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human genome reveals functionally
important and positively selected variants
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genes
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Abstract

Background: Genetic polymorphisms can contribute to phenotypic differences amongst individuals, including disease
risk and drug response. Characterization of genetic polymorphisms that modulate gene expression and/or
protein function may facilitate the identification of the causal variants. Here, we present the architecture of
genetic polymorphisms in the human genome focusing on those predicted to be potentially functional/under
natural selection and the pathways that they reside.

Results: In the human genome, polymorphisms that directly affect protein sequences and potentially affect
function are the most constrained variants with the lowest single-nucleotide variant (SNV) density, least population
differentiation and most significant enrichment of rare alleles. SNVs which potentially alter various regulatory sites, e.g.
splicing regulatory elements, are also generally under negative selection.
Interestingly, genes that regulate the expression of transcription/splicing factors and histones are conserved as a higher
proportion of these genes is non-polymorphic, contain ultra-conserved elements (UCEs) and/or has no non-
synonymous SNVs (nsSNVs)/coding INDELs. On the other hand, major histocompatibility complex (MHC) genes
are the most polymorphic with SNVs potentially affecting the binding of transcription/splicing factors and
microRNAs (miRNA) exhibiting recent positive selection (RPS). The drug transporter genes carry the most number of
potentially deleterious nsSNVs and exhibit signatures of RPS and/or population differentiation. These observations
suggest that genes that interact with the environment are highly polymorphic and targeted by RPS.

Conclusions: In conclusion, selective constraints are observed in coding regions, master regulator genes, and potentially
functional SNVs. In contrast, genes that modulate response to the environment are highly polymorphic and
under positive selection.
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Background
Genetic polymorphisms may contribute to the differ-
ences in disease risks and drug responses amongst differ-
ent individuals. Different forms of genetic variants are
found in the human genome. Single-nucleotide variants
(SNVs) account for more than 90% of genomic variants
and are the major form of genetic polymorphisms [1].
Some polymorphisms can affect phenotype. These

polymorphisms are likely to alter gene expression or
protein function leading to modulation of cellular func-
tion and influencing disease risk or drug response. How-
ever, to identify the single or a group of causal variants
for a particular phenotype from a pool of more than 100
million polymorphisms is like ‘finding a needle in a hay-
stack’ and remains a great challenge since not all genetic
variants are functionally important.
While non-synonymous SNVs (nsSNVs) have been ex-

tensively investigated as they are the most likely to
modulate phenotypes via changing the amino acid com-
position of proteins, synonymous SNVs (sSNVs) and
non-coding variants can also account for phenotypic dif-
ferences since these variants can affect mRNA stability
and transcriptional or translational efficiency and have
been associated with gene expression levels in various
cell lines and tissues [2–10]. While it may not be feasible
to experimentally test every single polymorphism for its
function, a variety of bioinformatics tools is now avail-
able. These tools can reasonably predict the potential
functions of genetic variants, including the likelihood of
nsSNVs to disrupt protein structures and/or functions
[11–19], SNVs that potentially modify splicing [20, 21]
or transcription [22], and SNVs in 3′ untranslated re-
gions (3′UTRs) with potential to alter miRNA target
sites [23–25]. There are also comprehensive web tools
for predicting various potential functions of both regula-
tory and coding SNVs, e.g. pfSNP [26] and PupaSNP
finder [27]. They can facilitate our understanding of how
polymorphisms can lead to phenotype change and help
us prioritize the potentially functional SNVs (pfSNVs)
for further investigation.
In addition to the above-mentioned predictive bio-

informatics tools, signatures of natural selections can
also facilitate the identification of causal variants since
variants under natural selection are likely to be function-
ally significant. Patterns of population differentiation
were employed to identify 174 candidate gene loci show-
ing signatures of purifying or positive selection [28].
‘Long-range haplotype’ methods have been employed to
identify a list of targets under recent positive selection
(RPS) [29]. Another study utilizing HapMap Phase II
data found that negative selection preferentially targets
non-synonymous sites, while both non-synonymous and
5′ untranslated regions (5′UTRs) show an excess of
highly differentiated SNVs, suggesting the evidence of

positive selection as well. The authors also reported that
variants under selective pressures (either positive or
negative) occur more frequently in disease-related genes
and are more likely to contribute to disease phenotypes
[30].
Although previous reports examined the association of

SNVs in regulatory regions with natural selection, these
studies were limited. They either merely focussed on
only one class of regulatory SNVs (e.g. SNVs within
miRBS) [31], on SNVs residing in non-coding regions
[32] or within regulatory elements [33] without predict-
ing whether these SNVs alter function (e.g. if a SNV will
abolish or create a regulatory site).
In this study, we present the architecture of all genetic

polymorphisms of the human genome, focusing on
SNVs that are potentially functional and/or positively se-
lected and the pathways that they reside.

Results
Polymorphisms are most constrained in coding regions
Of the > 14 million polymorphisms in the human gen-
ome validated in the dbSNV database (Build 131), 38%
of the polymorphisms are within the protein-coding
genes while 62% resides in the intergenic regions. More
than 95% of the variants within human genes reside
within introns (Fig. 1a). Coding polymorphisms consti-
tute ~ 3% of the total polymorphisms within genes, of
which 2.55% are SNVs while 0.35% are short insertion/
deletions (INDELs) (Fig. 1a). Upon normalization against
the length of each genic region, coding regions contain
the lowest average densities of both SNVs and INDELs
(Fig. 1b). Notably, frame-shift INDELs (i.e. length of
INDELs is not in multiples of three) are significantly
under-represented in the coding regions compared to
non-coding regions in the human genes (p value < 0.001
by Fisher’s exact test, Fig. 1c). These data suggest that
both SNVs and INDELs are selectively constrained
within coding sequences, especially the INDELs with po-
tential to cause frame-shift.
To further investigate the regions within genes that

may be most subjected to negative selection pressure,
the derived allele frequencies (DAFs) of SNVs in differ-
ent regions are further compared using allele frequency
data of the International HapMap Project individuals. As
evident in Fig. 1d, coding regions (red) contain a higher
percentage of rare SNVs, defined as having DAF < 0.05
in all the three population groups, namely African, East
Asian and European populations. nsSNVs (brown)
within the coding region are also enriched with rare al-
leles compared to sSNVs (orange) (Fig. 1e). As negative
selection increases the fraction of rare alleles [34], our
results from the analysis of allele frequency data again
suggest that coding SNVs, especially nsSNVs, tend to be
targeted by negative selection.
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Signatures of natural selection are also examined
through determining population differentiation using the
FST statistics [28] across the different population groups

(African, East Asian and European) since high FST is as-
sociated with a positive selection [34], while low FST is
associated with a negative selection [30]. As shown in

Fig. 1 Architecture of polymorphisms in the human genome. a Percentage of polymorphisms in different regions (5′UTRs, coding regions,
introns, 3′UTRs) of the human genes. b Average SNV and INDEL densities (# polymorphisms/kb) in the different regions (5′UTR, coding region,
intron and 3′UTR) of a gene in the human genome. Error bars represent the standard errors of the mean SNV and INDEL densities. c Percentage
of frame-shift and in-frame INDELs in coding and non-coding regions in human genes. Frame-shift INDELS are defined as INDELs whose lengths
are not in multiples of three while in-frame INDELs are those whose lengths are in multiples of three. d Percentage of SNVs with different DAFs
in the four genic regions, as measured in HapMap individuals from African, Asian and European populations. e Percentage of synonymous and
non-synonymous variants with different DAFs, as measured in HapMap individuals from African, Asian and European population groups. f Distribution
of FST statistics in four genic regions. SNVs in coding regions show significantly lower median FST compared to the other non-coding regions. g Fold
enrichment of SNVs showing signatures of negative selection (FST = 0) (open bar) or RPS (shaded bar) in the genic regions. Fold enrichment is
determined by the percentage of SNVs with FST = 0 or under RPS in a specific region (e.g. coding region) divided by the percentage of all
genotyped SNVs in that region. Coding, coding region; non-syn, non-synonymous; syn, synonymous. AFR, African; ASN, Asian; EUR, European.
***p < 0.001, **p < 0.01, *p < 0.05; ns, not significant
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Fig. 1f, coding SNVs have lower median FST than SNVs
in other regions including 5′UTRs, 3′UTRs and introns
(Bonferroni corrected p values < 0.001 by Mann-
Whitney test). In fact, zero-FST SNVs are significantly
over-represented in coding exons (Bonferroni corrected
p value < 0.001 by Fisher’s exact test) (Fig. 1g, non-
shaded bars). Patterns of RPS are examined using link-
age disequilibrium (LD) and haplotype-based methods.
As shown in Fig. 1g (shaded bars), exonic regions, i.e. 5′
UTRs, coding regions and 3′UTRs, are significantly less
enriched with RPS SNVs (Bonferroni corrected p values
< 0.001 by Fisher’s exact test), while introns are more
enriched with RPS SNVs (Bonferroni corrected p value
< 0.001 by Fisher’s exact test).
Taken together, coding regions are generally under

strong negative selection pressures as they show the low-
est densities of SNVs and INDELs (especially frame-shift
INDELs), the highest proportion of rare alleles with less
enrichment of RPS SNVs. Notably, coding SNVs are also
the least population differentiated.

Potentially functional SNVs are under natural selections
The putative functions of SNVs in the various genic and
promoter regions are predicted using a variety of bioinfor-
matics algorithms (see Additional file 1: Supplementary
Methods). Approximately four hundred thousand (7%)
pfSNVs in genic and promoter regions can potentially
modulate gene expression and/or function. More than
93% of genes in the human genome contain at least one
pfSNV (Fig. 2a). Each gene is predicted to contain an aver-
age of seven promoter SNVs capable of altering transcrip-
tion factor binding sites (TFBS); eight intronic and two
coding SNVs that may modulate splicing regulatory ele-
ments, i.e. intronic splicing regulatory element (ISRE) and
exon splicing enhancers or silencers (ESE/ESS); and one
coding SNV that is potentially deleterious to protein func-
tion and one SNV in 3′UTR that may alter miRNA bind-
ing site(s) (miRBS) (Fig. 2b).
To evaluate if pfSNVs are selectively constrained, the

proportions of rare alleles (DAF < 0.05) of pfSNVs and
non-functional SNVs (nfSNVs) in a specified region are
compared. As evident in Fig. 2c, except for pfSNVs pre-
dicted to alter TFBS, most pfSNVs are enriched with rare
alleles. Notably, pfSNVs predicted to be deleterious to
protein function are more than 1.5-fold more enriched
with rare alleles compared to nfSNVs in coding regions in-
dicating that these pfSNVs may be under the strongest
negative selection pressure.
Conversely, pfSNVs predicted to be deleterious to pro-

tein function are found to be the least significantly
enriched with RPS SNVs (Fig. 2d, brown) (Bonferroni
corrected p value < 0.001 by Fisher’s exact test) consist-
ent with the earlier observation indicating that these
pfSNVs are under the strongest negative selection. The

other pfSNVs are not under any significant RPS except
for pfSNVs predicted to alter ISRE (Bonferroni corrected
p value = 0.019 by Fisher’s exact test) (Fig. 2d). In
addition, more than half of the RPS pfSNVs are pre-
dicted to affect ISRE (~ 53%) followed by TFBS (~ 30%)
while least RPS pfSNVs (3%) are predicted to be deleteri-
ous to protein function (Fig. 2e).

Highly polymorphic vs conserved genes in the human
genome
Amongst > 20,000 genes in the human genome, beta
haemoglobin (HBB) gene is the most polymorphic gene,
containing approximately 176 SNVs per kilobase (kb)
with the highest density of SNVs within its coding region
(Fig. 3a, red) (570 SNVs/kb). Several other haemoglobin
genes (in green boxes) are also amongst the most poly-
morphic genes in the human genome with the majority
of their SNVs residing within coding exons (red). Other
highly polymorphic genes include the MHC family of
genes (blue box) with most of their SNVs residing within
introns (Fig. 3a, green) as well as the olfactory receptor
(OR) gene family (orange box) where all the SNVs are
also found within the coding region (Fig 3a, red).
The density of SNVs within each gene, normalized

against their length, is determined for all > 20,000
protein-coding genes in the human genome. Most genes
have approximately four SNVs per kilobase. Although ~
97% of genes carry at least one SNV, 149 genes do not
contain any polymorphism as SNV or INDEL. More than
half of these 149 non-polymorphic genes were yet to be
annotated. Nonetheless, the annotated non-polymorphic
genes are significantly over-represented in histone 2A and
2B families and involved in nucleosome assembly (Fig. 3b,
grey shaded; Additional file 1: Table S1).
We then focus on polymorphisms within the coding

region since this region encodes the functional protein.
Nearly 20% (4389) of genes in the human genome are
found to be functionally conserved with no nsSNVs nor
coding INDELs. These genes are enriched in various cat-
egories including GTPases and translational elongation
(Fig. 3b, unshaded; Additional file 1: Table S2). Seventy
genes are found to carry ultra-conserved elements
(UCEs) [35] in their coding regions; hence, these genes
are evolutionarily conserved. These ultra-conserved
genes include the homeobox proteins and are primarily
involved in the transcription factor activity, RNA spli-
cing and pattern specification (Fig. 3b, shaded black;
Additional file 1: Table S3).
Taken together, genes involved in the basic fundamen-

tal biological process, for example, gene regulation, are
highly conserved during evolution, being least poly-
morphic within the human species as well as between
species.
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Highly polymorphic genes are mainly involved in immune
responses
A total of 512 highly polymorphic genes (see Additional file 1:
Supplementary Methods) are identified. These genes
are the most significantly over-represented in immune
response pathways, as well as in the pathogenesis of a
number of autoimmune diseases, including Graft-
versus-host disease and type I diabetes mellitus
(Fig. 3c, shaded grey; Additional file 1: Table S4). They

are primarily in the MHC class I-related and class
II-related protein families, involved in antigen presen-
tation and processing. Majority of the MHC class I
and class II genes are located on chromosome 6q21.3
which is the most polymorphic region in the human
genome and facilitate the generation of diverse anti-
gens to confer a selective advantage to fight infection
[36]. The number of pfSNVs in the MHC genes (2234)
is higher than the average number of pfSNVs in the

Fig. 2 Potentially functional SNVs. a Percentage of human genes containing a different number of pfSNVs. b Average numbers of pfSNVs with
different potential functions in each transcript. c Percentage of SNVs with rare alleles (DAF < 0.05) amongst the pfSNVs and nfSNVs in the same
genic regions, as determined in HapMap individuals from African (AFR), Asian (ASN) and European (EUR) population groups. d Percentage of
pfSNVs or nfSNVs under RPS over all pf- or nfSNVs in that specific group. e Percentage of SNVs with different functions amongst all the RPS
pfSNVs. pf, potentially functional; nf, non-functional; TFBS, SNVs that alter transcription factor binding sites; del ns, potentially deleterious nsSNV;
ESE/ESS, SNVs that alter exon splice enhancers/silencers; ISRE, SNVs that alter intronic splicing regulatory elements; miRBS, SNVs that alter miRNA
binding sites
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other human genes (306). To determine if pfSNVs are sig-
nificantly over-represented in this MHC gene family of 23
genes, sampling of 23 random human genes with similar
gene length is performed 1000 times. The number of
pfSNVs in the 23 random genes for each cycle is plotted to
obtain an empirical distribution. The MHC family of genes,
with 2234 pfSNVs, is found to carry significantly more
pfSNVs than 1000 different sampling of 23 random human
genes (empirical p value < 0.001 by random sampling test)
(Fig. 3d). Interestingly, despite the enrichment of pfSNVs
in the MHC gene family, there are significantly fewer

nsSNVs predicted to be deleterious in the MHC family of
genes, compared to other human genes (Bonferroni cor-
rected p value < 0.001 by Fisher’s exact test) (Fig. 3e).
Hence, this family of proteins can nimbly respond to differ-
ent infection, through a diversity of different regulatory
mechanism, including differential transcription factor/
miRNA binding/splicing.
Lastly, highly polymorphic genes are also significantly

enriched in drug metabolism, cytochrome P450 (CYP450),
arachidonic acid and caffeine metabolism pathways
(Fig. 3c, Additional file 1: Table S4).

Fig. 3 Most polymorphic vs conserved genes in the human genome. a Genes having the highest number of SNVs normalized against gene
length (> 30 SNVs/kb per gene). Green box: haemoglobin genes; blue box: MHC genes; orange box: OR genes. b Benjamini-corrected p values
for the significantly enriched functional terms for non-polymorphic genes (grey bars), functionally conserved genes (white bars) which are genes
without nsSNVs and coding INDELs as well as ultra-conserved genes (black bars) which are the genes with UCEs within their coding regions.
c Benjamini-corrected p values for the functional terms that are significantly enriched by the highly polymorphic genes. Grey bars: the functional
terms related to immune responses. d Empirical distribution of the numbers of pfSNVs obtained from 23 genes that are randomly sampled from
all the human genes with lengths 3–15 kb for 1000 times. The number of pfSNVs in the 23 MHC genes is significantly higher than that in the
randomly sampled gene sets (empirical p value < 0.001). e Enrichment of SNVs with different potential functions in MHC class I and class II genes.
Fold enrichment is calculated as the percentage of pfSNVs in specific genic regions (e.g. coding SNVs that may alter ESE/ESS) in the MHC class I and
class II genes against that for all the human genes. Deviation from one indicates that the pfSNVs are over- or under-represented in the MHC genes
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Drug response genes are most affected by potentially
deleterious polymorphisms in coding regions
Although > 90% (20,890/22,333) of the genes in the hu-
man genome have pfSNVs, ~ 54% contain at least one
potentially deleterious coding polymorphism (Fig. 4a,
shaded blue, dark blue and grey) while ~ 19% are

functionally conserved with no nsSNVs nor coding
INDELS (Fig. 4a, shaded orange). Potentially deleterious
coding polymorphisms are under the strongest negative
selection as suggested earlier (Fig. 2c) since they can po-
tentially have a drastic effect on protein function. Ap-
proximately 5% (1104/22,333) of all genes in the human

Fig. 4 Distribution of potentially deleterious coding polymorphisms in human genes. a Percentage of genes with different numbers of potentially
deleterious coding polymorphisms in their coding regions. Genes without any potentially deleterious coding polymorphisms are divided into two
groups: (1) functionally conserved genes, i.e. genes with no nsSNV nor INDELs in coding regions; (2) genes carrying non-deleterious SNVs in their
coding regions. b Benjamini-corrected p values for the functional terms that show enrichment of the genes with more than five potentially
deleterious nsSNVs. c Benjamini-corrected p values for the functional terms that show enrichment of the genes with SNVs that cause NMD (non-
shaded) and the genes with coding INDELs that cause frame-shift (black). d Percentage of genes with RPS nsSNVs and genes carrying nsSNVs
with high FST (> 0.3) in the whole genome, ABC transporter and CYP450 family. e Recently positively selected and/or population-differentiated
nsSNVs in the ABC transporters. FST scores in bold indicate FST > 0.3. *Oxidoreductase activity: oxidoreductase activity, acting on paired donors,
with incorporation or reduction of molecular oxygen, reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen
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genome are highly enriched with more than five poten-
tially deleterious nsSNVs in their coding regions (Fig. 4a,
shaded blue and dark blue). These genes are significantly
enriched in the ATP-binding cassette (ABC) transporter
and the CYP450 families, which play important roles in
drug transport and metabolism (Fig. 4b, Additional file 1:
Table S5). Notably, most of the common drug metaboli-
zers including CYP3A4 [37], CYP1A1 [38] and CYP2D6
[39] contain more than five potentially deleterious
nsSNVs, while the CYP genes that metabolize endogen-
ous substance, e.g. CYP51A1 [40], are not affected by
any potentially deleterious nsSNVs. Similarly, important
xenobiotic transporters including ABCB1, ABCC1 and
ABCG2 [41] have 8, 11 and 7 potentially deleterious
nsSNVs, respectively, while genes in ABCD subfamily,
which are peroxisomal transporters for very long chain
fatty acids [42], contain fewer (1–3) potentially deleteri-
ous nsSNVs. In addition to drug metabolizer and trans-
porter, other protein families enriched in genes with
more than five predicted deleterious nsSNVs include
tyrosine protein kinases, dynein heavy chains, spectrins
and myosins.
Notably, not only are the ABC transporters signifi-

cantly enriched in predicted deleterious coding SNVs
(Fig. 4b), they are also enriched with nsSNVs that are
predicted to cause nonsense-mediated decay (NMD)
resulting in the degradation of the mRNA transcripts
with premature stop codon (Fig. 4c, clear bars; Add-
itional file 1: Table S6). Genes containing nsSNVs pre-
dicted to cause NMD are also significantly enriched in
cell cycle processes including mitosis (Fig. 4c, clear bars;
Additional file 1: Table S6).
While the ABC transporters are significantly enriched

with nsSNVs predicted to cause NMD, the other family
of genes involved in drug response, the CYP450, is sig-
nificantly enriched with genes having another form of
deleterious polymorphism, namely, INDELs that cause
frame-shift, which have deleterious effect on protein
function (Fig. 4c, black bars; Additional file 1: Table S7).
Taken together, genes involved in the xenobiotic re-
sponse, including drug transport and metabolism, are
significantly enriched with potentially deleterious coding
polymorphisms.
Signatures of natural selection on the nsSNVs in

drug-response genes are investigated. Interestingly, un-
like the CYP450 family (5/57 genes), not only are the
ABC transporters enriched with potentially deleterious
coding polymorphisms, they are also significantly
enriched (p value < 0.001 by Fisher’s exact test) with
genes carrying nsSNVs under RPS (11/45 genes) (p value
= 0.24 by Fisher’s exact test) compared to the other
genes in the human genome (Fig. 4d). As genes under
positive selection also show significant population differ-
entiation [34], we evaluate if the drug response genes are

also enriched with nsSNVs that show significant popula-
tion differentiation (FST > 0.3). Similar to the above ob-
servations, Fisher’s exact test revealed that the ABC
transporters (9/45) (p value < 0.001 by Fisher’s exact
test) but not the CYP450 genes (3/57) (p value = 0.76 by
Fisher’s exact test) are significantly enriched with
nsSNVs that show significant population differentiation
(Fig. 4d). Hence, the nsSNVs in the ABC transporter
family are under strong positive selection pressure.
As evident from the table in Fig. 4e, all, except one

(rs4968839), of the nsSNVs at the ABC transporter fam-
ily, which showed evidence of RPS or significant popula-
tion differentiation, are predicted to either have a
potentially deleterious effect on protein function or alter
ESE/ESS modulating the proportion of the different
splice forms. Notably, > 40% of these nsSNVs have been
reported to be significantly associated with various phe-
notypes including clinically relevant ones [43–59]
(Fig. 4e), highlighting the functional importance of the
nsSNVs under natural selection at the ABC transporter
gene family.

Discussion
In this study, we comprehensively investigate the archi-
tecture of genetic polymorphisms in the human genome
and demonstrate that polymorphisms in coding regions,
especially those affecting protein sequences and/or func-
tions, are the most constrained in the human genome,
consistent with previous observations [30]. In particular,
frame-shift INDELs in coding regions are under strong
purifying selection, consistent with the previous observa-
tion of the strongest depletion of frame-shift INDELs in
coding regions, which are enriched with gene expression
association possibly contributed by NMD [60].
Through the interrogation of nine global populations,

we demonstrate that the median FST of SNVs at the cod-
ing regions is lower than that of the other regions of the
genome (Fig. 1f ). Moreover, the observations that coding
regions have the lowest SNV density (Fig. 1b), excess of
rare alleles (Fig. 1d) and enrichment of SNVs with no
population differentiation (Fig. 1g) all indicate that cod-
ing SNVs are constrained by purifying selections. This is
further strengthened by the observation that potentially
deleterious nsSNVs show enrichment of rare alleles,
compared to non-deleterious nsSNVs (Fig. 2c). Further-
more, coding regions contain significantly fewer INDELs
that cause frame-shift (Fig. 1c). Hence, polymorphisms
predicted to be deleterious to protein functions are
under the strongest purifying selection.
In addition to the potentially deleterious nsSNVs, the

potential functions and signatures of natural selections
in the other polymorphisms are also investigated.
Through computational prediction of the potential func-
tions of SNVs, we observe that significantly more SNVs
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are predicted to alter TFBS than to code for a potentially
deleterious nsSNV (Fig. 2b). Additionally, except for
SNVs affecting TFBS, the other pfSNVs show more sig-
nificant enrichment of rare alleles than nfSNVs in the
same regions (Fig. 2c). Hence, pfSNVs are more con-
strained than the other SNVs in the same region, per-
haps because they affect the functionally important
regulatory sites. This observation is congruent with pre-
vious studies that reported stronger negative selection
on conserved miRBS than other conserved 3′UTR se-
quences [31], though different prediction algorithms and
SNV data were used. Levenstien and Klein also reported
similar observation that SNVs in a few functional classes,
e.g. non-synonymous, methylation sites and miRBS, are
under negative selection compared to genome, and sug-
gested that they are promising candidates for functional
characterization [61]. While these previous studies ex-
amined SNVs residing within regulatory consensus sites
of the promoter, this study focuses on SNVs that are
predicted to either disrupt or create regulatory sites.
Hence, the negative selective pressure on several differ-
ent classes of pfSNVs suggests that pfSNVs are likely to
influence gene functions and contribute to phenotypic
changes.
This study also highlights that ‘master regulators’ of

gene expression tend to be functionally conserved and
maintained during evolution, while regulation of specific
target genes is less constrained and flexible. This is evi-
dent from the observation that ‘master regulator’ in-
volved in general gene regulation including epigenetics
(e.g. histones), transcription/translation and splicing is
significantly enriched with non-polymorphic, function-
ally conserved and ultra-conserved genes (Fig. 3b). In
contrast, an average gene contains more SNVs affecting
its own regulation than altering its function as evident
from the observed enrichment of SNVs predicted to
alter TFBS at promoters, ESE/ESS in coding regions and
ISRE within introns compared to SNVs predicted to re-
sult in deleterious non-synonymous amino acid changes
(Fig. 2b). This is consistent with previous observation
that genetic variants occur more frequently in the
miRNA target regions, compared to the functional re-
gions within miRNAs [62]. In addition, Hsiao et al. dem-
onstrated that alternative splicing events regulated by
intronic genetic variants tend to be under positive selec-
tion [63], which is consistent with our results that in-
tronic SNVs that potentially affect splicing mechanisms
show enrichment of RPS SNVs, compared to the other
functional classes (Fig. 2d). On the other hand, splicing
factors are more conserved during evolution [63], and
our study demonstrates that UCEs were enriched in the
genes involved in RNA splicing (Fig. 3b).
On the other hand, genes that modulate response to

environmental changes are the most polymorphic. The

immune response MHC class I and class II genes, impli-
cated in the pathogenesis of several autoimmune dis-
eases, reside in the most polymorphic region of the
human genome [36, 64] and carry the highest density of
SNVs (Fig. 3c). Notably, this family of genes is signifi-
cantly enriched in SNVs predicted to alter various regu-
latory elements including TFBS, ESE/ESS, ISRE and
miRBS rather than protein function (Fig. 3e). In fact,
while none of the RPS pfSNVs in the MHC family is pre-
dicted to cause a deleterious effect on protein function,
87 pfSNVs are found to display signature of RPS (Add-
itional file 1: Table S8). Hence, the regulatory regions of
the MHC family of genes are likely to be under strong
positive selection, as previously suggested [65], and are
functionally significant, regulating gene expression to
modulate phenotypes. For example, a very well-studied
polymorphism, rs9378249 upstream of the HLA-B gene,
has previously been associated with bipolar disorder [66,
67] and hypertension [67]. This polymorphism is pre-
dicted to alter TFBS and exhibits the signature of RPS;
hence, it may be a causal variant for the various diseases
although the underlying molecular mechanism requires
further validation.
Another class of genes that modulates response to the

environment is the drug/xenobiotic response families of
genes including the ABC transporter and the CYP450
metabolism families of genes. Unlike the MHC immune
genes, which are significantly enriched in regulatory
SNVs predicted to modulate gene expression, these drug
response gene families are enriched in SNVs that affect
the functions of the proteins, namely nsSNVs predicted
to be deleterious (Fig. 4b). Previous reports also
highlighted the high SNV density and excess of rare
nsSNVs of the CYP450 pathway [68, 69] with 90–95%
individuals carrying at least one actionable variant in
CYP450 genes [70]. Another report predicted that ~ 32%
(1949/6165) of SNVs at the CYP450 loci are putatively
functional with CYP4F12 carrying amongst the most
novel putatively functional variants [71] which is consist-
ent with our observations that CYP4F12 is enriched with
the highest number of pfSNVs (Additional file 1: Table
S9). In addition to the pfSNVs, RPS and highly popula-
tion differentiated (FST > 0.3) SNVs are significantly rep-
resented in the ABC transporter genes but not in the
CYP450 genes (Fig. 4d) suggesting that the ABC trans-
porter genes may be under stronger positive selection
than the CYP450 genes. For example, rs17822931, a cod-
ing variant at the ABCC11 earwax determinant gene
[59], is found to be highly differentiated amongst popu-
lations, and the A allele is positively associated with
adaptation to cold climate [72]. Greater than 40% of
these RPS and/or population differentiated SNVs in the
ABC transporter genes have been associated with pheno-
type modulation and even diseases, e.g. Alzheimer’s and
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Schizophrenia (table in Fig. 4e). Nearly all the coding
SNVs at the ABC transporter gene family that display
the signature of RPS or are significantly population dif-
ferentiated are also predicted to alter ESE/ESS suggest-
ing that differential splicing may also play an important
role in the ABC genes to generate diverse splicing forms
to respond to different environment.
Hence, adaptive genes that respond to environmental

changes are likely to be highly polymorphic and sub-
jected to strong positive selection pressures consistent
with previous reports that variants associated with in-
flammatory diseases show evidence of RPS [73], and
genes associated with pharmacogenomics show higher
level of population differentiation, as a signature of posi-
tive selection [74]. Regulation of gene expression
through variants that alter TFBS in the MHC gene fam-
ily as well as modulation of protein function and/or spli-
cing pattern in the ABC gene families highlight the
different ways by different families of genes to adapt to
the environment.

Conclusions
In conclusion, this study elucidates the overall architec-
ture of the genetic polymorphisms, namely SNVs and
INDELs, in the human genome. The coding region is
found to be under strong negative selection, as being the
least population differentiated, showing lowest densities
of SNVs and INDELs (especially frame-shift INDELs),
the highest proportion of rare alleles with less enrich-
ment of RPS SNVs. SNVs predicted to be functional are
found to be under negative selection with enrichment of
rare alleles. Families of genes which are ‘master regula-
tors’ of gene expression including those involved in epi-
genetics, transcription, translation or splicing are found
to be least polymorphic, functionally conserved and/or
enriched with ultra-conserved elements. Finally, genes
that modulate response to the environment are the most
polymorphic with the MHC gene family, which is in-
volved in immune response, being the most polymorphic
while genes involved in drug/xenobiotic response, in-
cluding ABC transporter and CYP450 genes, are the
most enriched with functional nsSNVs.

Methods
Polymorphisms in the human genome
Polymorphisms from the dbSNP database (Build 131)
were mapped to different genic regions (5′UTRs, coding
regions, introns and 3′UTRs) of the human genes (NCBI
Genome Build 37.1) with those residing outside genes
classified as intergenic variants.
To minimize false-positive SNPs originating from highly

paralogous sequences, which were estimated to be ~ 8% of
biallelic coding SNVs in dbSNP129 [75], only polymor-
phisms, which mapped to a single location in the genome

and have been validated using a non-computational
method or have allele frequency information (e.g. from
1000 Genomes project), were included in this study. In
the 1000 genomes project, the variant assignment was re-
stricted to ‘accessible genome’, whereby ambiguously
placed reads or unexpectedly high or low numbers of
aligned reads were excluded (~ 15% genome) to minimize
the detection of false-positive variants [76]. To evaluate if
our data is valid, SNV density data of this study was com-
pared and found to be comparable to the SNV density
data calculated from whole-genome sequencing of 179
HapMap individuals [76] of 1000 genomes project. For ex-
ample, similar to our observations using dbSNP data, the
MHC gene loci from the 1000 genomes sequencing data
were also found to be significantly more polymorphic than
other human genes (p < 0.001 by Mann-Whitney test).
Hence, results from sequencing data from the 1000 ge-
nomes project were consistent with the findings in this
study using dbSNP data, suggesting that, in spite of the
potential ascertainment biases and sequencing artefacts
inherent in the dbSNP database, our findings about the
enrichment of SNPs in MHC genes are valid.
Two major forms of genetic polymorphisms, SNVs and

INDELs, were investigated. SNV/INDEL density within a
particular genic region, e.g. 5′UTR, was calculated as the
number of SNVs/INDELs divided by the length of that re-
gion. For genes with multiple transcripts, the mean dens-
ities were taken. Genes lacking polymorphism in all genic
regions (promoter, 5′UTR, coding, intron, 3′UTR) were
regarded as non-polymorphic genes. Highly polymorphic
genes were identified based on a binomial model as de-
scribed in Additional file 1.
Allele frequency of SNVs in the human genome was

determined in the three population (East Asian, African
and European) groups (HapMap release 28) as described
in Additional file 1.
FSTstatistics [28] using the pooled allele frequencies in

the three population groups was then calculated for each
of the genotyped and polymorphic loci. Two groups of
SNVs, namely, (1) zero-FST SNVs (FST = 0) and (2)
high-FST SNVs (FST > 0.3), were further analysed. The fold
enrichment of zero-FST or high-FST SNVs in a specific
genic region (e.g. coding region) was determined by calcu-
lating the percentage of these SNVs in the coding region
divided by the percentage of all the genotyped SNVs in
the same region, and the significance of enrichment is de-
termined using the Fisher’s exact test. Fold enrichment,
which significantly deviates from one, indicates that these
SNVs are under- or over-represented in these regions.

Natural selections
Genic regions that display signatures of negative selec-
tion were previously reported to have excess rare derived
alleles [31]. Hence, to identify the regions of genes
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subjected to negative selection, we determined if there is
a statistical enrichment of rare SNVs (DAF < 0.05) in
each genic region using the Fisher’s exact test.
SNVs displaying signatures of RPS were identified

using LD- or haplotype-based methods as described in
[26, 77]. To identify the regions enriched in RPS SNVs,
the percentage of RPS SNVs within the region was com-
pared with the percentage of RPS SNVs in the whole
genome, and significance of difference was determined
using the Fisher’s exact test.
UCEs are sequences within the genome that are 100%

identical to the sequences with the mouse and the rat
genomes [35], hence displaying evolutionary conserva-
tion and signatures of strong negative selection. A total
of 481 UCEs have been identified [35], of which 70 are
evolutionarily conserved coding sequences, overlapping
with coding regions.

Potential functions of SNVs
The pfSNP database (http://pfs.nus.edu.sg/) [26], which
integrates a variety of bioinformatics prediction algo-
rithms, was used to evaluate potential functions of all
the SNVs in the human genome that alter TFBS, protein
functions, splicing events and miRBS. The prediction al-
gorithms employed in this study are described in [26]
and Additional file 1.

Functional annotation
The Database for Annotation, Visualization and Inte-
grated Discovery [78, 79] was utilized for functional an-
notation of the genes of interest. The enrichment of the
genes in PANTHER protein family, GO-molecular func-
tion, GO-biological process and KEGG pathway was in-
vestigated. Benjamini-Hochberg-corrected p value < 0.05
signifies statistical significance.

Additional file

Additional file 1: Supplementary Materials and Methods as well as
Tables S1-S9. (PDF 830 kb)
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