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Abstract

The partial wetting of cylindrical surfaces is encountered in many industrial
applications such as composites manufacturing, MEMS, hair care products, and textile
engineering. Understanding the impact of key parameters such as resin and fiber
surface interaction properties and the geometric arrangement of the fibers on
wetting would lead to tailoring a desired interface between the resin and the fiber
surface. A three-dimensional model of resin wetting a single fiber is presented. This
model is then extended to study a finite volume of resin wetting fibers in square
and triangular packing arrangements. The impact of changing wetting properties
and fiber volume fraction is examined for each packing arrangement.
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Background
The partial wetting of cylindrical surfaces by a finite volume of resin is an important

phenomenon in many industrial applications such as composites manufacturing, MEMS,

and textile engineering. A constitutive equation governing the partial wetting of a finite vol-

ume of liquid on a flat plate has been formulated and reported [1]. The equilibrium shape

of resin on single fibers has also been studied in depth [2-5]. Carroll [2] was the first to de-

velop an analytical solution for the equilibrium shape of a resin drop on a single fiber. A

drop at rest on a fiber will either conform to a “barrel” geometry, where the drop wraps

around the fiber, or a “clamshell” geometry in which the fiber rests on the fiber’s surface

without wrapping around it. A phase diagram predicting which of these configurations a

particular drop will adopt has been constructed [5].

An analytical solution for the equilibrium shape of a liquid drop on a fiber surface

was first derived by Carroll [2]. Wu and Dzenis later developed an analytical solution

to this problem using an energy approach [4]. Both of these solutions assume an axi-

symmetric shape. The equations necessary to determine the maximum height of the

drop on the fiber and the length of contact between the fiber and resin are given in

[2,4] and reproduced below:

y2 ¼ y0
2 1−k2sin2ϕ
� � ð1Þ

x ¼ � λrF k;ϕð Þ þ y0E k;ϕð Þ½ � ð2Þ

Here, x is the location on the axis of the fiber measured from the center of the drop,

and y is the height of the drop, measured from the axis of the fiber. y0 is the maximum
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height of the drop measured from the axis of the fiber, and r is the fiber radius. E (k,φ)

and F (k,φ) are Legendre’s elliptical functions of the second and first kind, respectively.

Here λ and k are defined as follows:

λ ¼ y0 cosθ−r
y0−r cosθ

ð3Þ

k2 ¼ 1−λ2
r
y0

� �2

ð4Þ

Here, θ is the static contact angle between the fiber and resin.

The final wetted length, L, which is also defined in Figure 1, can be calculated using

the known volume V once y0 is solved for with the above equations and:

L ¼ 2 λrF k;ϕ0ð Þ þ y0E k;ϕ0ð Þ½ � ð5Þ

V ¼ 2π
Zy0
r

y2 y2 þ λry0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y02−y2ð Þ y2−λ2r2

� �q dy−πr2L ð6Þ

φ0 is found through setting y = 0 in Equation 1.
There have also been other investigations with resin spreading within multiple fibers,

for example final resin configuration between two parallel fibers has been studied with

relation to static contact angle, filament spacing, resin volume, and fiber diameter [6].

The axial wetting of a single fiber from a reservoir of resin has been experimentally ex-

amined and constitutive equations have been developed to describe this phenomenon

[7]. The dynamics of a finite volume of resin spreading on a single fiber has yet to be

explored and is the subject of this paper. Trends seen with the dynamics of resin wet-

ting a single fiber hold true for systems with multiple fibers.

A numerical model is presented using the level set method to study the movement

and spreading of a finite volume of resin on any planar or curvilinear surface. The

method and accuracy is verified by comparing the model results with experiments con-

ducted of a drop spreading on a flat plate. The method is then used to describe the

wetting dynamics of a finite drop of resin on a single fiber. The model is further ex-

tended to investigate the flow of finite volume resin within multifiber unit cells repre-

senting square and hexagonal fiber packing arrangements, which are commonly used
Figure 1 Axisymmetric single-fiber model.
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in composites. The use of a finite volume of resin is necessary because there are situa-

tions where it is desirable to strategically create microvoids to increase the composite’s

energy-absorption capabilities. Each tow would be a porous structure comprised of a

series of microstructures represented by the unit cells. The model studies the impact of

key composite-processing properties on the fiber-matrix interfacial area. Through

examination of the interfacial area instead of the contact length, one is better able to

understand the impact of manipulating processing parameters on the resulting compos-

ite properties. This investigation should prove useful in tailoring the interface proper-

ties between fibers and resin as a function of the resin and fiber surface properties and

the fiber arrangement.

Methods
Model setup

The numerical models were developed using the COMSOL Multiphysics and the

Microfluidics Module to investigate the dynamics of wetting over a single fiber and

within unit cells of multiple fibers with a finite volume of resin and are presented

below. A model was also constructed of a drop spreading on a flat plate with the goal

of experimentally validating the solution method.

Axisymmetric single-fiber model

Figure 1 shows the axisymmetric single-fiber model. In this model, a spherical drop of resin

is initially enveloping the fiber. This simplifies the resin movement to be along the fiber sur-

face in the axial direction. An axis of symmetry is utilized to increase computational effi-

ciency. The axis of symmetry is the center of the fiber with a full-slip condition (symmetry

condition), which sets the derivative of the tangential velocity equal to zero along the axis.

The no-slip boundary condition is applied along the walls shown in Figure 1 where the vel-

ocity is set to zero. The pressure is set equal to zero, the reference pressure, at a single point

to ensure that the pressure solution is unique [8]. This is needed because the Navier–Stokes

equations only solve for the gradient of pressure. The wetting wall is the surface of the fiber

along which the resin moves and employs a slip length and the final static contact angle to

drive the wetting and spread the resin, both of which will be discussed in a later section.

The fiber diameter was 9 μm. These baseline values, shown in Table 1, were selected based

on resin and fiber systems used in composites processing.

Three-dimensional single-fiber model

The three-dimensional representation of a drop of resin spreading on a single fiber is

depicted in Figure 2. The resin drop diameter to fiber radius ratio in this model is
Table 1 Baseline properties used for parametric studies for the axisymmetric single-fiber
model as well as the three- and four-fiber unit cells

Baseline properties used for axisymmetric single-fiber model and fiber unit cells

Resin density 1.17 g/cm3

Resin viscosity 9.5 Pa∙s

Static contact angle 30°

Resin surface tension 0.07 J/m2

Slip length (β) 0.1 μm



Figure 2 Three-dimensional single-fiber model.
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intentionally large. This is because we desire the equilibrium position of the resin to be

in the “barrel” shape. A fiber radius of 3 μm, resin volume of 2,280 μm3, and contact

angle of 15° were selected to ensure that the final shape is a “barrel” guided by the stud-

ies performed by Eral et al. [5]. The other important properties are the same as the

baseline values described in Table 1.

Unit cell with square and triangular packing arrangements

The square and triangular fiber packing-arrangement unit cells are shown in Figure 3.

Flow in each unit cell is simplified through the use of symmetry planes to increase

computational efficiency. The four-fiber unit cell has three planes of symmetry due to

the assumption that gravity is negligible, which will be discussed later. The fiber sur-

faces are wetting walls, and walls other than fiber surfaces and symmetry planes are

no-slip walls. Both models also include a point where the pressure is set equal to zero.

The pressure is set equal to zero at a reference location, to ensure that the pressure so-

lution is unique. The fiber radius was 4 μm. The baseline values for the resin and inter-

action parameters can be found in Table 1.

Resin spreading on a flat plate

A numerical model of the drop of glycerin, shown in Figure 4, was developed to compare

the numerical solution and experimental results. The glycerin properties were found using

traditional characterization techniques, described and reported in the “Experimental setup
Figure 3 Schematic of three- and four-fiber unit cell models.



Figure 4 Schematic of single-drop spreading model.
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and procedure” section. The properties for the air phase were taken from the COMSOL

material library. The two-dimensional model takes advantage of the axisymmetric property

of the process being modeled.

Assumptions

The Reynolds number in this problem is on the order of 10−8; thus, it can be assumed

that the inertial forces are negligible relative to the viscous forces and the Navier–

Stokes equations can be reduced to the Stokes flow equations. The ratio of gravitational

to capillary forces, represented by the bond number, is on the order of 10−6, making it

acceptable to neglect gravity. For the axisymmetric model, due to the geometry being

symmetric about the fiber axis and our assumption of no gravity, the flow is considered

axisymmetric about the axis of the fiber. It is assumed that the resin used does not cure

during the wetting process, allowing us to maintain a constant viscosity value during

the flow. It is also assumed that the fibers are rigid and do not move as the resin flows.

Governing equations

The governing equations (Equations 7 and 8) in the model are the Stokes and continu-

ity equations. The interface between the two fluids is tracked using the level set method

[9]. The level set method creates an interface with a finite thickness, described by the

level set variable (φ), which continuously changes from 0 to 1 across the interface using

a smeared out Heaviside function [10]. These equations (Equation 9), modified to ac-

count for the stated assumptions, are given by [11]:

ρ⋅ut ¼ −∇⋅pþ μ∇2uþ F st ð7Þ
∇⋅u ¼ 0 ð8Þ

ϕt þ u⋅∇ϕ ¼ σ∇⋅ ε∇ϕ−ϕ 1−ϕð Þ ∇ϕ
∇ϕj j

� �
ð9Þ

Where u is the velocity vector, the subscript denotes the partial derivative with re-

spect to that variable, μ is the viscosity, p is the pressure, Fst is the force due to surface

tension, σ is the reinitialization parameter for the interface, ε is the interface thickness,

and ϕ is the level set variable. To minimize computational cost, the interface thickness
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is set to one half of the largest element length [11,12]. The interfacial tension term is

implemented using the continuous surface force formulation, given by:

Fst ¼ ∇⋅ γ I−nnT
� �� �

δ ð10Þ

δ ¼ 6 ∇ϕj j ϕ 1−ϕð Þj j ð11Þ

Here, γ is the surface tension of the resin-air interface, and δ is a Dirac delta function.

The density and viscosity within the interface between the resin and air are found

using rule of mixtures [11]:

ρ ¼ ρResin þ ρAir−ρResin
� �

ϕ ð12Þ

μ ¼ μResin þ μAir−μResinð Þϕ ð13Þ

Fiber and resin parameters

The properties of the resin and the fiber-resin interactions play an important role in the

wetting of the fibers by the resin. The viscosity of the resin has a large impact on the rate of

wetting, but not a significant effect on the final shape of the drop. The bond number is the

ratio of surface forces to body forces, providing a good indication if the resin flow is driven

by surface forces or gravity. This study focuses on flows with low-bond numbers. The con-

tact angle between the fiber and resin, largely impacted by the surface tension of the resin,

represents the principle force driving wetting at the microscale. The fiber diameter and

resin droplet size will be important geometrical parameters when investigating drops

spreading on the fiber surfaces. When the model is extended to include multiple fibers, the

fiber spacing and packing arrangement will influence the wetting dynamics.

Static contact angle between fiber and resin

Wetting describes the spreading of a liquid on a solid substrate [13]. The wettability of

a substrate by a liquid wetting rate and region is quantified by the static contact angle,

a force balance at the line of contact between the fiber surface (solid (s)), resin (liquid

(l)), and air (vapor (v)) and is given by Young’s equation [13]:

cosθ ¼ γsv−γsl
γlv

ð14Þ

In Young’s equation, γij represents the surface energy at the i-j interface. As shown in
Equation 14, the final static contact angle takes into account both the resin surface ten-

sion and the difference in interfacial energies of the solid-vapor and solid–liquid inter-

faces. The solid-vapor and solid–liquid surface energies can be manipulated by

modifying the fiber sizing, which is a coating that is applied to the fiber surface. The

final static contact angle of the resin on the fiber surface has been shown to have a dir-

ect relationship with the interfacial shear strength of the resulting composite [14].

Resin viscosity

The viscosity of the resin does not affect the final position of the resin on the fibers

since it is assumed to be constant. As the Stokes solution is linear, the time it takes to

wet the fiber surface will be directly proportional to the viscosity of the resin.
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Slip length

There are stress and velocity singularities at the three-phase contact line when solving the

Stokes equations with a no-slip condition at the solid surface [15]. A way to handle this

boundary condition is to move the “no-slip” condition to a plane located a distance β (slip

length) below the solid surface and assume simple shear flow in the region between the wall

and the no-slip plane [16]. The frictional force at the wall is scaled with the slip length [11].

Not unlike viscosity, changing the slip length will influence the wetting rate, but not the

final distribution and configuration of the resin on the fiber surface. The slip length is a par-

ameter that models the interactions at the fiber-resin interface.

Fiber volume fraction and packing

The fiber volume fraction is an important property of composites when considering

their strength and stiffness. The fiber volume fraction will be controlled in this study

through manipulation of the distance between fibers, measured from axis to axis. Two

common packing arrangements for fibers are square and hexagonal packing. The hex-

agonally packed fibers are modeled with a unit cell in which lines connecting the center

of each fiber would form an equilateral triangle. The relationship between the fiber vol-

ume fraction, (vf ), fiber radius (r), and distance between fiber axes, (d), will be:

vf ¼ π
r
d

� �2
ð15Þ

for fibers in a square packing arrangement. For fibers in a triangular packing arrange-
ment, the relationship will be:

vf ¼ 2
ffiffiffi
3

p

3
π

r
d

� �2
ð16Þ

Experimental setup and procedure

The experimental setup, shown in Figure 5, includes a substrate on which a drop of li-

quid can be deposited by using a thin wire and a camera to capture time-stamped im-

ages of the process.

This experiment was performed by depositing a glycerin drop on a flat glass sub-

strate. Glycerin was used as the test liquid because it has similar properties to the

epoxy ultimately being used in the drop-spreading experiment. The surface tension of

the glycerin was measured with a dynamic contact analyzer to be 0.07 N/m. A
Figure 5 Schematic of the experimental setup to record spreading of a resin drop.
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Brookfield DV-E viscometer measured the viscosity of the glycerin to be 0.674 Pa∙s. The
density of the glycerin, measured using a precision scale and flask, was 1.236 g/cm3.

Sample images of the drop spreading are shown in Figure 6. The static contact angle

between the glass and glycerin, measured using image analysis software on the drop in

equilibrium, is 28.5°.
Results and discussion
First, experimental and analytical validation of the model used will be provided in the

next section before parametric studies are conducted to investigate the dynamics of

resin spreading.
Validation of the numerical model

The physics involved in the preceding models is multiphase fluid flow with a high sur-

face to gravitational force ratio. A model of a drop spreading on a flat plate was devel-

oped to experimentally verify that the governing equations could predict an acceptable

numerical solution to a multiphase wetting dynamics dominated by surface forces.

Comparison between experimental and numerical results

Two experimental trials were conducted of a drop spreading on a flat plate. The first

experiment was used to determine the value of β which defines the resin fiber surface

characteristics. A β value of zero would correspond to the case where the liquid will

not wet the substrate, and an infinite value would describe the scenario where the li-

quid would reach its final configuration instantaneously. The β value in real systems

will fall between the preceding extreme cases and can be determined experimentally by

comparing the numerical and experimental solutions using a range of β values. As β is

increased or decreased, the wetting rate in the numerical solution will become higher

or lower. The β value that describes the liquid-substrate system is found by adjusting

the β value until the dimensionless length, defined as the drop length at time t divided

by the final length of the drop, matches the experimental results. This experiment used
Figure 6 Experimental results depicting spreading of the resin drop as a function of time.
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the resin volume of 0.057 mm3. The β value for slip length from this case was deter-

mined to be 0.25 μm. The experimental and COMSOL results for this β value are

shown in Figure 7 along with an inset that describes distance β (slip length) below the

solid surface and assumes simple shear flow in the region between the wall and the no

slip plane.

Having determined the β value, the next experiment was conducted with a drop vol-

ume of 0.140 mm3. The dimensionless length of the COMSOL simulation is compared

to the experimental dimensionless length in Figure 7 using the characterized β value.

Comparing the results verify the numerical model used to describe the dynamics of

resin spreading on a surface for a large surface force to body force ratio.

Mesh-refinement study

A mesh-refinement study was performed to ensure that the numerical results con-

verged as the number of elements in the mesh was increased. Wetting length, as shown

in Figure 1, will be used as the characteristic output parameter studied for the axisym-

metric model of resin wetting a single fiber. The area of the fiber-resin interface will be

used as the characteristic output parameter for the three-dimensional model of resin

spreading on a single fiber. Comparing the four solutions for each, depicted in Figure 8,

confirms that the numerical output converges and the lowest mesh density used pro-

vides an acceptable result.

Comparison of final drop shape with an analytical solution

The equilibrium solution for the axisymmetric model of resin spreading on a fiber was

compared to the resin configuration predicted by Carroll [2]. In the numerical solution,

resin volume, fiber diameter, and final contact angle are all known. These values were

substituted into Equations 3, 4, and 5 and then substituted into Equation 6 to create an

equation with one unknown, allowing one to solve for y0. Once y0 is known, it can be

substituted back into Equations 1 to 4 to develop a parametric equation for x and y. φ

was varied for values corresponding to y > r. The resin-air interface shape at the yz-

plane is solved by using this method and is compared to the numerical solution in
Figure 7 Comparison of numerical model and experimental data for a drop of volume of
0.057 mm3 (left) and 0.140 mm3 (right).



Figure 8 Mesh-refinement study for the axisymmetric (left) and three-dimensional (right) drop
spreading on single-fiber models.
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Figure 9. The closeness of the two solutions provides further validation of the numer-

ical model.
Parametric study of axisymmetric model

The wetting physics in the axisymmetric model was influenced by the static contact

angle, slip length, fiber and resin geometry, and viscosity.
Static contact angle between fiber and resin

The evolution of non-dimensional wetting length over time is shown in Figure 10 for a

range of static contact angles. The baseline values are used for all other properties. Here,

the non-dimensional wetting length is normalized by the initial wetting length. Fiber-resin

interface surface properties with high-contact angles reach their equilibrium position at a

lower time because the resin does not travel very far. As the wetting properties are in-

creased, evidenced by a lower contact angle, the amount of the fiber surface covered by the

resin increases. The trends found in the contact angle study can be translated to changes in

the surface energy of the solid-resin, solid-air, or resin-air through Equation 14.

Resin volume

The volume of the resin impacted both the final wetted length and the rate of wetting

as can be seen from Figure 11. The fiber and resin properties are equal to the baseline

values. The initial wetting rate was similar for the different resin volumes, but it can be
Figure 9 Comparison of the analytical and numerical solutions for the final shape of the
resin-air interface.



Figure 10 Time-dependent non-dimensional contact length for selected contact angles.
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seen that smaller resin drops reached equilibrium faster. This is a result of the resin

having to travel a shorter distance and the surface force to resin volume increasing.

Fiber radius

The non-dimensional wetting length, as a function of time for various fiber radii is

depicted in Figure 12. The baseline values are used for the fiber and resin properties.

All of the initial wetting lengths were slightly different due to the radius of the resin

drop changing slightly to keep the resin volume constant for a varying fiber radius. At

low times, the resin moves at a similar rate for all trials. With increasing time, the resin

reaches equilibrium on the smaller fibers first because it has to travel less and the capil-

lary forces are stronger. The final wetting length increases as the fiber radius was in-

creased due to the resin trying to minimize its surface area.

Slip length

With the exception of the slip length, all properties were equal to their baseline values

for this study. The slip length, which characterizes the fiber-resin interface property,

did not impact the final wetting length of the resin on the fiber. It did impact the wet-

ting rate as shown in Figure 13. As one would expect, the system reached equilibrium

at a faster rate when the slip length was increased due to the increase in slip velocity at
Figure 11 Non-dimensional wetting length versus time for selected volumes (left).



Figure 12 Evolution of contact length over time for selected fiber radii.
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the fiber surface. The slip length found in the experimental validation of the physics

would fall close to the middle of the values studied.

Three-dimensional single-fiber model

In the three-dimensional model, resin wets the top of the fiber faster than it wets

around the circumference of the fiber, depicted in Figure 14. The curvature of the sur-

face slows the rate of wetting on the outside of a concave surface because more resin

surface area is created per unit length traveled. The wetted length on the top of the

fiber decreases slightly after the resin begins to spread along the bottom of the fiber,

the time of which is indicated by the plateau of the circumferential spreading curve.
Square and hexagonal packing fiber unit cells

The spreading of a finite volume of resin within three- (hexagonal packing) and four-

fiber unit cells (square packing) with a fiber volume fraction of 30%, static contact angle

of 30°, and fiber radius of 4 μm is shown in Figure 15. The interface is described by the

level set function, described by the scale bar where a value of one represents purely
Figure 13 Evolution of non-dimensional wetting length over time for selected slip lengths, β.



Figure 14 Three-dimensional spreading of a finite volume of resin on a single fiber.
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resin. The resin spreads axially and circumferentially along the fiber. The four-fiber unit

cell spreads and reaches equilibrium at a much faster rate (0.38 s) than the three-fiber

unit cell (1.47 s). This is a result of there being an increased fiber-resin contact area in

the four-fiber unit cell.

Fiber volume fraction

For this study, the base parameters were used and the spacing between fibers was varied. The

effect of changing fiber volume on the fiber-resin contact area increased as the fiber volume

fraction was decreased, as shown in Figure 16. As the volume fraction is changed for the

three- and four-fiber unit cells, the spacing between fibers changes at different rates, described

in Equations 15 and 16. The change in fiber spacing for the two types of unit cells causes the

capillary pressure to change, which can be modeled using the Young-Laplace pressure equa-

tion [13]. At larger fiber volume fractions, the capillary pressure increases at a much faster

rate, leading to an increased wetted area. At lower fiber volume fractions, the rate of change

of capillary pressure is not as high, resulting in a similar increase in wetted area for both types

of unit cells. The triangular packing arrangement had a larger fiber-resin contact area per

fiber; thus, it would be the preferred packing arrangement if one were to create a network of

resin microdrops within a fiber tow with the goal of maximizing fiber-resin contact area.
Figure 15 Spreading of resin inside triangular-packed (top) and square-packed (bottom) unit cells
at selected time steps.



Figure 16 Final fiber-resin contact area as a function of fiber volume fraction.
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Static contact angle

The static contact angle had a large effect on the final fiber-resin contact area. The contact

area was linear with the cosine of the static contact angle, shown in Figure 17. A linear in-

crease with cos(θ) makes sense because the final results shown are with a fiber volume frac-

tion of 30%. It is clear that for a given fiber volume fraction, the square packing

arrangement is preferred for increasing fiber-resin contact area. For this particular combin-

ation of resin volume, fiber volume fraction, and fiber size, the ratio of fiber-resin contact

area for the triangular and square packing arrangements ranged between 1.07 and 1.11 for

the given static contact angles. The static contact angle did not have as significant of an im-

pact on the resin spreading as the packing arrangement did. Resin reached its equilibrium

position inside square-packed fibers in about 0.1 to 0.2 s as compared to the 1.1 to 1.5 s

with these initial conditions. This indicates that when the same volume of resin wets fibers

in a square packing arrangement, the resulting composite will have a higher fiber-resin con-

tact area and faster processing time when compared to a triangular packing arrangement.

Limitations of the model

A limitation on this model is imposed by the assumption of a microscopic length scale.

This is because when the diameter of the fiber or the volume of the resin is increased
Figure 17 Equilibrium fiber-resin contact area for the three-fiber triangular and four-fiber square
packing arrangements.



Yeager and Advani Integrating Materials and Manufacturing Innovation  (2015) 4:3 Page 15 of 16
by a large amount, the inertial and gravitational forces are no longer considered negli-

gible. This would invalidate the axisymmetric assumption in the axisymmetric fiber

model. In the four-fiber model, one would no longer be able to use the symmetry plane

orthogonal to the direction of gravity. The trends seen in these models may not hold

for models with extremely large contact angles because they only examine the case

where the liquid will wet the fiber’s surface.
Conclusions
Numerical models describing the partial wetting of a finite volume of resin on a single

fiber and in triangular- and square-packed unit cells was presented and validated. The

static contact angle affected both the rate of axial spreading as well as the final fiber-

resin contact area. The volume of resin impacted the final fiber-resin contact area and

the wetting rate because larger volumes of resin travel farther. Both the wetting length

and final fiber-resin contact area increased with increasing fiber diameter. This claim is

only for the case when the resin is in a barrel shape around the fiber as the clamshell

shape was not investigated. The slip length had a defined effect on the rate of wetting,

but did not impact the final fiber-resin contact area. This indicates that the slip length

will not impact the composite properties. Fiber volume fraction had a significant im-

pact on fiber-resin contact area, being more influential at higher fiber volume fractions.

The final fiber-resin contact area was larger for square-packed unit cells than

triangular-packed unit cells. In unit cells with triangular or square packing arrange-

ments, the static contact angle had a large impact on the final fiber-resin contact area.

The effect of static contact angle on wetting rate was small compared to the impact of

packing arrangement on wetting rate. These models can be used to predict the impact

of manipulating fiber and resin surface properties, interaction, and geometry on the

wetting of fibers by a finite volume of resin. By predicting the influence of processing

parameters on fiber wetting, one can correlate the resulting microstructure in the unit

cell with process and material parameters. The properties of the fibers and matrix can

then be used to determine the mechanical properties of a unit cell with the predicted

microstructure. The mechanical properties of the unit cells can be used to determine

the composite properties.
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