrial
laser scans providing precise point clouds to generate
3D meshes of existing buildings. Beside approaches map-
ping textures to these meshes the authors present meth-
ods roughly detecting facade elements. This is done by
extracting areas displaced behind the facades’ planes or,
as shown in Fig. 5, determining no-measurement areas
in the plane (Pu and Vosselman 2009) and categorize
them as windows, doors, etc. by their size and posi-
tion on the facade. Although the use of terrestrial laser
scans eases the detection process and some approaches
have already been made to facilitate the data collection
(Haala et al. 2008; Barber et al. 2008), such data is not
available regionwide yet. Gathering and preprocessing
data for all buildings along potential tunneling alignments
in the urban area, though, would involve unreasonable
effort.
Musialski et al. (2013) provide the most encompass-

ing survey of building reconstruction that also comprises
methods based on terrestrial imagery. While pattern
recognition, matching, and facade parsing approaches are
discussed, the detection of facade elements in facade
images taken from the ground perspective is only men-
tioned briefly. Since ground perspective imagery of
facades can be gathered with low effort even for larger
areas or alternatively can be received from web services
like Google Street View, image based window detec-
tion approaches qualify best for our purpose. Prelim-
inary work by Neuhausen et. al (2016) focused on a
juxtaposition of the most promising approaches concern-
ing window detection in facade images taken from the
ground. The discussed methods are divided into three
categories: Grammar-based, image processing only, and
machine learning aided methods.
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Fig. 4 Approach for simplified simulation of soil-strucutre-interaction. Facade support with springs (a); applied discrete displacements (gap) on the
springs (b)

Grammar-based methods apply formal grammars to
facade images splitting these into increasingly smaller
regions until the facade is decomposed into its elements.
Ripperda (2008) and Ripperda and Brenner (2009) express
a simple grammar based on symmetry and repetition
to subdivide facade images. Teboul et al. (2010), on the
contrary, develop a detailed shape grammar which also
models semantic relationships between certain elements.
For this purpose they introduce rules, amongst others,
to substitute the ground floor by shops and doors or to
split the attic into roof and windows. As can be seen, in
general, defining an adequate set of rules is non-trivial
and presumes prior knowledge about the expected archi-
tecture. Furthermore, grammars allow numerous possi-
ble decompositions for a facade. Sampling methods like
Markov Chain Monte Carlo (Ripperda and Brenner 2006)
or parsing algorithms (Riemenschneider et al. 2012) have
to be applied to identify the most probable subdivision.
Such methods drastically increase in complexity with the
number of rules within the set. Accordingly, sets have to
be kept small to be applicable denying a high detailed
modeling of relationships between facade elements.
Pattern recognition approaches divide into further two

categories. Methods using only image processing rely,

Fig. 5 Laser scan of a facade. Windows can be identified by
no-measurements areas

similar to grammar-based approaches, on prior knowl-
edge and assumptions about the facades’ appearance.
Assuming that windows are aligned grid-like, Lee and
Nevatia (2004) superimpose histograms of horizontal
and vertical edges in rectified facade images. As result
peaks emerge at windows’ locations. Meixner et al. (2011)
resumed their work and figured out that it works well
on highly regular facades but fails for complex facades
with asymmetric window patterns or extensions like bal-
conies or awnings. This illustrates how assumptions and
contributed prior knowledge may narrow the field of
application. The appearance of facades highly alters in
different countries and may even vary between adja-
cent urban areas. Detection algorithms based on those
assumptions have to be adjusted to particular condi-
tions. This involves high effort and raises the need for
experts. It would be desirable to have a more general
solution.
Machine learning techniques meet this requirement

as they neither rely on assumptions on the windows’
alignment nor on prior knowledge about the architec-
ture. Windows can be detected by image features which
represent their inherent characteristics. In this context,
Haugeard et al. (2009) proposed an approach classi-
fying windows by their edges using a support vector
machine with an inexact graph matching kernel. Such
methods require an explicitly given feature vector. Alter-
natively, boosted classifiers as proposed by Viola and
Jones (2004) avoid this by choosing a subset from a
pool of features. Its practicability and limitations for
window detection tasks are investigated by the work of
Ali et al. (2007).

Methods
Previous approaches either address large facades with
highly regular facade element patterns or provide low
detection rates whereas in the context of urban tun-
neling the investigation of small houses with irregu-
lar facades is not uncommon. A sufficient approach,
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thus, has to cope with this issue. Furthermore, a high
detection rate is desirable to derive reliable idealizations
of structures for further analyses and a precise risk
assessment.

Approach
There is a wide range of window shapes and sizes (see
Fig. 6) and it is not directly evident which image features
qualify best to characterize them all. For this reason, a
boosted classifier seems to be promising. Since the best
features are automatically chosen from a feature pool
while training the classifier, it overcomes the necessity for
a prior manual selection. Apart from that, boosted cas-
cades of classifiers usually outperform most monolithic
approaches (Lienhart et al. 2003).
A boosted cascade of classifiers has already been applied

to the window detection task by Ali et al. (2007) via
the Viola-Jones object detection framework (Viola and
Jones 2004) albeit the reported detection rate is rather
low. Bourdev and Brandt (2005) developed a soft cas-
caded classifier which, in general, improves the detec-
tion rate over the Viola-Jones framework and is more
robust regarding a high variability of positive samples.
Their classifier, additionally, relies on less features com-
pared to the one of Viola and Jones at similar detection
rates. Based on these findings, we decide for a soft cas-
caded approach which is described in detail in section
“Soft cascaded classifier”.
Both, the Viola-Jones object detection framework

and the soft cascaded classifier, were originally devel-
oped for face detection and yield high accuracy in
this field. Beyond this, these classifiers also proved
to be successful in further application areas like traf-
fic light detection (Michael and Schlipsing 2015). An
application to other areas is, thus, generally possible.
However, this requires the objects to be detected to
possess a sufficient amount of well separating features
as classification relies on many cascaded stages con-
taining several image features. The fact that windows
are poor in those features, hence, may complicate the
detection.

Fig. 6Window examples from facade images. Windows occur in very
different shapes and sizes which complicates the composition of an
adequate set of features describing the windows’ characteristics

Fig. 7 Design of our detection system. Facade images are rectified
before being passed to the detector. The detector slides a
subwindow across the rectified image and cuts out underlying image
patches which are passed to classification. A cascaded classifier which
is trained and calibrated beforehand classifies each patch.
Overlapping regions of interest (ROIs) of positive classifications are
merged and returned as detected windows

Concept
Although the soft cascaded classifier is robust regarding
high variability, a normalization of the windows’ appear-
ance can significantly reduce the variability and, thus,
simplify the classification. We rectify the facade images

Fig. 8 Haar-like features. Types of Haar-like features used for
classification
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Fig. 9 Two Haar-like features applied to image patch. Each weak
classifier consists of a feature at a fixed position in the image x.
Features’ responses are thresholded to classify the corresponding
image regions. Connecting these in series results in a strong classifier

semi-automatically to eliminate unnecessary variation
which is due to distortion by the angle of vision. The ver-
tices of the quadrilateral spanned by the facade are chosen
as corresponding points allowing to estimate a homogra-
phy which transforms the quadrilateral into a rectangle.
For the purpose of our case study it was sufficient to
determine the vertices manually. If a manual selection is
tedious due to a multitude of facades to be investigated,
instead a repetitive pattern approach (Wendel et al. 2010)
can be used to automatically infer the facades’ dimensions.
Despite the rectification of the facades, the windows’ vari-
ation remains to be rather high. Hence, the soft cascaded
approach is preferable compared to the classifier of Viola
and Jones. Since the soft cascaded classifier is similar
in speed to the classifier used in the Viola-Jones frame-
work, there is no need to optimize the enclosing detection
algorithm. Therefore, we keep their naive sliding window
detector (see section “Sliding window detector”). Facade
images which we rectified beforehand are scanned via
a rectangular subwindow sliding across the entire image
in various sizes. At each position, the underlying image
patch is passed to the classifier which is trained on a
set of rectified window samples and non-windows. Posi-
tively classified patches are memorized, merged to larger
patches if appropriate, and finally returned as detections.
An illustration of this procedure can be found in Fig. 7.

Soft cascaded classifier
The soft cascaded classifier as proposed by Bourdev and
Brandt (2005) consists of a set c of weighted weak clas-
sifiers αh(x) where α is the weight and h(x) denotes the
classification function of a weak classifier for a sample x.

Each of these classifies at least slightly better than guess-
ing. By connecting them in series a strong classifier with
a high detection rate emerges. We deduce weak classifiers
from the Haar-like features shown in Fig. 8. Each weak
classifier consists of such a feature at a fixed position in
the image x as illustrated in Fig. 9. The features’ responses
are thresholded which enables a binary classification of
the image region the feature is applied to. Those thresh-
olds are trained by the algorithm given by Viola and Jones
(2004) by means of a training dataset with positive and
negative samples xi, their corresponding labels yi, and
their weights wi representing each sample’s importance.
While training a strong classifier, weak classifiers h(x)

which provide the lowest training errors are consecutively
drawn from a pool. According to their particular clas-
sification quality on the training dataset, a weight α is
assigned to them. Then they are added to a strong classi-
fier c. Since the negative class of non-windows is infinitely
large, it is not possible to project it to a discrete amount
of negative samples. For this reason, new negative sam-
ples which aremisclassified by the current strong classifier
are bootstrapped after each selection of a weak classifier
to approximate the negative class. This leads to a reduced
variance and also makes overfitting more unlikely. Addi-
tionally, each sample weight wi is adapted according to
the sample’s classification result of the current strong
classifier so that the priority of currently misclassified
samples increases and vice versa. This shifts the focus
of the selection of following weak classifiers towards so
far misclassified samples. The emerging strong classifier
c(x) = ∑T

t αtht(x) can already be used for classification
via weigthed majority vote where x is the concerning
sample:

T∑

t
ct(x) ≥ 1

2

T∑

t
αt .

Since only a few weak classifiers are needed to reject
most negative samples, it is unnecessary to evaluate all
weak classifiers on every input image.Weak classifiers are,
hence, arranged in cascading stages and samples are only
passed to the succeeding stage if it is classified positively
in the current one. This dramatically speeds up the clas-
sification process for negative samples which are much
more likely to be found in an image. It again speeds up
the detection process by the sliding window detector since
most cut out image patches can be declined after evaluat-
ing only few stages so that a real-time detection is possible.
In contrast to the Viola-Jones framework, in the soft cas-
caded approach each weak classifier is its own stage of
the cascade. Whether a sample passes a stage and is, thus,
further processed by subsequent stages depends not only
on the current stage but on all previous stages. This is
realized by a sample trace accumulating the confidence of
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each weak classifier’s classification which is compared to
a rejection threshold. The choice of this threshold influ-
ences the detection and false positive rates as well as the
speed of the classifier. For a proper setting a calibration is
done. Given a trained strong classifier c, its stages ct are
reordered within the cascade based on the performance
on a calibration dataset. Additionally, for each sample of
this dataset its sample traces are successively updated. The
rejection threshold of each stage is determined in relation
to the sample traces in a way that only a certain fraction
of positive samples is declined but a maximum of negative
samples. For the classification of a sample x with the cal-
ibrated classifier each stage ct updates consecutively the
sample trace. Once it is below the rejection threshold the
sample is declined and classified as negative. Otherwise, if
the sample passes all stages, it is classified positively. This
procedure is illustrated in Fig. 10.

Fig. 10 Schematic illustration of the cascaded classification
procedure. The weak classifier function hi(x) of a stage i is evaluated
only if the current sample traces s is above the rejection threshold ri−1

of the preceding stage. If the sample passes all stages it is positively
classified. Otherwise, it is prematurely declined and classified
negatively

Sliding window detector
The soft cascaded classifier only accepts image patches.
For those, the classifier determines if it is a window. A
detector is needed which passes relevant image patches
to the classifier and further processes the provided clas-
sifications. Due to the cascading layout of our classifier
non-window patches on average can be rejected very
fast. For this reason, an optimized detection algorithm is
unnecessary.
We apply the detector proposed by Viola and Jones

(2004) which shifts a rectangular subwindow of multi-
ple scales across an image (see Fig. 11). For each position
and size, the covered image patch is passed to the classi-
fier. As we suppose the images forwarded to the detector
to be filled by a complete facade we can approximate
the expected smallest window dimensions by the image
dimensions. Starting the scanning process at a subwin-
dow scale of s = 1.0 which we define as the 0.5-fold of
the inferred window dimensions, it is scaled by a factor
of 1.25 after each run across the image. The step size of
shifting the subwindow is affected by its current scale s
and the starting step size � = 1.0. The respective step
size of each run is determined by �s��, where � � denotes
a rounding operation. Since the classifier is insensitive in
regard to small translations of the objects within the image
patch, multiple overlapping detections may occur. These
are afterwards merged by averaging their positions. We
allow the merging of detections only if their areas overlap
by a factor of 0.7 or above.

Fig. 11 Scaling and shifting of the sliding subwindow. After each run
the subwindow is scaled by s. The step size in which the subwindow
is shifted across the image depends on the current scaling factor
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Results
We split the evaluation of our detection system into two
experiments. In section “Detection quality” we examine
the quality of the detection results by means of a cali-
brated classifier. Following the setup of Ali et al. (2007)
we investigate the accuracy of our detections by deter-
mining the overlap of the ground truth data with our
detection results. As the calibrated classifier makes a com-
promise such that the detection rate decreases to the
benefit of a low false positive rate, we additionally evaluate
the trained classifier in a second experiment (see section
“Detection distribution”). For that, we steadily increase
the classification threshold and observe the resulting dis-
tribution of the detections.
To provide comparability we proceed analogously to the

single window method of the evaluation framework pro-
posed by Ali et al. (2007) for both experiments. According
to this, a detection will only be marked as true positive if
it is inside the ground truth label’s rectangle or marginally
exceeds the boundaries and covers the label’s area to at
least a certain extent. On the contrary, a detection will
be marked as false positives if it covers less than 5% of
the ground truth label. Since detections have to be as
exact as possible to guarantee accurate risk analyses unlike
Ali et al. (2007) we constrain exclusively to an overlap of
at least 75% between detection and ground truth for true
positives.

Datasets
In previous experiments (Neuhausen et al. 2017), we
found that the classification results improve if samples are
constrained to be rectified. For training and calibration
we use the CMP-base facade database (Radim Tyleček
2013) consisting of 387 rectified images of planar facades
without substantial occlusion by vegetation or man-made
objects. Images were taken in various countries which
is necessary as the windows’ appearance differ between
countries and it is desirable to obtain an universal classi-
fier that can be applied in tunneling projects around the
world. For the training phase we randomly choose 5000
windows and initially provide as many negative samples
generated from parts of the images containing no win-
dows. Similarly, we randomly choose 2000 positive sam-
ples and as many non-windows for the calibration phase.
We evaluate our detection system on the Ecole Central

Paris facades Database (Teboul et al. 2010). This contains
487 rectified facade images of characteristic architectural
styles of the six countries the images were taken in. To
observe the performance and applicability for general use
of our detection systemwe choose images of each country.
In many images a major part of the windows is consid-
erably occluded by either objects in the foreground or
window shutters. To ensure a meaningful evaluation we
choose a set of images for each country with a minimum

Table 3 Number of facade images per country we use to
evaluate our detection system

Spain Hungary Greece USA France Romania Total

# Facade images 7 10 3 14 13 7 54

# Windows 223 205 23 621 395 152 1619

of occlusions. For ground truth, windows were labeled
manually in these images. We explicitly exclude shop win-
dows from our evaluation since these are mostly occluded
by cars, pedestrians or other objects. The particular
numbers of images and windows per set are given
in Table 3.

Detection quality
As outlined in Table 4 the system proposed in this paper
yields a detection rate of 85% on average over all countries
while only 2% of the detections are falsely classified as
windows. As can be seen from Table 2 it is sufficient to
determine the opening-ratio with an accuracy of 10% to
20%. Based on the achieved rates the real opening-ratio of
a facade can, thus, be approximated sufficiently to serve
for further risk analyses. Per country the detection rate
ranges from 82.3 to 90.7% with less than 5% false posi-
tives. Hence, an adequate estimation of the opening-ratio
is ensured in all cases. This highlights the general appli-
cability of our approach to facades in countries around
the world.
Furthermore, as shown in Fig. 12 (a) and (c) our detec-

tion system is capable of dealing with partial occlusions
caused by, e. g., balcony rails, vegetation or flag poles as
long as enough prominent features are visible. However,
it also responds to other facade elements which appear
similar to windows. Especially for the French test set this
led to a high increase in false positives as can be seen in
Fig. 12 (b). Although it does not affect our evaluation
results it is worthmentioning that a detection of shopwin-
dows is not reliably feasible with our system due to their
large differences in size and the lack of any image feature
as they mostly are frameless (see Fig. 12 (d)).

Detection distribution
We showed that our detector yields good results on facade
images of various countries. To further discuss the per-
formance and general applicability of our detector, we

Table 4 Detection results of the calibrated classifier on facades
of diverse countries

Spain Hungary Greece USA France Romania Total

True positives [%] 84.7 89.3 82.6 82.3 85.0 90.7 85.0

False positives [%] 2.6 0.4 0.0 0.8 4.5 1.9 2.0



Neuhausen et al. Visualization in Engineering  (2018) 6:1 Page 10 of 16

Fig. 12 Exemplary detection results of our system. Green rectangles
indicate true positive window detections whereas red rectangles
indicate false detections. Windows are detected despite slightly
occluding balcony rails (a) or partial occlusions due to flags or
vegetation (c). Facade elements shaped similarly like windows may
lead to misclassifications (b). No detection of store windows (b),(d)

investigate the distributions of detections and false pos-
itives with regard to the classification threshold of the
trained classifier as shown in Fig. 13.
The bell-like shapes of the distributions emerge from

the subsequent merging of the positively classified
regions. The smaller the threshold, the more regions are
positively classified. Consequently, more regions overlap
which results in crucially less remaining regions after
merging. Especially due to a higher scale and translation
invariance at lower classification thresholds, nearby cor-
rectly classified regions often overlap heavily. The merged
region, thus, is shifted between those owing to the aver-
aging strategy of the merging process. This reduces the
detection rate for small thresholds while simultaneously
increasing the false positive rate. Reliable results can be
expected only for thresholds from 0.54.
Except for few outliers of the Greek image set on thresh-

olds higher than 0.6, the particular distributions for each

Fig. 14 Facade of building I. The window detections by our system
using the calibrated classifier are marked in green

country’s image set closely resemble eachother. The out-
liers can be disregarded as they are due to the small
number of images within the Greek set. The similarity of
the distributions indicates that the window concept was
learned properly so that the classifier relies on general
image features which recur in image patches of win-
dows regardless of the country. The detection rates of the
calibrated classifier (see Table 4) are close to the max-
imum detection rates of the trained classifier but often
shifted towards a slightly higher threshold. This reduces the
detection rate but results in a lower false detection rate.

Case study
In the context of our reference subway projectWehrhahn-
linie (WHL) in Düsseldorf, Germany, we examine three
representative structures. These are typical inner-urban
masonry houses with different facades and individual
opening-ratios in mixed usage with shops and restaurants
in ground and first floors while in upper floors offices or
residential use pre-dominates. For comparability of results
equivalent material parameters are used throughout.

Providing opening-ratios
We apply our window detection system to rectified images
of the chosen structures’ facades to determine their
opening-ratios. Since we presuppose a facade completely
filling the image we infer the opening-ratio of a facade
from the ratio of detection areas to the image area.
Similar to the evaluation in section “Evaluation of the
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detection system” for each facade, we provide a distri-
bution of opening-ratios over the classification threshold
additionally to the particular responses of our system in
case of a calibrated classifier. As the calibrated classifier
misses some windows but yields reasonably low false pos-
itives rates its results can be interpreted as the minimum
opening-ratio a facade definitely possesses. By means of
the distribution we identify a range within which the
actual opening-ratio lies. This facilitates the categoriza-
tion of facades into their most probable damage class.
Figures 14, 15 and 16 show the detection results of

our calibrated system on the chosen structures. It can be
seen that few windows are missed or detections are too
small but no false positive detections occur which sup-
ports our interpretation of the calibrated system’s results.
We achieve opening-ratios of 0.135, 0.186 and 0.292 for
the structures I, II and III, respectively. Like already stated
in section “Detection quality” the figures show that our
detector does not manage the detection of shop windows
resulting in lower detected opening-ratios compared to
the actual ratios. This is satisfactory for achieving a first
risk assessment while planning a tunneling route which is
what we focus on in this paper, though it has to be taken
into account for a more precise risk assessment.
Figure 17 shows the distributions of the opening-ratios

as a function of the classification threshold for each of
the relevant structures. The solid lines illustrate the dis-
tributions of opening-ratios whereas the dashed lines
indicate the ground truth. For this we consider the
opening-ratios derived from both, actual construction
plans and manually labeled facade images. As displaced
stories may be occluded by lower parts of the facade
due to the ground view perspective, the labeled ground
truth may deviate from the actual opening-ratio. The
opening-ratios as derived from the calibrated system’s
results are slightly lower than the distributions’ peaks
which may contain some false positive detections. The
best approximation of the actual opening-ratio based

Fig. 15 Facade of building II. We applied our calibrated system to the
front (a), left (b), and right (c) facade of the building. The detection
results are marked in green

on the detection system, thus, can be expected to be
between these two values. Therefore we pass both results
to the risk assessment analyses. The gap between the
detection distributions and the particular ground truth
again illustrates the system’s deficiency regarding shop
windows.

Influence of detected opening layout
Since detection delivers a scalar factor for the opening-
ratio in facades only and lacks information on individual

Fig. 13 Distributions of detection rates and false positive rates. Rates are plotted with regard to the classification threshold of the trained classifier.
Solid lines indicate detection rates while dashed lines indicate false positive rates
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Fig. 16 Facade of building III. The window detections by our
calibrated system are marked in green

sizes and window positions, the impact of randomly gen-
erated samples of openings in facades on the maximum
strains is analyzed in numerical simulation. Therefore, the
opening-ratio is kept constant while the distribution and
size of windows in the facade is varied. As representative,
an opening-ratio of about 23% is assumed which equals
the global mean of two values gained for our three refer-
ence structures by detection. For every structure a lower
and an upper value of the opening-ratio is detected. The
first is the distribution’s maximum while the second one
corresponds to the calbirated system (cf. Fig. 17).
Geometry and material parameters of a masonry facade

resting on a foundation made from reinforced concrete
are presented in Fig. 18 (a). While the height of the foun-
dationHF is 0.5m, the wall’s heightHW is 7.5m. Both have

a length of 10m and a depth D of 0.3m. Strains are com-
puted linear elastically considering a single pre-scribed
displacement u(x) at the lower edge of foundation which is
limited to umax = 10mm. In sagging the expected defor-
mation of the facade is affine to a simply supported beam
subjected to a distributed load just as it can be idealized
as a clamped beam in case of hogging. For both, Fig. 18
(b, c) displays the principal strains in a homogeneous deep
beam.
Separately for hogging and sagging Fig. 19 contrasts

the number of openings to the maximum tensile stresses.
Black solid lines serve for reference. They are obtained
initially dividing a single square window in the facade
according to the opening-ratio stepwise into smaller quar-
ters. That way, 64 equally sized openings are obtained
in step four. Consequently the facade has a constant
opening-ratio and a grid of square windows in all steps.
While for sagging the general tendency shows lower
strains along with a rising number of openings it is
vice versa for hogging. This is well-reasoned observing
the different stress distributions in both cases. While
an opening at center, or its subdivision into smaller
regular parts, in sagging (cf. Fig. 18 (b)) does not dis-
turb the strain trajectories much, the situation is totally
different in case of hogging. Comparatively great ten-
sile stresses are then located at the edges of the deep
beam along with little material in case of numerous
openings.
For sure, these results give insight into the mechanics of

deep beams with a variable number of regular openings,
but still lack practical relevance. Thus several more real-
istic configurations have been simulated in a second step.
These configurations are characterized by irregular grids
of windows, similar/equivalent opening-ratios and pos-
sess two or three floors typical for houses of 7.5m height.
Here, the openings are distributed randomly preserving
minimum vertical and horizontal distances of 0.30m to
neighbors. The results indicated by x in Fig. 19 (b) slightly
deviate from the general tendency lines and scatter due to
random properties. However, interpretation is as follows:
If only the opening-ratio is available but information on
the exact sizes and locations lacks, the distribution of
openings might be idealized to gain maximum numerical
strains with a deviation of about ±25% calculated for an
opening-ratio of 23%.

Damage risk assessment
Subsequently, the impact of the opening-ratio (OR) and
exact window positions on the expected structural dam-
ages of buildings subjected to tunneling induced set-
tlements is analyzed. Therefore, the maximum strains
of our three reference structures (I-III) are determined
analytically (LTSM) and contrasted to numerical sim-
ulation results. Table 5 summarizes geometrical and
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Fig. 17 Distributions of the detected opening-ratio per building. Solid blue lines indicate the distributions of opening-ratios based on the detections
of our system corresponding to its classification threshold. Their peaks are highlighted by a purple triangle. The opening-ratios inferred from the
system with a calibrated classifier are marked with a green asterisk. Dashed lines indicate manually labeled (red) and actual (yellow) ground truth

material parameters as well as the individual eccen-
tricities of the structures to the tunnel axis and lists
the detected and exact opening-ratios. Throughout the
analysis the detected opening-ratio is now the mean of
the distribution’s maximum and the calbirated system
ones for every single structure in Fig. 17. Finite ele-
ment analysis employs non-linear material behavior of
concrete according to Schindler (2014) while the set-
tlements are pre-calculated according to Peck (1969)
(cf. Fig. 3, bottom). To cover the unknown pattern of
openings in the buildings’ facades a maximum devi-
ation of 25% is applied, too, but does not change
the results much (cf. whiskers in Fig. 20). The results
are contrasted in Fig. 20 and similar for all reference
structures:

• Evidently the strains obtained from numerical
simulation are much smaller than the analytical ones

a cb

Fig. 18 Assessment of the distribution of forces in deep beams.
Structural system with corresponding boundary condition u(x) (a);
idealized displacements for the sagging (b) and hogging case (c) and
related principle stresses in deep beams
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Fig. 19 Analysis of the influence of varying openings. Facades with different opening layouts (a); relation between number of openings and
maximum strains in sagging and hogging cases (b)

and thus smaller damage categories are predicted,
too. Generally, this is traced back to more realistically
covered material properties and the soil-structure
interaction considered by numerical simulation.

• Analytical results employing detected or exact
opening-ratios with the LTSM are close and differ
one damage category at most. Similar holds true for
numerical results when the scatter of unknown
window locations is consequently included.

• Due to correlation of opening-ratio and strains, the
generally smaller opening-ratios from detection
always deliver smaller strains and hence assigned
damage categories. Applying LTSM the stiffness is
reduced little by a small opening-ratio (cf. Table 2)
just as the distribution of strains is in numerical
simulation.

Discussion
Risk assessment of tunneling induced damages to exist-
ing structures is essential for planning an optimal tunnel
route in the urban area. Hereby, damages and the resulting

Table 5 Geometry and parameters of the structures

Structure Detected OR (mean) Exact OR Ltot H D e C

[-] [-] [m] [m] [m] [m] [kN/m]

I 0.15 0.35 21.1 23.8 0.4 14.5 3000

II 0.19 0.40 45.0 28.9 0.35 -15.2 3000

III 0.33 0.50 10.2 26.4 0.5 2.0 3000

costs of a subsequentmaintenance areminimized. Besides
the dimensions of a structure, for a precise risk assess-
ment the opening-ratio plays a major role as it directly
affects a structure’s stiffness. Deriving this manually from
construction plans or by inspections conducted by sur-
veyors is highly cost and time consuming and even not
feasible for the vast amount of structures along poten-
tial tunneling routes. Virtual building models which could
automate this process are yet publicly available but usually

Fig. 20 Results of the two different methods for damage estimation.
The analysis were carried out with detected and exact opening-ratios
for three reference strucutres



Neuhausen et al. Visualization in Engineering  (2018) 6:1 Page 15 of 16

lack information about the relevant openings. As win-
dows are the major reason for openings in facades, in this
paper we proposed a system to detect windows in facade
images. We trained and calibrated a soft cascaded classi-
fier using rectified facade images gathered from different
countries to avoid constraining our system to a specific
one. A naïve sliding window detector which passes image
patches to the classifier and merges overlapping detec-
tions is used to scan facade images. We showed that our
system achieves detection rates of over 82% in various
countries while only exhibiting a false positive rate of 2%
on average. For risk assessment these rates are satisfac-
tory to reliably estimate the damage class of a building.
Another experiment reveals that the detection rate can be
slightly increased entailing an increase of the false pos-
itive rate. In our case study we exploit this to define a
lower and upper bound for the opening-ratio of a given
facade.
With respect to damage assessment LTSMdeliversmore

conservative results compared to numerical simulation by
finite elements. The two approachesmay differ up to three
damage categories. Our detected opening-ratios are well-
suited for a quick pre-assessment of settlement induced
damages since they deviate from results employing true
opening-ratios by one category at most. Exact positions
of openings in the facade are of minor interest. It is
sufficient to idealize the openings in regular grids over the
facade respecting distances to neighbors of about 0.30m
while the number of floors is estimated from the buildings
total height. Then automated detection of opening-factors
delivers adequately precise results for damage assessment.
Much effort might be saved neglecting exact positions and
sizes of individual openings.

Conclusion
As the case study demonstrates, our approach yields
promising results and is already applicable to aid the
risk assessment of tunneling projects in terms of a pre-
assessment. This ejects irrelevant structures from fur-
ther time-consuming analyses. Provided opening-ratios,
however, do not satisfy the demands of a precise assess-
ment. To obtain more accurate opening-ratios the sys-
tem’s detection rate and accuracy have to be increased.
A postprocessing based on already detected windows
would be desirable to enhance the detection results. The
dimensions of present detections could be refined towards
actual window edges in the image to improve accuracy.
For increasing the detection rate, windows with less image
evidence and, hence, lower feature responses have to be
taken into account. Decreasing the detection threshold of
the classifier would allow the classifier to detect such win-
dows but would also dramatically increase the amount of
false positives if applied to the entire image. This classifier
should preferably only be applied to image regions which

most likely contain windows to keep the false positive
rate low. Positions of further potential windows could be
derived from the alignment of present detections. A less
strictly calibrated classifier could, then, be applied solely
to these positions revealing further windows. Moreover,
as mentioned before our system is not capable of detect-
ing store windows. Further research has to be done to
identify image features which reliably characterize such
windows.
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