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Abstract

In this paper, two nonlocal approaches to incorporate interface damage in fast Fourier
transform (FFT) based spectral methods are analysed. In FFT based methods, the
discretisation is generally non-conforming to the interfaces and hence interface
elements cannot be used. This limitation is remedied using the interfacial band
concept, i.e., an interphase region of a finite thickness is used to capture the response
of a physical sharp interface. Mesh dependency due to localisation in the softening
interphase is avoided by applying established regularisation strategies, integral based
nonlocal averaging or gradient based nonlocal damage, which render the interphase
nonlocal. Application of these regularisation techniques within the interphase
sub-domain in a one dimensional FFT framework is explored. The effectiveness of both
approaches in terms of capturing the physical fracture energy, computational aspects
and ease of implementation is evaluated. The integral model is found to give more
regularised solutions and thus a better approximation of the fracture energy.
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Introduction
Polycrystalline materials at a microscopic level show clear heterogeneous deformation
patterns. This heterogeneity arises from the locally fluctuating mechanical properties of
different phases and differences in lattice orientations between different grains.
FFT based spectral solver was originally introduced to model the mechanical behaviour

of composite microstructures [1]. Since then it has emerged as a promising tool for mod-
elling the micromechanical response of polycrystalline materials [2,3]. A comparison of
different FFT formulations and solution approaches in a crystal plasticity constitutive
framework [4] was presented in [5]. Recently, an FEM perspective on an FFT based spec-
tral formulation for small strain non-linear material behaviour was given in [6] and its
extension to a finite strain setting was presented in [7]. Alongside such improvements,
much effort has gone into making the method suitable for various applications. The com-
putational efficiency of FFTmethodsmakes them attractive to solve multi-field problems,
for e.g. a nonlocal crystal plasticity formulation [8], ferroelectric switching [9], etc.
Polycrystalline microstructures show a combination of intergranular and intragranular

damage. Gradient based nonlocal damage simulations in a polycrystalline material were
performed using an FFT approach in [10] without differentiating between bulk dam-
age and interface decohesion. Interfaces like phase boundaries and grain boundaries are
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Fig. 1 Methodology for modelling a polycrystalline interface in finite element method (a1–a3) and FFT
based solvers (b1–b3). a1 shows a polycrystal with interface elements embedded at sharp boundaries. a2
depicts an interface conformal finite element mesh with cohesive zones that open during loading according
to the traction (σ )—separation (δ) law shown in a3 with characteristic fracture energy Gc . b1 shows the same
polycrystal with interfacial bands representing the sharp interfaces. An example constitutive behaviour for the
material points (within the volumetric interphase) assigned dissipation density gc is shown in b3

particularly susceptible to damage initiation andpropagation. For example, damage nucle-
ation in Dual Phase steel has been attributed to interface decohesion at ferrite–martensite
phase boundaries and martensite cracking along prior austenite grain boundaries [11]. In
our contribution, we focus on the computational treatment of interface decohesion and
its interaction with the (undamaged) bulk behaviour in FFT solvers.
In finite element (FE) based solution schemes, such problems are generally tackled

using cohesive zones [12,13], see Fig. 1 (a1, a2, a3). Interfaces are identified a priori and
interface elements are introduced at these physical locations. This is possible since the
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FE discretisation is made to conform to the sharp interfaces. The opening behaviour of
these interface elements is governed by a traction-separation law (TSL) that is assigned
to them. FFT based spectral methods, however, rely on a regular grid and a method to
include sub-dimensional (e.g. planar in 3D) elements cannot be used. Composite pixel
based approaches, for example [14], which make use of the interface normal to assign
homogenised mechanical properties to grid points near the interfaces, are a step in that
direction. But at this point it is not clear how they will perform in situations of damag-
ing interfaces that are inclined or curved. The high mechanical contrast combined with
inherent pixelation effects of FFT may cause stresses relayed across damaging interfaces,
which is undesirable for the modelling of cracks. This limitation is dealt with using the
idea of an interphase (volumetric) band, as depicted in Fig. 1 (b1, b2, b3). The material
points in the vicinity of the sharp interface are identified and furnished with a dam-
age constitutive behaviour (softening) and corresponding kinematics—in addition to the
deformation mechanisms attributed to them as a part of the respective grains they belong
to. We aim to have multiple points across the thickness of the interphase. We expect
this to reduce the pixelation effect and ensure that the two crack faces are fully decou-
pled. This approach allows capturing the interfacial mechanics and still benefits from the
computational (memory and speed) and implementation related advantages of FFT based
methods. Such an approach to represent interfaces as interphase has been used previously
in the literature. Hsueh-Hung et al. [15] used it to assign different material behaviour
to grain boundary regions than the bulk. Their approach was physically motivated and
directed towards understanding metal plasticity in the nanocrystalline regime. Clayton et
al. [16] used this approach within a finite element implementation of phase field damage
to understand the competition between intergranular and intragranular damage.
In volumetric dissipation based models, one specifies a dissipation density and an inter-

nal length scale to themodel—which for the present case is the band thickness, l. The total
dissipation resulting from the volumetric damage process must equal the physical dissi-
pation of the real sharp interface (or cohesive zone model). Accordingly, the dissipation
density has to scale inversely with the band thickness. A straightforward inversely pro-
portional relationship results if the entire interphase band damages uniformly. This is not
guaranteed in a conventional local softening model due to localisation and lacking objec-
tivity with respect to the grid spacing. Various regularisation strategies have been used in
the literature to remedy this. They can broadly be classified into two categories—integral
based averaging [17] and gradient damage based regularisation [18–22].
The objective of this paper is to analyse the applicability of these two regularisation

approaches in an FFTmethod to model the softening interphases. We compare the effec-
tiveness of the two approaches for the idealized case of one dimensional (1D) bar with
a single interphase band. The constitutive response of the underlying (bulk) material is
assumed to be linear elastic. This simple case allows us to systematically study the effect
that the nonlocality has on the damage evolution—with emphasis on the desired objec-
tivity of the predicted fracture energy with respect to the interphase band thickness. The
organisation of this paper is as follows. In “Problem statement” section the 1D problem
considered in our study is stated and the constitutivemodel and kinematics are described.
Next, the gradient damage and integral averaging approaches are discussed in “Gradi-
ent based nonlocal damage” and “Integral based nonlocal damage” sections, respectively.
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Fig. 2 1D bar with an interphase band (bottom) representation of a central sharp interface (top)

In “Results and discussion” section, results of both the approaches are discussed. A con-
clusion and outlook is presented in “Conclusion and outlook” section.

Problem statement
Consider a 1D bar of length L as shown in Fig. 2. Let us assume a sharp interface at the
center (x = 0) of the bar. To capture the response of this interface using an FFT based
spectral scheme, the sharp interface is substituted by a volumetric interphase band of
thickness l spanning the region from x1 = − l

2 to x2 = l
2 . The elastic properties are

taken to be homogeneous, with Young’s modulus defined as E. To model the kinematics
of decohesion, a damage strain field, εd (x), is introduced for x ∈ Ωi whereΩi = (x1, x2) is
the sub-domain representing the interphase region in the total domainΩ = (−L/2, L/2).
Since only the interphase region accommodates the damage strain, the damage constitu-
tive model is only used inΩi. InΩi it is superimposed on the elastic strain εe (which exists
on Ω) as,

ε = εe + εd. (1)

A local damage field φl (x), for x ∈ Ωi, is introduced. This field represents the material
integrity. It is initialised to unity, representing a perfectly bonded state.When the damage
evolves it drops towards zero, thereby reducing the capacity of amaterial point to transmit
stresses. A damage constitutivemodel exploiting only the local fieldφl is ill-posed and pro-
vides non-physical results due to a pathological tendency to localisation [17]. Therefore,
a nonlocal counterpart field, φnl , is defined also for x ∈ Ωi.
The bar is subjected to an overall monotonic uniaxial tensile loading at a constant rate

˙̄ε. This loading rate is related to the local strain rate field as

˙̄ε = 1
L

∫ + L
2

− L
2

ε̇ dx, (2)

The stress at equilibrium has to satisfy,
∂ σ

∂ x = 0. (3)

Constitutive model

The constitutive model relating the stress and the elastic strain for all material points at
x ∈ Ω reads
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σ = Eεe. (4)

The evolution law for εd is taken as

ε̇d = ε̇d0

〈 |σ |
σcφnl2

− 1
〉2

sgn (σ ) , (5)

where σcφnl2 is the effective opening resistance, with σc the critical stress of the model;
ε̇d0 is the reference opening rate. The Macaulay brackets, defined as 〈·〉 = (· + |·|) /2,
make sure that the damage strain does not evolve until σ reaches the initial critical stress
σc. The nonlocal damage φnl , in Eq. (5) is obtained by appropriately regularizing the local
damage field φl defined as

φl =
(
1 − εd

εf

)
. (6)

The critical damage strain εf governs the softening slope. It is noted that the rate depen-
dent form depicted in Eq. (5) is motivated from the sub-scale mechanics (micro-void
formation, plasticity etc.).

Analytical solution for the rate-independent case

Since the applied loading ismonotonic tension, one can rewrite Eq. (5) beyond the damage
threshold as

σ = σc φnl
2
(
1 +

(
ε̇d
ε̇d0

) 1
2
)
. (7)

In order to retrieve an analytical solution, a special case is considered. It is assumed that the
nonlocal field coincides with the local field, which is furthermore assumed to be uniform
within the interphase band. In this case we have, also using Eq. (6),

σ = σc

(
1 − εd

εf

)2
(
1 +

(
ε̇d
ε̇d0

) 1
2
)
. (8)

In the rate-independent limit, implying

ε̇d << ε̇d0, (9)

Equation (8) yields

σ = σc

(
1 − εd

εf

)2
. (10)

Due to the equilibrium condition in this 1D setting, a spatially constant stress field results.
The average strain ε̄ for any instant after the damage has initiated can be obtained by
inverting Eq. (10) to give εd as a function of σ and integrating the elastic and damage
contributions to the strain field:

ε̄ = 1
L

(∫ L

0
εe dx +

∫ x2

x1
εd dx

)
= σ

E +
(
1 −

(
σ

σc

) 1
2
)

εf
l
L . (11)
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Thus, the overall stress–strain response for this rate-independent uniform damage case
can be written in piecewise form as

ε̄ =

⎧⎪⎨
⎪⎩

σ
E , if ε̄ ≤ σc

E
σ
E +

(
1 −

(
σ
σc

) 1
2
)

εf
l
L , otherwise.

(12)

The dissipation per unit volumedue to the damaging process can be computed analytically
as

gc =
∫ εf

0
σ dεd = σc

∫ εf

0

(
1 − εd

εf

)2
dεd = 1

3
σcεf , (13)

where use has been made of Eq. (10).
Relating the dissipation throughout the interphase volume to the expected interfacial

dissipation Gc, we obtain

gc l = Gc. (14)

Accordingly, the product of the damage constitutive parameters σc and εf should depend
inversely on the interphase band thickness. This equality, together with Eq. (13), indicates
how the strain to failure needs to be scaled with respect to the interphase band thickness
l, in order to recover the strength and dissipation of a cohesive zone, for arbitrary l:

εf = 3Gc
σc l

. (15)

Gradient based nonlocal damage
In the differential form of nonlocality, the nonlocal damage field is determined as the
solution of a differential equation. Here, the classical gradient based damage equation is
considered to retrieve the nonlocal counterpart of φl , which reads in one dimension:

∂

∂ x

(
λ2(x) ∂

∂ xφnl

)
+ φl − φnl = 0, (16)

where λ(x) is the nonlocal length scale. In principle, the damage variables φnl and φl are
meaningful only for x ∈ Ωi, and therefore Eq. (16) for the nonlocal field φnl should be
solved on the sub-domain Ωi only, with flux free boundary conditions (also referred as
interface condition) on ∂Ωi, i.e.

λ2
∂φnl
∂ x = 0 on x ∈ ∂Ωi, (17)

where ∂Ωi = {x1, x2}. Since FFT solvers are based on global and periodic shape functions
with a regular discretisation grid, the problem has to be solved on the full domain instead,
still respecting Eq. (17) at least approximately. This may be achieved by extending Eq. (16)
to the entire domain Ω , but with a piecewise constant λ, equal to the desired value λin
inside the band and a much smaller value λout outside the band. In that case, the interface
condition at the edges of the interphase reads:

(
λ2

∂φnl
∂ x

) ∣∣∣∣
x−

=
(

λ2
∂φnl
∂ x

) ∣∣∣∣
x+

for x ∈ ∂Ωi, (18)
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which corresponds with Eq. (16). In the limit of λin/λout → ∞ this condition
enforces Eq. (17). In practice, a finite, but large, contrast λin/λout is used and Eq. (17),
the flux free boundary condition, is satisfied only approximately.
Phase field approaches also provide a differential equation based continuum solution

for evolution of damage. In principle, a phase field model based on a Ginzburg–Landau
approach can be used as well, for example [21,23]. The resulting governing equations are
similar to models based on the micromorphic approach, with an evolving length scale
[24]. In fact, these approaches were introduced to avoid spurious spreading of the damage
field (away from the nucleation point), which was observed when using a linear phase field
potential in the former and a decreasing length scale in the latter.
In the present approach, based on the classical gradient based damage, the issue of

compact support of damage field is avoided by using the length scale contrast to restrict
the damage field to the interphase band. In order to recover physically meaningful results,
which are objective with respect to the thickness of the interphase band, the interphase
band needs to damage uniformly, even for bands that are not extremely thin. From this
perspective, the classical gradient damage model provides better regularisation charac-
teristics than these phase field approaches. If a phase field approach would be considered
instead, models based on quadratic or double-well potential would suit best for the good
regularisation characteristics needed in our application.
The numerical solution of the boundary value problem requires solving Eqs. (3) and (16)

simultaneously. Note that these equations are coupled through the constitutive Eq. (5).
Both differential equations are discretised using the FFT scheme. The coupled system of
equations is solved using a staggered iterative scheme as detailed in an FEM context in
[21]. The discretisation and residual evaluation of the mechanical equilibrium differential
equation is well documented in [5]. Here, we only outline the residual formulation of the
damage Eq. (16).
In order to avoid taking the Fourier transform of the length scale field, the non-linear

residual is constructed by utilizing the fixed-point concept. We start by splitting λ2(x)
into a homogeneous and a fluctuation field as

λ2(x) = λ̄2 + λ̃2(x). (19)

Substituting Eq. (19) in Eq. (16) and taking the Fourier transform (F ) we obtain

Fφnl − λ̄2F
(

∂2φnl
∂ x2

)
= Fφl + F

(
∂

∂ x

(
λ̃2

∂

∂ xφnl

))
, (20)

which can also be written as,

Fφnl − λ̄2F
(

∂2φnl
∂ x2

)
= Fφl + F

(
∂

∂ x

(
λ̃2F−1F

(
∂

∂ xφnl

)))
. (21)

Now using the property of the Fourier transform applied to differential operators, i.e,
F ∂n f

∂ xn = (ι k)nf̂ , the above equation can be rewritten as

φ̂nl − λ̄2(ι k)2φ̂nl = φ̂l + (ι k)F (
λ̃2F−1 (

(ι k)φ̂nl
))
. (22)
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After some rearrangements and taking the inverse Fourier transform (F−1), Eq. (22) is
rewritten in residual form as

Rd = φnl − F−1
(

φ̂l + (ι k)F (
λ̃2F−1 (

(ι k)φ̂nl
))

1 − λ̄2(ι k)2

)
= 0. (23)

Initialising φnl ≡ 1, Eq. (23) is solved using the matrix free Newton solver available in the
PETSc library [25]. The frequencies used in the discrete Fourier transforms in this work
correspond to the modifications presented in [26].

Integral based nonlocal damage
For the integral basednonlocal damage case, aweightedmoving average is used to calculate
the nonlocal field φnl from the local damage φl , i.e. [17,27].

φnl (x) =
∫
Ωi

Ψ (y; x) φl (y) dΩ∫
Ωi

Ψ (y; x) dΩ
, (24)

where y is the position of the infinitesimal volume dΩ ∈ Ωi. The weighting function
Ψ (y; x) that is commonly used is the Gaussian distribution, which reads

Ψ (y; x) = exp
[−(y − x)2

2λ2

]
, (25)

where x is the position vector of the point at which the distribution is centred and λ is
the characteristic length, which determines the distance along which Ψ decays to zero.
The denominator in Eq. (24) normalizes the weighting function, which ensures that for
a homogeneous φl(x), the nonlocal field φnl calculated using Eq. (24) coincides with its
local counterpart.
In our numerical setting, Eq. (24) is approximated by a cell averaging method, which

can be written as

φnl i =
∑

j φl jΨ ((Δ x(j − i))2)∑
j Ψ ((Δ x(j − i))2) , (26)

where i and j represent material points in the interphase sub-domain and Δ x is the grid
spacing. Equation (26) can be implemented by looping over all the points in Ωi. A more
efficient way is to store the normalised weights in Eq. (26) in a matrix and implement the
convolution via a matrix-vector product.

Results and discussion
In this section, we present and discuss the results of two numerical studies. The first is
on the effect of the length scale contrast method for the gradient damage model. Next,
we compare this method with the integral averaging model. The comparison is made
based on their performance in providing a delocalised damage field and thus giving a
numerically calculated fracture energy Gn

c in close agreement with two ideal solutions: the
rate-independent analytical solution derived above (denoted by ‘Rate indep.’) and a rate-
dependent uniform damage strain solution denoted by ‘Rate dep.’. The latter is easy to
obtain in our 1D numerical setting: it only requires running simulations of the underlying
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Fig. 3 Nonlocal damage profiles for various length scale (λin/λout )2 contrast at an instant when global stress
σ has dropped to 0.007σc

local damagemodel (φnl = φl) without imperfection. Given the piecewise uniform nature
of this problem, the numerical solution for its calculation does not show localisation and
thus does not need any regularisation.

Model parameters used

The numerical studies are performed on the 1D bar of Fig. 2, discretised by 1000 uni-
formly spaced Fourier grid points. Young’s modulus of the material is E = 100GPa and
a critical stress σc = 1MPa is used in all the simulations performed. The elastic properties
throughout the bar are assumed to be same. The bar is loaded at an average strain rate
˙̄ε = 10−5 s−1 for 5 s in time steps of Δt = 0.01 s. Since the considered properties are
uniform, we introduce a small imperfection by means of a 1% reduction of the critical
stress σc for the grid points in the interval x ∈ [−l/20, l/20] within the interphase band,
in order to trigger localisation.

Effect of length scale contrast in the gradient based model

In this part, we assess the performance of enforcing the interface condition (Eq. (17)) by
the length scale contrast method. For this study, apart from the parameters described
above, an interphase band thickness of l = 0.05L, reference strain rate ε̇d0 = 0.1 s−1 and
the final damage strain εf = 0.001 were used. The nonlocal length scale used inside the
band was λin = l while outside it, the value λout were varied to investigate the influence
of the contrast (λin/λout ).
Figure 3 depicts the distribution of nonlocal damage φnl inside the interphase band

and the region outside, to which it has spread significantly. Due to symmetry, only
half of the band (and its surroundings) is shown. The profiles are plotted for the cases
(λin/λout )2 = 101, 102, 103, 104. The nonlocal damage variable field extendsmore than 1.5
times the interphase band thickness into the bulk region on either side of the interphase for
(λin/λout )2 = 101. This is due to the poor approximation of Eq. (17) by Eq. (18) with this
value of length scale contrast. However, this extension of the interphase damage into the
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Fig. 4 Effect of the interface condition at the edges of the interphase on the global stress–strain response

bulk drops systematically for higher contrasts. Themaximum contrast that the numerical
solver for the damage equation could handle was (λin/λout )2 = 104. For this contrast, we
observe that the zone of spread of interphase damage into the bulk has reduced to less
than 0.2 l.
Figure 3 also shows that for high contrast ratios, the non-uniformity of φnl caused by the

imperfection decreases and the damage profile becomes increasingly uniform inside the
band. Consistent with Eq. (18), the slope of φnl at the two edges of the interphase tends
to zero as the length scale contrast is increased. For the lower ratios, the interaction with
the undamaged region next to the band results in a slower evolution of φnl near the edge
of the band compared to its centre.
The effect of this slowing down is observable in the averaged stress–strain response,

see Fig. 4. As a result of it, the initial softening slope is less steep. This in turn results in
an over-prediction of the amount of dissipation during the damage process as compared
with that for the cases with a sufficient contrast, i.e. (λin/λout )2 = 103–104.
Figure 5 (left) shows the calculated fracture energy Gn

c relative to the one predicted
by Eq. (14). Remember that Gc was derived for the rate-independent limit. Hence, we
should expect the rate-dependent, computed Gn

c to approach Gc, but not necessarily to
asymptote to it. Amuch closer approximation of the rate dependent ideal solution (dashed
curve) can be expected, as it captures the additional dissipation due to rate effects. Indeed,
the ratio Gn

c /Gc drops to less than 1.1 for the highest length scale contrast applied. This
higher accuracy however entails significantly more iterations (Fig. 5 (right)) required to
solve Eq. (23): this number goes up by a factor of 10 as the contrast is increased from
(λin/λout )2 = 101 to 104. This is essentially due to the d(λ2 d

dx )
dx structure of Eq. (16), which

brings first order gradients of φnl into the damage Eq. (16).
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Comparison of gradient and integral nonlocal damagemodels

The analysis in “Analytical solution for the rate-independent case” section showed that for
a uniform damage strain distribution in the rate-independent limit, choosing εf according
to Eq. (15), a constant fracture energy can be obtained, irrespective of the interphase band
thickness l. In this section, we want to test the same hypothesis but in a numerical setting,
where localisation is triggered by the presence of an imperfection (as discussed above).
This is a test of the effectiveness of the two types of nonlocality in regularizing the damage
(and damage strain rates) and thus facilitating the use of simple scaling Eq. (15) for the
interphase band.
Different interphase band thicknesses (l/L = 0.010, 0.015, 0.020, 0.025, 0.030) are stud-

ied. ε̇d0 = 1.0 s−1 and εf = 5 × 10−5 L/l in combination with the parameters in
“Model parameters used” section are used. For both models, three different values of
the nonlocal length scale are used: λ/l = 0.5, 1.0, and 1.5, where for the gradient damage
based approach λin = λ and λout is varied such that a constant length scale contrast
(λin/λout )2 = 104 is obtained.
Figures 6 and7 showthedamageprofilesobtained towards the endof thedamageprocess

for the gradient and integralmodel, respectively. The damage distribution obtained for the
gradient damagemodel, shown in Fig. 6, is increasingly uniform inside the interphase band
as the length scale λ is increased, for all the band thicknesses l. However, a slight gradient
remains even for λ/l = 1.5. This is due to the imperfect insulation of the interphase
damage from the surrounding (undamaged) bulk, as discussed in “Effect of length scale
contrast in the gradient based model” section. The integral nonlocal model, in Fig. 7,
shows a nearly constant damage inside the band for λ/l ≥ 1.0—again for all l/L. For the
smallest length scale considered, λ/l = 0.5, some of the non-uniformity introduced by
the imperfection remains.
A more discriminating result is the damage strain rate ε̇d , which is shown in Figs. 8 and

9—again towards the endof the damage process and for the gradient and integral approach
respectively. Here we do observe a significant amount of non-uniformity in all cases,
demonstrating that the damage strain does localise late in the damage evolution process,
triggered by the imperfection. The effect is however significantly milder for the integral
model (Fig. 9) compared with the gradient model (Fig. 8). Particularly for the integral
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= 4 of the gradient damage model for
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model it is also milder for the larger values of λ/l and l/L considered, indicating that the
nonlocal averaging is more effective for a large nonlocal length scale λ. In the gradient
model a significant degree of localisation remains, even for the largest λ considered, i.e
λ/l = 1.5.
To show the effect of the non-uniformity of φnl and ε̇d as discussed above on the

computed overall response of the bar, Figs. 10 and 11 report the stress σ in the bar versus
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the applied average strain ε̄ for all cases considered. Also shown (in black) is the underlying
rate-independent response as given (analytically) by Eq. (12). For both types of nonlocality,
and for all l/L shown, the computed stress-average strain responses for l/L = 1.0 and 1.5
practically coincide. They furthermore deviate only slightly from the analytical solution.
This shows that for these values of thenonlocal length scale both regularisation approaches
are effective in rendering the global response objective with respect to the interphase band
thickness, despite the non-uniformity observed in φnl (Figs. 6, 7) and, particularly, the
damage strain rate (Figs. 8, 9). The smallest value of λ, λ = 0.5 l, clearly is insufficient, as
the softening responses computed for it are systematically steeper than for larger values
(and than the analytical solution).
For a more quantitative assessment of the objectivity of the computed response with

respect to the interphase band thickness adopted, the variation in the calculated fracture
energy Gn

c , normalised by the ideal input fracture energy Gc, is shown for the gradient
damage method and the integral averaging method in Fig. 12. In the rate-independent
limit, one would like to observe this ratio to be constant at unity. Given the fact that the
numerical model is rate-dependent, however, a slight deviation should be anticipated—
which ideally would be constant. To illustrate the effect of the rate dependence, numerical
solutions for the rate dependent case with piecewise constant damage are included in both
diagrams as black dashed curves. Note that these are slightly above Gn

c /Gc = 1 and show
a downward trend, which is due to the fact that post-peak the strain rate in the interphase
band varies with the interphase band thickness.
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The fracture energy computed by the gradient damage approach show a discrepancy
with both reference values (i.e. rate-independent and rate-dependent) on the order of
10%. For λ/l = 0.5, the fracture energy is under-estimated, whereas the larger values of
λ result in an over-estimation. In each of these cases, the deviation furthermore varies
with l/L. The integral nonlocal model performs much better. For λ/l = 0.5, which we
already observed to be too small to obtain a uniform damage in Fig. 7, it under-estimates
Gc by up to 10% (Fig. 12). But for λ/l ≥ 1.0, it over-estimates Gc by ≤ 5%, in a way
which is consistent with the rate-dependent reference solution: the difference between
the regularised solutions for λ/l = 1.0 and 1.5 and the piecewise constant reference
solution is less than 1%. For practical purposes, this is more than satisfactory and the
slight trend with l/L, due to the rate-sensitivity, should also pose no problem.

Conclusion and outlook
In this paper, the issue of nonlocality associated with a method to incorporate interface
decohesion at polycrystalline interfaces approximated by an FFT based spectral method
was discussed. Interfaces were approximated as interphase bands. The softening nature of
decohesion required the use of nonlocalitywithin the interphase domain.The applicability
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and performance of integral and gradient damage based nonlocal averagingmethods have
been discussed.
For the gradient damage approach, it was found that the mechanical response and

dissipation depends on the accuracy with which the flux boundary condition at the edges
of the interphase domain can be enforced. In order to restrict the damage to the interphase
only, a flux free condition at the interphase boundaries was used. Since FFT solvers do
not allow solving an equation on an irregular domain, in the gradient approach, a contrast
in the nonlocal length scale was used to approximate the flux free boundary condition
at the interphase edges. The error in the fracture energy reduces upon increasing this
length scale contrast. However, a high contrast renders the gradient based approach
highly heterogeneous and entails numerical problems.
The implementation of the integral approach on the other hand was straightforward

and effective. It only requires storage of the nonlocal weights in a matrix that can be opti-
mized using sparse storage. Regularisation length scale values equal to or greater than the
interphase band thickness were found to give accurate predictions for the fracture energy,
largely independent of the (arbitrary) interphase band thickness l. The slight (≤ 1%) vari-
ation which remains is due to the fact that the scaling of εf according to Eq. (15) does
not take into account the strain rate sensitivity of the damage model. From the current
study it is very clear that integral approach offers more advantage from the computa-
tional efficiency point of view. We expect the same advantages to carry over in mul-
tidimensional cases on periodic microstructures. Nevertheless, this still remains to be
tested.
We wish to emphasize that, although it enables a rigorous and transparent comparison,

the 1D problem considered here may not reveal all complexities that could be encoun-
tered in two or three dimensions. For instance, care should be taken that the nonlocality
introduced to homogenise the damage across the interphase band thickness does not
affect the propagation of damage along the band in an unrealistic manner. One possible
way to avoid this is by introducing anisotropy in the nonlocal averaging. In the gradient
damage approach this can be achieved by having a tensorial form for the nonlocal length
scale, while for the integral approach an orientation dependent averaging kernel can be
used. Modelling decohesion of polycrystalline interfaces will require a proper treatment
of triple junctions to avoid the issue of non-unique interface normals. Furthermore, a
method to couple interface damage with the bulk damage in voxel based models [28] can
also be explored tomodel more complex crack patterns—kinking and branching of cracks
into the bulk. These issues are currently under investigation and will comprise future
works.
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