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Abstract

By providing the necessary building blocks for nucleic acids and precursors for cell membrane synthesis, pyrimidine
ribonucleotides are essential for cell growth and proliferation. Therefore, depleting pyrimidine ribonucleotide pools
has long been considered as a strategy to reduce cancer cell growth. Here, we review the pharmacological
approaches that have been employed to modulate pyrimidine ribonucleotide synthesis and degradation routes and
discuss their potential use in cancer therapy. New developments in the treatment of myeloid malignancies with
inhibitors of pyrimidine ribonucleotide synthesis justify revisiting the literature as well as discussing whether
targeting this metabolic pathway can be effective and sufficiently selective for cancer cells to warrant an acceptable
therapeutic index in patients.

Keywords: Pyrimidine ribonucleotide metabolism, Cancer therapy, CAD, DHODH, UMPS, Nucleoside transporters,
CDA, CTPS, Therapeutic index

Background
Pyrimidine ribonucleotides are involved in multiple
cellular processes that maintain cell growth and me-
tabolism [1]. Aside from being the building blocks
of RNA and precursors for deoxyribonucleotides,
pyrimidine ribonucleotides are necessary for glyco-
gen and cell membrane precursor synthesis, glyco-
sylation of proteins and lipids, and in detoxification
processes like glucuronidation [1–4]. In addition,
uracil nucleotides can interact with G protein-
coupled nucleotide receptors to activate the
phosphatidylinositol-calcium second messenger sys-
tem [5, 6], and cCMP as well as cUMP can them-
selves act as second messengers [7, 8].
The activity of enzymes involved in pyrimidine ribonu-

cleotide synthesis is required for cellular proliferation
[9–14], and it has been observed that many tumors show
upregulation of these enzymes [15–20]. Thus, depleting

pyrimidine ribonucleotide pools has long been consid-
ered an option for cancer treatment. In light of this, a
number of inhibitors of enzymes of the pyrimidine ribo-
nucleotide synthesis pathway have been developed in the
past decades. However, due to unsatisfactory results in
the clinic, further work in this line of therapy was not
given priority [21–31]. It was not until recently that new
insights have once again drawn attention towards pyr-
imidine metabolism [32–34]. In this review, we focus on
the enzymes in the pyrimidine synthesis and degradation
pathways for which small molecule inhibitors are avail-
able and either considered or evaluated in clinical trials.

Pyrimidine ribonucleotide synthesis
Cellular pyrimidine ribonucleotide pools are main-
tained through the de novo synthesis and salvage
pathways [1, 4] (Fig. 1). The relative importance of
these pathways depends on the cell type and its
physiological state. It has been suggested that rapidly
proliferating cells, whether normal (e.g., activated T
cells) or cancerous, depend on the de novo pyrimi-
dine pathway, whereas differentiated cells, having
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lower demands, usually rely on the less energy requir-
ing pyrimidine salvage pathway [1].

The de novo pyrimidine ribonucleotide synthesis
pathway
In the de novo synthesis pathway, the pyrimidine ring
structure is assembled through a multistep pathway with
L-glutamine and L-aspartate as precursors [1, 2, 4].
Whereas L-aspartate is a non-essential amino acid, L-glu-
tamine is designated as a conditionally essential amino
acid that becomes vital during periods of rapid growth or
disease [35]. These two precursors are transformed into
dihydroorotate by the three activities of the multifunc-
tional enzyme CAD (carbamoylphosphate synthetase II,
aspartate transcarbamoylase, and dihydroorotase). Next,
orotate is formed by the action of dihydroorotate dehydro-
genase (DHODH). DHODH is the only enzyme in the
pathway located in mitochondria. DHODH catalyzes the
oxidation of dihydroorotate to orotate using ubiquinone
as an electron acceptor. Therefore, DHODH is dependent
on and contributes to the activity of the mitochondrial
electron transport chain [1, 2, 4]. The third enzyme of the
de novo synthesis pathway is the bifunctional uridine
monophosphate synthetase (UMPS) which catalyzes the
formation of the first ribonucleotide product uridine 5′-
monophosphate (UMP) through the action of its orotate
phosphoribosyltransferase and orotidine-5′-monopho-
sphate decarboxylase activities.

Once UMP is formed, further steps in the ana-
bolic pathway result in the formation of uridine 5′-
diphosphate (UDP) and uridine 5′-triphosphate
(UTP). UTP can be used for protein glycosylation
and glycogen synthesis through the formation of
UDP-linked sugars. It is also the precursor for cyti-
dine 5′-triphosphate (CTP) through the action of
CTP synthetases I and II (CTPS I and II) [1, 4, 36,
37]. Most importantly, this is the only path to ob-
tain cytosine nucleotides de novo in mammals.
Aside from being a building block in RNA, CTP can
be converted to cytidine 5′-diphosphate (CDP),
which in turn can be transformed into deoxyCDP
(dCDP) by ribonucleotide reductase (RNR) to pro-
vide building blocks for DNA. CTP is also essential
for membrane formation, which relies on CDP-
linked phospholipid precursors [37, 38].
Like CDP, UDP can be converted into dUDP by RNR.

In turn, dUDP can be dephosphorylated into dUMP, a
precursor for dTTP (2′-deoxythymidine-5′-triphos-
phate), and used for DNA synthesis. dUMP can also be
phosphorylated into dUTP and incorporate in DNA,
causing activation of the DNA damage response [39].
Excessive repair events can increase the risk of DNA
fragmentation and cause cell death or genomic instabil-
ity. Therefore, an excess of dUTP might contribute to
the appearance of mutations that arise randomly during
DNA replication [40].

Fig. 1 Simplified schematic of pyrimidine nucleotide synthesis showing enzymes targeted for cancer therapy. For details, see the KEGG pathway,
and for abbreviations, refer to the list
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Salvage pathways
A fundamental difference between purine and pyrimi-
dine ribonucleotide salvage pathways is that purine ri-
bonucleotides are recycled from their bases whereas
pyrimidine ribonucleotides are mainly salvaged from
their nucleosides [36]. Accordingly, in patients with
deficient de novo pyrimidine ribonucleotide synthesis,
uridine (but not uracil) is able to overcome patho-
logical manifestations [41]. The precursors in the sal-
vage pathway include intracellular uridine and
cytidine as well as pyrimidine nucleosides from extra-
cellular fluids [3]. In addition, it can be envisaged that
pyrimidine ribonucleotides can be recycled from
UDP-linked sugars, CDP-linked phospholipid precur-
sors, pyrimidine deoxyribonucleotides, and RNA.
Most of the data on pyrimidine ribonucleoside/ribonu-

cleotide levels in the Human Metabolome Database is
derived from a review written in 1994 [3]. In a more re-
cent study on plasma from healthy individuals [42], the
following average values were obtained: cytidine
(0.25 μM), uracil (2.10 μM), uridine (3.12 μM), and oro-
tate (0.89 μM). Cytosine was below the detection limit of
the method. Strikingly, there are no enzymes that can
lead to or process free cytosine in mammals (see KEGG
pathways). One potential difference between mice and
humans is the concentration of cytidine in plasma. Ac-
cording to the current data [3], cytidine levels in the
plasma of rodents are higher than in human plasma. It is
likely that this feature may cause differences between
mice and humans in response to drugs affecting ribonu-
cleotide pools.

Pyrimidine nucleoside/nucleobase transporters
Extracellular uridine is imported into cells by two classes
of pyrimidine and purine nucleoside/nucleobase trans-
porters: equilibrative and concentrative [43, 44]. These
transporters are also involved in the uptake of anticancer
nucleoside analogues such as cytarabine and gemcitabine
[45]. Furthermore, single nucleotide polymorphisms in
drug transporters may contribute to variations between
individuals in response to nucleoside drugs [46, 47].
Equilibrative nucleoside transporters (ENT1, ENT2,

ENT3, and ENT4, also known as SLC29A1, SLC29A2,
SLC29A3, and SLC29A4) are bidirectional sodium-
independent transporters [43, 44, 47, 48]. Human
ENT1 and ENT2 transport purine and pyrimidine nu-
cleosides, while ENT2 and ENT3 also transport
nucleobases [43, 48]. ENT4 is uniquely selective for
adenosine and a variety of organic cations, despite its
structural similarity with other ENTs [49]. With re-
gard to cellular localization, ENT1, ENT2, and ENT4
are primarily located in the cytoplasmic membrane.
However, ENT1 and ENT2 can additionally be found
in the nuclear membranes and, in case of ENT2, also

in the mitochondrial membrane. ENT3 only appears
to function in intracellular membranes including
those of the lysosomes and mitochondria [43]. Con-
centrative nucleoside transporters (CNT1, CNT2, and
CNT3, also known as SLC28A1, SLC28A2, and
SLC28A3) are unidirectional sodium-dependent active
transporters that have higher affinity for uridine than
ENTs [43, 48, 50] but a lower turnover rate of trans-
port [43, 51]. Although all the CNTs transport uri-
dine, CNT1 preferentially transports pyrimidine
nucleosides, CNT2 purine nucleosides, and CNT3
both pyrimidine and purine nucleosides [43, 48].
CNT1–3 are primarily located in the cytoplasmic
membrane, but CNT3 is additionally present in sub-
cellular membranes of specific cell types [43]. Both
ENTs and CNTs participate in maintaining uridine
(as well as other nucleoside and nucleobase) homeo-
stasis through their activities in the intestine, liver,
and kidneys [43, 50].

Modulation of uridine plasma levels
Uridine plasma levels should be taken into consider-
ation when assessing the response to drugs lowering
pyrimidine ribonucleotide pools. It is generally ac-
cepted that the liver plays a central role in maintain-
ing plasma uridine by synthesizing and degrading
uridine [36]. In addition, blood platelets contain high
levels of UTP and may constitute another source of
uridine [52]. Erythrocytes, which can rapidly take up
orotate and convert it to UDP-glucose, are also
thought to play an important role as uridine reser-
voirs [53]. In fact, uridine and glucose can be sup-
plied to the brain, skeletal muscles, and peripheral
tissues by the catabolism of erythrocyte UDP-glucose
[36]. A recent study on mice, rats, and humans re-
ported that fasting increases plasma uridine through
a mechanism that involves uridine biosynthesis by
adipocytes, whereas, in the postprandial state, liver-
induced bile excretion results in plasma uridine
clearance [54]. In support of this study, longer star-
vation times in human volunteers led to even more
prominent increases in uridine plasma levels that
were accompanied by a smaller rise in plasma cyti-
dine and CTP [55]. Further confirmation came from
a study where uridine as well as uracil and dihy-
drouracil levels in human plasma were observed to
drop after food intake [56] and were also seen to be
affected by circadian rhythms [56, 57]. In agreement
with these observations, it has been seen that the
oral bioavailability of uridine is low (5.8–9.9%), due
to poor absorption through the gastrointestinal mu-
cosa [58]. Efforts at increasing the oral bioavailability
of uridine led to the discovery of a prodrug, PN-401,
which allowed sustained plasma levels of > 50 μM
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[59]. Altogether, these studies may suggest that
drugs lowering de novo pyrimidine ribonucleotide
synthesis may be more effective when given after
meals.
On a different note, an interesting study by Stecu-

lorum et al. may show a possible link as to how uridine
plasma levels may affect feeding patterns [60]. They re-
ported that high UDP levels in the hypothalamus were
related to increased feeding behavior in mice through
the activation of P2Y6 purinergic receptors in the
agouti-related peptide neurons. Moreover, increasing
plasma uridine levels, through intraperitoneal injection,
promoted this activity by the increased synthesis of UDP
in the brain. Interestingly, in metabolic disorders like
obesity and type 2 diabetes mellitus, high uridine levels
are sustained in the plasma which in turn affects food
intake behavior due to high UDP levels in the brain [60].
This could indicate that the efficacy of inhibitors of de
novo pyrimidine ribonucleotide synthesis may be af-
fected in comorbid conditions that include such meta-
bolic disorders.

Pyrimidine ribonucleotide degradation
Based on the pyrimidine metabolic pathway provided in
the Kyoto Encyclopedia of Genes and Genomes database
(KEGG pathway), UMP degradation occurs through the
action of 5′-nucleotidases and uridine phosphorylases 1
and 2, which transform UMP into uridine and uridine
into uracil, respectively. Uracil is finally transformed into
β-alanine by the action of the enzymes dihydropyrimi-
dine dehydrogenase (DPYD), dihydropyrimidinase, and
β-ureidopropionase. This last enzyme leads to the syn-
thesis of β-alanine through an irreversible reaction.
In humans, cytidine 5′-monophosphate (CMP) can

only be transformed into cytidine but not to cytosine.
Cytidine can only be converted into uridine by cytidine
deaminase (CDA). dCMP and dUMP can both be con-
verted into uracil whereas dTMP, after its conversion
into thymidine and thymine, enters valine, leucine, and
isoleucine metabolism (see the KEGG PATHWAY Data-
base—GenomeNet).
Differences in the activity of the enzymes involved

in pyrimidine ribonucleotide degradation are essential
to predict 5-fluorouracil, gemcitabine, and cytarabine
toxicity in cancer patients. These differences may be
due to single nucleotide polymorphisms (SNPs) in
CDA [61, 62] or DPYD [63] and, as shown for DPYD,
related to food intake [56].

Regulation of pyrimidine ribonucleotide synthesis
enzymes: CAD
Studies on the regulation of pyrimidine ribonucleotide
synthesis are available only for a few of the enzymes in
the pathway and mainly refer to the trifunctional enzyme

CAD, the first enzyme in the de novo pathway [37, 64].
Below, we discuss the key known factors involved in the
regulation of CAD, many of which can be overactive in
cancers. The reason we summarize these studies here is
because pharmacologic modulation of these factors
should affect CAD and therefore pyrimidine ribonucleo-
tide synthesis.

Regulation of enzyme expression
The promoter of the CAD gene has E-box sequences for
c-myc binding, and c-myc clearly increases CAD expres-
sion [65, 66]. Furthermore, of the three enzymes in the
de novo UMP synthesis pathway, CAD is the one that is
more frequently overexpressed in tumors (FireBrowse
database). DHODH as well as CTPS and enzymes of the
purine synthesis pathway are also increased upon c-myc
expression in Burkitt lymphoma cells [67]. Estrogen re-
ceptor/Sp1 complexes are also positive modulators of
CAD transcription [68] whereas HIF1α negatively regu-
lates CAD expression [69].

Allosteric regulation
The carbamoylphosphate synthetase II (CPSII) domain
of CAD is allosterically activated by ATP and phosphori-
bosyl pyrophosphate (PRPP) as well as inhibited by ura-
cil and cytosine nucleosides UMP, UDP, UTP, CTP, and
UDP-glucose [37, 70–72]. The activation of CAD (as
well as of UMPS) by PRPP provides a link between the
purine and pyrimidine synthesis pathways [37, 70–72].

Post-translational modifications
CAD regulation can also be mediated through phos-
phorylation by the mitogen-activated protein kinase cas-
cade (MAPK, also referred to as Ras-Raf-MEK-ERK
cascade) and cyclic adenosine monophosphate-
dependent protein kinase (PKA) cascades [37, 73]. It has
been demonstrated, both in vitro and in vivo, that in the
presence of a growth stimulus, ERK2 phosphorylates
CAD at Thr456 and also alters the allosteric regulation
of CAD, whereby its activation by PRPP is promoted
and feedback inhibition by UTP is suppressed [37, 73,
74]. The MAPK-mediated activation of CAD can be an-
tagonized by PKA phosphorylation of its serine residue
at 1406. This leads to the reversal of the sensitivity of
CAD to PRPP and UTP, consequently downregulating
ribonucleotide synthesis [73, 75, 76]. The sequential co-
ordination of MAPK and PKA phosphorylation of CAD
has been closely associated with the cell cycle [73, 77].
MAPK phosphorylation of CAD occurs in cells entering
early S phase, when the need for pyrimidine ribonucleo-
tides is greatest, whereas PKA phosphorylation predomi-
nates at late S phase [77]. In addition, it has been
reported that phosphorylation of CAD at Ser1873 by
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protein kinase C (PKC) may precede activation of CAD
by the MAPK cascade [78].
It is not surprising that cancer cells would take advan-

tage of these regulatory mechanisms to increase cell pro-
liferation. For example, in the MCF7 breast cancer cell
line, pyrimidine ribonucleotide synthesis goes unchecked
due to CAD overexpression together with continuous
phosphorylation at the MAPK site and absence of phos-
phorylation at the PKA site [79]. The MAPK pathway is
frequently dysregulated in cancer due to mutations or
amplifications in the upstream components of the path-
way, which eventually lead to ERK hyperactivity [80–83].
Thus, targeting the pyrimidine ribonucleotide synthesis
pathway may at least in part weaken the tumor promot-
ing effect of alterations in the MAPK cascade.
Another protein kinase that has been shown to regu-

late CAD is mechanistic (or mammalian) target of rapa-
mycin complex 1 (mTORC1) [84, 85]. mTORC1 is one
of the two catalytic subunits of mTOR, a key kinase in
balancing anabolic and catabolic processes to promote
cell growth by stimulating glutamine metabolism and
blocking autophagy [86]. It can also promote protein
synthesis and enhance lipid synthesis, and there is emer-
ging evidence linking mTORC1 activity to nucleotide
metabolism [84, 85, 87, 88]. In 2013, phosphoproteomics
and metabolomics profiling studies revealed that
mTORC1 could stimulate pyrimidine ribonucleotide
synthesis through activation of its downstream target S6
kinase 1, a kinase that phosphorylates the Ser1859 resi-
due in CAD [84, 85] and activates the dihydroorotase
domain of CAD [85]. Furthermore, phosphorylation at
the Ser1859 site results in the oligomerization of CAD
and enables steric channeling of substrates [84]. Interest-
ingly, an upstream effector of mTORC1, Rheb, which is
a small GTPase that belongs to the RAS superfamily, has
also been shown to directly bind to CAD and regulate
its activity [89].
mTORC1 signaling occurs downstream of the MAPK

cascade and the phosphoinositide 3-kinase (PI3K)/AKT
pathway. These pathways converge at mTORC1 by
phosphorylating and inhibiting tuberous sclerosis com-
plex 2 (TSC2), which is a negative regulator of mTORC1
[87, 88, 90]. Any mutation or amplification of the up-
stream effectors of mTORC1 or loss of function of the
tumor suppressors that inhibit mTORC1, like TSC2,
could lead to overstimulation of mTORC1 and drive
tumor progression [86, 90, 91]. In fact, a majority of hu-
man tumors have been shown to possess mTORC1
hyperactivity and this has led to an increased interest in
the development of more effective inhibitors than rapa-
mycin [92]. However, mTORC1 inhibitors have shown
unpredictable side effects in the clinic [93]. Furthermore,
mutations of mTOR and activation of alternate prolifera-
tion pathways have been observed in response to

mTORC1 inhibitors [86]. As mentioned above for
MAPK inhibitors, perhaps, inhibitors of the pyrimidine
ribonucleotide synthesis pathway may at least partially
contribute to eliminate mTORC1 inhibitor-resistant
clones.

Targeting enzymes involved in pyrimidine
ribonucleotide metabolism for the treatment of
cancer
One important aspect to consider in any therapeutic
approach is genotoxicity. And an important safety
issue that needs to be addressed when using agents
that deplete ribonucleotide pools is whether they
harm the genome, and if they do whether this DNA
damage is limited to cancer cells. In 1996, the group
of Geoffrey Wahl [94] reported that inhibition of de
novo ribonucleotide synthesis has different conse-
quences depending on p53 status and that normal
cells primarily respond by arresting in the G1 phase
of the cell cycle. One interpretation of these results is
that in normal cells, which have fully functional cell
cycle checkpoints, a reduction in ribonucleotide levels
could act as a warning signal that activates the cell
cycle arresting function of p53 rather than its pro-
apoptotic function. An arrest in G1 can be reversible,
and therefore, normal cells may recover from ribonu-
cleotide depletion. Thus, it is possible that inhibiting
ribonucleotide synthesis is non-genotoxic to normal
cells and causes reversible cell cycle arrest. Whether
this holds true for highly proliferating cells such as
activated T cells needs to be investigated further. In-
deed, inhibitors of pyrimidine ribonucleotide synthesis
such as leflunomide are used as immunosuppressants
[95, 96]. This is of importance in the context of can-
cer as it may debilitate the anti-oncogenic effects of
the immune system.
Cancer cells frequently have defective G1/S check-

points and are therefore less likely to arrest in G1
than normal cells upon stress. If cells enter S phase
without sufficient nucleotide pools, stalled replication
forks may appear, ultimately leading to extensive
DNA damage. Whether this leads to cell death may
depend on the presence of intact TP53. For cancer
cells that retain wild-type p53, there is evidence sug-
gesting that they will accumulate in S phase with
high levels of active p53 and rapidly die [33]. Activa-
tion of p53 may be more likely to promote cell
death in S phase cells than in cells in G1 (see
below). Cancer cells defective for p53 may also accu-
mulate in S phase upon ribonucleotide depletion and
subsequent deoxyribonucleotide pool depletion, but
what happens to these cells at this vulnerable stage
is still unclear. In the case of p53-deficient acute
myeloid leukemia cells for example, inhibition of the
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pyrimidine ribonucleotide de novo synthesis enzyme
DHODH has been shown to cause differentiation
and death [97].
Altogether, it is possible that inhibitors of pyrimidine

ribonucleotide synthesis may help to control cancer pro-
gression without causing irreparable damage to normal
tissue. Whether efficacy will be reached in the clinic is
still an open question that will hopefully be answered
soon by ongoing clinical trials. Below, we focus on ef-
forts to modulate the function of enzymes and trans-
porters involved in pyrimidine ribonucleotide
metabolism and discuss their potential for cancer
therapy.

CAD inhibitors
PALA (N-phosphonacetyl-L-aspartate), an inhibitor of
the aspartate transcarbamoylase activity of CAD, was
tested in cancer patients in the 1980s but did not make
it beyond a phase II trial [26–31, 98]. In addition to its
lack of efficacy, PALA was shown to cause DNA damage
even to normal cells [99]. Whether this is due to inhib-
ition of CAD is unknown as PALA may not be specific
and, for example, PALA is a potent inhibitor of human
carbonic anhydrase IV [100]. To our knowledge, various
modifications of PALA have not yet rendered more ef-
fective inhibitors [101] although encapsulating PALA
into liposomes may improve delivery and efficacy ac-
cording to tests in mice [102, 103].
Thus, it is unclear as to whether CAD is not suffi-

ciently inhibited by PALA and its analogues, or if this
enzyme is not a suitable target for cancer treatment.
Since CAD is a trifunctional enzyme, it is possible that
blocking other enzymatic activities aside from the aspar-
tate transcarbamoylase function may constitute a better
option.

DHODH inhibitors
Mutations in DHODH cause postaxial acrofacial dysos-
tosis or Miller syndrome [104], a rare condition with dis-
tinctive craniofacial malformations that occur in
association with limb abnormalities but not with cogni-
tive or growth problems. The DHODH inhibitor lefluno-
mide and its active metabolite teriflunomide have long
been used for chronic diseases such as rheumatoid arth-
ritis and multiple sclerosis [95, 96]. Thus, this suggests
that targeting DHODH for cancer therapy is likely to be
a safe approach. The next most advanced DHODH in-
hibitor with regard to clinical testing is ASLAN003
which has undergone a phase I study (https://clinical-
trials.gov/). Although the results from a phase I study
with this compound are not published, ASLAN003 is
now in phase II for the treatment of acute myeloid
leukemia.

In the 1980s, brequinar, which still ranks as one of the
most potent and selective DHODH inhibitors, was
shown to work in mouse models for solid tumors as well
as in a leukemia murine model [105]. Even leflunomide
and teriflunomide, although weak and non-specific
against DHODH, have proven efficacious in animal
models [106–108]. Later on, in the early 1990s, brequi-
nar was tested against solid tumors in patients [21–25].
Unfortunately, these trials did not demonstrate efficacy
below the maximum tolerated dose.
It was not until 2016, when it was published that brequi-

nar is a strong inducer of differentiation in acute myeloid
leukemia cells, that this small molecule was brought back
into the limelight [32]. Following up these studies, Bayer
has started clinical trials on myeloid leukemia patients
with a new and extremely potent DHODH inhibitor
named BAY 2402234 [97] and other companies have
followed this path (https://clinicaltrials.gov/ct2/results?-
cond=&term=dhodh&cntry=&state=&city=&dist=). Most
interestingly, brequinar is active against pancreatic cancer
in xenograft studies [109, 110], suggesting a new way to
target KRAS mutant tumors and to overcome resistance
to Raf, MEK, and ERK inhibitors.
A way to increase the efficacy of DHODH inhibitors

against cancer cells is to combine them with other
agents. For example, inhibition of DHODH leads to acti-
vation of the p53 tumor suppressor and synergizes with
inhibitors of p53 degradation (mdm2 inhibitors) to kill
cancer cells [33]. One explanation for this synergy be-
tween DHODH inhibitors and mdm2 inhibitors is that if
cancer cells treated with DHODH inhibitors accumulate
in S phase, releasing p53 from mdm2 at this vulnerable
stage of the cell cycle may promote cell death. Another
interesting feature with regard to the relationship be-
tween DHODH and p53 is that a large proportion of
small molecules identified through a cell-based screen as
activators of p53 can inhibit DHODH [33].

UMPS inhibitors
Pyrazofurin is an inhibitor of UMPS that acts as a
nucleoside analogue and blocks the orotidine 5′-
monophosphate decarboxylase activity of UMPS [111].
Unfortunately, there are several difficulties in pursu-
ing this strategy. First, it was seen that resistance to
pyrazofurin was easily achieved and that this nucleo-
side analogue could convert into a nucleotide and po-
tentially incorporate into nucleic acids and cause
mutations [112, 113]. An alternative way to inhibit
UMPS is by the use of AICAr (5-aminoimidazole-4-
carboxamide-1-b-riboside) whose pro-apoptotic effect,
at least in the case of multiple myeloma, is thought
to be mediated by the inhibition of UMPS [114]. Al-
though the possibility of discovering other UMPS in-
hibitors could be considered, it may not prove to be
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safe in the clinic as loss of UMPS activity causes oro-
tic aciduria [115].
Recently, it has been found that uric acid, a purine nu-

cleotide degradation product abundant in human
plasma, can inhibit UMPS [116]. In this regard, it may
be of importance when evaluating results from preclin-
ical tests with inhibitors of pyrimidine ribonucleotide
metabolism, to remember that mouse plasma and hu-
man plasma differ significantly with regard to uric acid
levels as these are 10-fold higher in the blood of humans
than of mice [116].

Inhibitors of uridine import
Uridine levels in blood are not negligible [16, 43], and
this could debilitate the effects of inhibitors of the de
novo synthesis pathway described above. However, many
inhibitors of uridine uptake are available and several are
used as medicaments. Combining inhibitors of CAD,
DHODH, and possibly UMPS with blockers of uridine
uptake may be an attractive strategy to increase efficacy.
Uridine uptake inhibitors include dipyridamole, which

inhibits ENT1 and ENT2 and is used in the clinic to pre-
vent blood clots [117, 118]. Surprisingly, a number of
clinically approved tyrosine kinase inhibitors also block
uridine uptake by cells [119]. One of the most potent
ones is nilotinib [120], which is used as a Bcr-Abl inhibi-
tor to treat chronic myeloid leukemia. Whether the in-
hibition of uridine uptake by nilotinib contributes to its
therapeutic effect is still unknown. Nitrobenzylmercap-
topurine ribonucleoside (NBMPR) has been a valuable
pharmacological tool used extensively to characterize
the ENT transporters [121, 122].
Since CNTs are known to more effectively transport

uridine, they may constitute better targets than ENTs.
However, no high affinity CNT inhibitors were available
until recently. These include thienopyrimidine 2'-deoxy-
nucleoside and ribonucleoside [43, 123]. Interestingly,
the tyrosine kinase inhibitor imatinib, although not very
potent (IC50 = 2.3 μM), can inhibit CNT2 [120].
The expression levels between ENTs and CNTs vary

between tissues and tumor types (CCLE database). For
example, CNT1 (SLC28A1) is high in the kidneys, liver,
and small intestine and, accordingly, highly expressed in
kidney cancers. Therefore, characterizing the specificity
of small molecules for each of these nucleoside trans-
porters may help target tumors specifically and predict
toxic effects.

CDA inhibitors
Aside from ENTs and CNTs, another target of the sal-
vage pathway is CDA, which converts cytidine into uri-
dine and therefore, together with the CTP synthetases,
regulates the ratio between uracil and cytosine nucleo-
tides. CDA inhibitors include tetrahydrouridine [124],

but also a new compound, cedazuridine (E7727), which
is currently in clinical trials in combination with decita-
bine for the treatment of myelodysplastic syndromes and
chronic myelomonocytic leukemia [125]. The rationale
for this combination is that CDA inhibition will prevent
deamination of decitabine and therefore increase its bio-
availability. The same principle can be extended to azaci-
tidine and cytarabine, which are also susceptible to
deamination by CDA. It might be interesting to test
whether altering the salvage pathway with CDA inhibi-
tors works in synergy with inhibitors of de novo pyrimi-
dine ribonucleotide synthesis.

CTPS I and II inhibitors
CTP synthetase activity, which converts UTP into CTP,
may be upregulated in tumors according to a study per-
formed decades ago [126]. CTP synthetases form re-
markable structures in cells called cytoophidia due to
their snake-like shape that are present in the cytoplasm
as well as in the nucleus [127]. In humans, CTPS
polymerization increases catalytic activity [128] and
CTPS activity may be regulated by post-translational
modifications or binding to other factors [129]. CTPS fil-
aments assemble at particular developmental stages (e.g.,
when there is a high demand for CTP) as well as in re-
sponse to nutrient stress. Indeed, CTPS filaments form
in response to glutamine deprivation and disassemble
upon glutamine addition to cells [128, 130]. An intri-
guing question is why active hCTPS forms polymers? In
this regard, it is interesting that in S. pombe cells, CTPS
cytoophidia are asymmetrically inherited during cell div-
ision and in a stochastic fashion [131]. Therefore, agents
that affect cytoophidia formation on dividing cells may
influence the distribution of this CTP synthetase enzym-
atic activity between daughter cells and, in this manner,
affect the proliferation potential of at least one of the
daughter cells. Agents that directly affect CTP synthe-
tases include cyclopentenyl cytosine (CPEC), but
whether this is a safe anticancer strategy needs to be
established as cardiotoxicity has been reported in a
phase I trial [132]. In addition, accumulation of UTP
might lead to nucleotide imbalance as well as to high
dUTP levels.

DPYD inhibitors
DPYD is involved in the degradation of uracil, and
therefore, its inhibition could lead to an increase in
UMP levels (Fig. 1). This enzyme can be inhibited by
gimeracil and eniluracil, which were designed to im-
prove the efficacy of 5-fluorouracil by decreasing its
breakdown by DPYD. Eniluracil failed in phase III tri-
als, but gimeracil is still in clinical trials (https://clini-
caltrials.gov).
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One question that could be worth investigating is
whether these inhibitors also affect the efficacy of UMP
synthesis inhibitors. In principle, inhibition of DPYD
would be expected to rescue UMP from degradation and
therefore weaken the efficacy of inhibitors of de novo
pyrimidine ribonucleotide synthesis. If this occurs, one
could speculate that tumors that express high levels of
DPYD would be more sensitive to UMP synthesis
inhibitors.

Conclusions
The recent advances in the identification of small mol-
ecule modulators of pyrimidine ribonucleotide synthesis,
and in particular of small molecule inhibitors of
DHODH, have led to a renewed interest in this field of
research for the treatment of cancer. If the current clin-
ical trials with DHODH inhibitors on leukemia patients
show signs of efficacy and low toxicity, the next chal-
lenge will be to find synergistic and safe combinations
with other agents and to extend the use of pyrimidine ri-
bonucleotide synthesis inhibitors to patients with solid
tumors. Bearing in mind the failure of the CAD inhibitor
PALA and the DHODH inhibitor brequinar in clinical
trials for solid tumors in the 1990s, it is not unreason-
able to postulate that identifying molecular signatures in
cancer cells that confer hypersensitivity to depletion of
pyrimidine ribonucleotide pools will be crucial. Consid-
ering the effects of food intake on uridine levels may also
be key to improve efficacy. In addition, given the import-
ance of the immune system in the prevention of cancer,
the immunosuppressive effect of ribonucleotide synthe-
sis inhibitors must be taken into account.
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