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Abstract

Background: Fungal infections are a significant cause of mortality and morbidity in hospitalized preterm infants,
yet little is known about eukaryotic colonization of infants and of the neonatal intensive care unit as a possible
source of colonizing strains. This is partly because microbiome studies often utilize bacterial 16S rRNA marker gene
sequencing, a technique that is blind to eukaryotic organisms. Knowledge gaps exist regarding the phylogeny and
microdiversity of eukaryotes that colonize hospitalized infants, as well as potential reservoirs of eukaryotes in the
hospital room built environment.

Results: Genome-resolved analysis of 1174 time-series fecal metagenomes from 161 premature infants revealed
fungal colonization of 10 infants. Relative abundance levels reached as high as 97% and were significantly higher in
the first weeks of life (p = 0.004). When fungal colonization occurred, multiple species were present more often than
expected by random chance (p = 0.008). Twenty-four metagenomic samples were analyzed from hospital rooms of
six different infants. Compared to floor and surface samples, hospital sinks hosted diverse and highly variable
communities containing genomically novel species, including from Diptera (fly) and Rhabditida (worm) for
which genomes were assembled. With the exception of Diptera and two other organisms, zygosity of the
newly assembled diploid eukaryote genomes was low. Interestingly, Malassezia and Candida species were
present in both room and infant gut samples.

Conclusions: Increased levels of fungal co-colonization may reflect synergistic interactions or differences in
infant susceptibility to fungal colonization. Discovery of eukaryotic organisms that have not been sequenced
previously highlights the benefit of genome-resolved analyses, and low zygosity of assembled genomes could
reflect inbreeding or strong selection imposed by room conditions.
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Background
Eukaryotes are common members of the human micro-
biome [1–3]. The colonization density and diversity of
eukaryotes are lower than their bacterial counterparts [1,
4, 5], but they can have substantial health consequences.
The yeast Saccharomyces boulardii can significantly re-
duce rates of antibiotic-associated diarrhea [6], protozoa
limit Salmonella populations through predation [7], and
high abundances of Candida and Rhodotorula are asso-
ciated with asthma development in neonates [8]. Fungal
disease is most prevalent in immunocompromised pa-
tients, including premature infants [9, 10], although their
incidence has declined in recent decades [11].
While infant fungal disease is an active area of study,

little is known about asymptomatic colonization of pre-
mature infants by fungi or other eukaryotes. Studies
have reported 0%, 26%, 50%, and 63% of premature in-
fants being colonized by fungi [2, 12–14], with variation
in methodological sensitivity probably at the heart of
these differences. Methods used to analyze the myco-
biome, including culturing, DGGE, and ITS sequencing,
identify the fungal fraction of the microbial community
separate from the community at large. This has left basic
knowledge gaps about the relative abundance of fungi in
early life, an important point as fungi-infant interactions
in early life are known to affect allergy development [8,
15, 16]. In fact, recent review articles have referred to
eukaryotes as a “Missing Link in Gut Microbiome Stud-
ies” [17], and stated that “Studies addressing how the in-
fant mycobiome develops and shapes the host immune
system will be required for a more comprehensive un-
derstanding of the early-life microbiome.” [3]. Particular
highlighted knowledge gaps relate to the ecological roles,
growth dynamics, and source of eukaryotes in the hu-
man and hospital microbiomes [17, 18].
The hospital is a known source for bacterial infant col-

onists [19]. The built environment has been implicated
in fungal outbreaks [20–23], yet the eukaryotic built en-
vironment microbiome remains understudied. This is
because the vast majority of high-throughput studies of
the hospital microbiome and the human gut microbiome
use bacteria-specific 16S rRNA marker gene sequencing,
and thus are blind to eukaryotes. Of five recent studies
of the hospital microbiome, only one included primers
to target the internal transcribed spacer (ITS) sequences
to detect eukaryotes [24–28]. It remains to be seen if eu-
karyotes in the room have the genetic potential to
colonize infants, and if so, where in the room these eu-
karyotes are located.
An alternative approach to microbiome characterization

involves shotgun metagenomics. In this method, all DNA
from a sample is sequenced regardless of its organismal
source or genetic context. In some studies, mapping of
the sequencing reads to reference genomes has enabled

identification of pathogens [29]. However, the reads can
be assembled, and new methods aid in reconstructing
eukaryotic genomes from these datasets [30], enabling un-
derstanding of these organisms in the context of their en-
tire communities, which also include bacteria, archaea,
bacteriophage, viruses, and plasmids. Relative to amplicon
sequencing, genome assembly has several distinct advan-
tages for understanding communities that contain eukary-
otes. First, genomes provide information about in situ
ploidy (number of distinct chromosome sets per cell), het-
erozygosity (here used to refer to the fraction of alleles in
a diploid genome that have two versus one abundant se-
quence types), and extent of population microdiversity
(here used to refer to additional sequence types that con-
stitute low-abundance alleles). Second, strain-tracking can
be performed using high-resolution genomic comparisons.
Last, newly assembled eukaryotic sequences expand the
diversity of genomically defined eukaryotes in public data-
bases, enabling comparative and evolutionary studies.
Here, we used genome-resolved metagenomics to

study eukaryote-containing microbiomes of premature
infants and their NICU environment. We evaluated the
incidence of eukaryotes in room and infant samples and
investigated the time period during which infant micro-
biomes contained eukaryotes. Genomes were assembled
for 14 eukaryotic populations, and their ploidy, zygosity,
and population microdiversity defined. The same species
of eukaryotes were found in infant microbiome and the
NICU environment, and a subset of other microbial eu-
karyotes in NICU rooms was classified as types that can
cause nosocomial infections.

Results
Recovery of novel eukaryotic genomes from
metagenomes
In this study, we analyzed 1174 fecal metagenomes and 24
metagenomes from the NICU environment, totaling 5.31
Tb of DNA sequence (Additional file 1: Table S1). Fecal
samples were collected from 161 premature infants pri-
marily during the first 30 days of life (DOL) (full range of
DOL 5–121; median 18), with an average of 7 samples per
infant. NICU samples were taken from six patient rooms
within the hospital housing the infants (Magee-Womens
Hospital of UPMC, Pittsburgh, PA, USA). Three NICU lo-
cations were sampled in each room: swabs from fre-
quently touched surfaces, wipes from other surfaces, and
swabs from sinks [19]. Eukaryotic genomes were assem-
bled from all samples using a EukRep-based pipeline ([30];
see the “Methods” section for details). The bacterial com-
ponent of some of the datasets was analyzed previously
(see the “Methods” section).
Fourteen novel eukaryotic genomes were recovered in

total, with a median estimated completeness of 91%
(Table 1). Detailed genome assembly information is
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available in Additional file 2: Table S2. Genomes were as-
sembled from organisms of a wide phylogenetic breadth,
and four are the first genome sequences for their species
(Fig. 1). Twelve of the genomes are classified as fungal and
are described in more detail below. The two other ge-
nomes (both recovered from hospital sink samples) repre-
sent the first genomes of their phylogenetic families.
Diptera S2_005_002R2 is within the phylogenetic clade of
Diptera (true flies) and is equally related to Drosophila
melanogaster (fruit fly) and Lucila cuprina (Australian
sheep blowfly). Rhabditida S2_005_001R2 is within the
family Rhabditida (nematode) and is related to both
pathogenic and non-pathogenic roundworms. In both
cases, BLAST searches of the rpS3 protein sequence
against NCBI revealed no significant hits, and further-
more, comparing the mitochondrial cytochrome c oxidase
subunit I gene and protein against the Barcode Of Life
Database (BOLD) [31] and NCBI revealed no hits with
high identity. Thus, we are unable to tie our genomes to
any morphologically described species.

Fungal contaminants in extraction controls
Four negative extraction controls were subjected to meta-
genomic sequencing to detect sequences resulting from
reagent contamination. One of the four extraction con-
trols harbored Purpureocillium lilacinum DNA, with >
50% of sample reads mapping to the genome and with a
breadth of coverage (percentage of the genome covered by
at least one read) of 87% (Additional file 3: Figure S1A).
The average nucleotide identity (ANI) was calculated
between P. lilacinum reads in the extraction control, P.
lilacinum genomes assembled in the study, and all
previously sequenced P. lilacinum genomes in NCBI
(Additional file 3: Figure S1B). P. lilacinum reads from the

extraction control were extremely similar to genomes as-
sembled from the NICU and infant gut, and divergent
from previously sequenced genomes (Additional file 3:
Figure S1B). Thus, P. lilacinum genomes assembled from
room and gut samples are probably due to reagent con-
tamination and not actually present in the environment.
Reads from three of the four extraction controls

mapped to Malassezia restricta S2_018_000R1, all at
low abundance (< 3% of reads with a genome breadth of
coverage of 1.3–14.2% using reads from the four sam-
ples) (Additional file 3: Figure S1C). It was not possible
to calculate the ANI between the genomes in samples
and controls due to the low sequencing coverage of
Malassezia restricta S2_018_000R1 in the extraction
controls. Malassezia is a near-ubiquitous skin-associated
fungus [32]. Based on the depth of coverage (2.37×), the
genome had a very low breadth of coverage (88% expected
vs. 13% actual) (Additional file 4: Figure S9), indicating
that the genome sampled from the hospital surface is dif-
ferent to that of the Malassezia that contaminated the re-
agents. For this reason, the Malassezia in infant and room
samples were not excluded from further analysis.

Fungal microbiome of the premature infant gut
Excluding P. lilacinum, fungi were detected in 10 of the
161 premature infants profiled in this study (6%) (Fig. 2a;
Additional file 5: Table S3). The limit of detection for
eukaryotic organisms was calculated as 0.05% of the
total community (Additional file 6: Figure S2) (see the
“Methods” section for details). Eukaryotes were detected
significantly more often early in life, and significantly
more often when antibiotics were recently administered
(Fig. 2b). Antibiotics were given significantly more often
early in life (p = 5.3E−8; Wilcoxon rank-sum test),

Table 1 Description of de novo assembled eukaryotic genomes

Source Genome Completeness (%) Length (bp) N50 (bp) Coverage

Infant gut Purpureocillium lilacinum S2_018_006G1 98.4 35,688,710 422,361 20×

Infant gut Clavispora lusitaniae N2_070_000G1 95.8 11,907,650 89,311 18×

Infant gut Candida parapsilosis N3_182_000G1 96.7 12,563,647 65,710 182×

Infant gut Trichosporon asahii N5_275_008G1 90.1 23,419,590 32,912 13×

Infant gut Candida albicans SP_CRL_000G1 91.1 12,561,678 22,840 30×

NICU room Purpureocillium lilacinum S2_003_000R1 98.4 35,724,498 520,486 67×

NICU room Malassezia restricta S2_018_000R1 72.6 6,457,898 4912 18×

NICU sink Nectria haematococca S2_018_000R2 96.7 44,952,822 24,418 10×

NICU sink Candida parapsilosis S2_005_002R2 92.8 11,573,959 14,507 9×

NICU sink Rhabditida S2_005_001R2 74.9 50,505,025 8214 8×

NICU sink Nectria haematococca S2_009_000R2 73.6 31,143,909 8000 7×

NICU sink Exophiala sp. S2_009_000R2 75.9 24,670,482 7386 7×

NICU sink Diptera S2_005_002R2 52.5 43,769,201 6834 10×

NICU sink Verruconis sp. S2_005_001R2 52.8 15,639,153 5112 6×
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making it difficult to determine which of these two vari-
ables is driving the association.
Fungal colonization was not significantly associated with

gestational age, twin status, birth weight, mode of delivery,
or other clinical metadata. (Additional file 7: Tables S4,
Additional file 8: Table S5). Further, fungal colonization
was not associated with bacterial community composition.
P. lilacinum, presumed to be a metagenomic contaminant
(Additional file 3: Figure S1), decreases in abundance as
infants age (Additional file 9: Figure S8), probably because
increased bacterial biomass in later collected samples
overwhelms the contaminant DNA, as shown previously
[33]. Given this, we infer that the decrease in relative
abundance of fungi present in the microbiomes of
later-collected samples is due to bacterial growth.
All seven species detected colonizing the premature in-

fants have been previously implicated as agents of

nosocomial infection (Table 2), yet no infants colonized by
eukaryotes in this study received antifungals or showed any
symptoms consistent with acute fungal infection. However,
asymptomatic colonization has been shown to be a risk
factor for future fungemia [34]. Seven different eukaryotic
species were detected in at least one infant, with only
Candida albicans and Candida parapsilosis colonizing
more than one infant (Fig. 2a). Infant N2_070 was colo-
nized by two fungi, and infant N5_275 was colonized by
three. A permutation test was performed to determine if
fungi were unevenly distributed among the infants of this
study (i.e., if having one fungi predisposes colonization by
another). The probability of observing 13 fungi colonize ≤
10 unique individuals from a total population of 161 indi-
viduals was determined (Fig. 2c), with a resulting p value of
0.008. Thus, in this study, multiple fungi colonized the
same infant more often than expected random chance.
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Fig. 1 Phylogenetic tree of recovered eukaryote genomes. Genomes from infant-derived fecal samples (red) and NICU samples (blue) were
classified using a phylogenetic tree based on the concatenation of the sequences of 16 ribosomal proteins (see the “Methods” section). Branches
with greater than 50% bootstrap support are labeled with their bootstrap support range. Reference ribosomal protein sequences were obtained
from NCBI [30] and the Candida Genome Database [30]
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Fig. 2 Abundance of eukaryotes colonizing infants. a The scaled relative abundance of each eukaryote colonizing an infant. Numbers on the
right indicate the maximum relative abundance of the organism in that infant, and gray dividing lines indicate 0% relative abundance. Dots on
the line-plots indicate days of life on which fecal samples were collected and sequenced. Infants colonized by multiple eukaryotes are marked
with a colored asterisk. Pink bars indicate periods of antibiotic administration. b Metadata significantly associated with eukaryote abundance. The
distribution of values for all samples in which eukaryotes are not present (left; white box plot) compared to values of samples in which eukaryotes are
present (right; gray box plot). The p values were calculated using the Wilcoxon rank-sum test with Benjamini-Hochberg multiple testing p value
correction. P. lilacinum was excluded from statistical tests due to its likely contaminant status. c Fungi are distributed among fewer individuals than
expected by random chance. A permutation test was performed to determine the probability of observing 10 or less unique individuals colonized by
13 fungi from a population of 161 individuals. The number of unique individuals colonized is shown on the x-axis, and the empirical p value based on
100,000 trials is shown on the y-axis. An asterisk marks the true number of unique infants colonized in this study (10) and the associated p value

Table 2 Description of detected fungal taxa

Taxa Common habitats Pathogenicity Number of infants Locations In NICU Refs

Candida albicans Warm blooded animals Common nosocomial pathogen 6 Undetected [1]

Candida parapsilosis Warm blooded animals Common nosocomial pathogen
(especially neonates)

2 Sink [82]

Candida tropicalis Warm blooded animals Common nosocomial pathogen 1 Undetected [83]

Nectria haematococca Soil, rhizosphere Pathogen of immunocompromised
patients

0 Sink [84]

Malassezia sympodialis Human skin Opportunistic pathogen 1 Undetected [85]

Malassezia globosa Human skin Common commensal; implicated
in dandruff

0 Surfaces [86]

Malassezia pachydermatis Skin of mammals Opportunistic pathogen 1 Undetected [87]

Trichosporon asahii Soil, human skin and GI tract Rare opportunistic pathogen 1 Undetected [88]

Verruconis Soil, decaying vegetation Verruconis includes black yeasts;
human pathogens

0 Sink [89]

Exophiala Sinks, drain pipes, swimming pools Exophiala contains pathogens of
vertebrates

0 Sink [90]
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Fungal microbiome of the neonatal intensive care unit
Eukaryotic organisms were detected in 18 of the 24
metagenomes of the NICU room environment (Fig. 3).
Eukaryotic DNA made up an average of 1.23%, 1.22%,
and 0.03% of the communities in highly-touched sur-
faces, sinks, and counters and floors, respectively. In
order to compare the influence of room occupants and
sampling location on the room mycobiome, we per-
formed a multidimensional scaling (MDS) analysis
(Fig. 3a). Communities were differentiated based on
sampling location rather than infant room.
The mycobiome of the NICU surfaces is dominated by

species of Malassezia (Fig. 3b). The eukaryotic organ-
isms found in NICU sinks are distinct from, and more
diverse than, those found on surfaces. Sink communities
contained Necteria haematococca, Candida parapsilosis,
Exophiala, and Verruconis, all of which were detected in
multiple rooms and samples. Additionally, sinks in three
separate NICU rooms contain DNA from Rhabditidia
S2_005_000R1 (a novel nematode; see the previous sec-
tion for details). Diptera S2_005_002R2 (fly) also makes
up about 2% of the entire community for a single
time-point in the sink in infant S2_005’s room
(Fig. 3b). No macroscopic organisms were noted dur-
ing the sample collection process. It remains to be
seen whether these organisms contribute to the dis-
persal of organisms throughout the NICU or affect
the communities themselves.
Candida parapsilosis was detected in both the NICU

and in a premature infant, as were organisms of the
genus Malassezia. To contextualize the similarity

between C. parapsilosis strains in both communities, ge-
nomes assembled from both the infant and room envi-
ronments were compared to all available reference
genomes and each other using dRep [35]. C. parapsilosis
genomes from the NICU sink of infant S2_005 and gut
of infant N3_182 were more similar to reference ge-
nomes than each other (Additional file 10: Figure S3),
and thus do not represent direct strain transfer events.

Sequence analysis of new genomes
De novo assembly of eukaryotic genomes from metagen-
omes allows not only for the detailed genomic compari-
son and detection of novel organisms, but also for the
determination of ploidy, aneuploidy (abnormal number
of chromosomes in a cell), heterozygosity, and popula-
tion microdiversity of organisms in vivo. Changes in
ploidy and aneuploidy have been observed in many eu-
karyotes, especially yeasts [36, 37], and are thought to be
a strategy for relatively quick adaptation to shifts in en-
vironmental conditions. To determine the ploidy of ge-
nomes reconstructed in this study (Table 1), we
examined the read count for each allele at a given vari-
ant site. For a diploid genome, alleles are expected to
have a read count of 50%; for a triploid genome, alleles
are expected to have a read count of either 33% or 67%.
At low coverage, determining allele frequency with read
mapping has more stochasticity relative to high cover-
age. Simulated reads for haploid, diploid, and triploid ge-
nomes at 10× and 100× coverage suggest it is possible to
determine ploidy in even our low coverage genomes
(Additional file 11: Figure S4). Based upon this analysis,

A B

Fig. 3 Eukaryotic microbiome of the neonatal intensive care unit (NICU). a Multidimensional scaling (MDS) of the Bray-Curtis dissimilarity between
all NICU samples. Samples cluster by environment type rather than the room or occupant. The stress of the MDS was calculated to be
0.23. b Compositional profile of eukaryotic organisms detected in the NICU. Each colored box represents the percentage of reads mapping to an
organism’s genome, and the stacked boxes for each sample show the fraction of reads in that dataset accounted for by different eukaryotic genomes
in each sample
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all but one of our reconstructed genomes are diploid
(Additional file 12: Figure S5). C. lusitaniae is likely hap-
loid. Similarly, aneuploidy can be detected by searching
for regions where allele frequencies and/or read coverage
differs from the rest of the genome. Given the possibility
of a parasexual cycle in C. albicans [38], detecting aneu-
ploidy was of particular interest. We searched for evidence
of aneuploidy using both our reconstructed genomes and
reference genomes, but did not see evidence for aneu-
ploidy in any of our genomes using either method (Add-
itional file 13: Figure S6, Additional file 14: Figure S7).
For diploid genomes reconstructed from metagenomes,

the sequences for each chromosome are a composite of
sequences from the two alleles. Population microdiversity
can be detected based on read counts that exceed the ex-
pected ratio of 50%. Measuring population microdiversity
in this way can be confounded by sequencing error and

stochastic read coverage variation (Additional file 11: Fig-
ure S4). Genomic datasets for isolates are not expected to
have population microdiversity but will display sequencing
error and stochastic read coverage variation. Conse-
quently, we could separate sequencing noise from true
population microdiversity by comparing the patterns we
observed in our population genomic data to microdiver-
sity found in isolate genomic datasets [39]. For C. parapsi-
losis N3_182_000G1, the peak of allele frequencies is
wider than that of the sequenced Candida parapsilosis
isolate (Fig. 4a), suggesting considerable population
microdiversity. The P. lilacinum contaminant also
displayed substantial microdiversity (Additional file 15:
Figure S10). To avoid the stochasticity introduced by low
sequencing coverage (Additional file 11: Figure S4), only
genomes with over 50× sequencing coverage were
analyzed for population microdiversity in this way.

A

B C

Fig. 4 Ploidy, zygosity, and microdiversity of recovered eukaryotic genomes. a Histogram of the frequencies of the four most abundant variants
at each variant site in an isolate genome of C. parapsilosis and in a genome of C. parapsilosis recovered in this study. Black, red, dark blue, and
light blue bars indicate the abundances of the most abundant, second, third, and fourth most abundant variant, respectively. b For each genome,
black bars indicate the percentage of variant sites that are multiallelic (contain more variants at a site than would be expected based upon ploidy
alone). Haplotypes with more than two alleles are also considered to be multiallelic. A box plot compares the values from genomes originating
from infant guts vs. the NICU room. c For each genome, black bars indicate the number of heterozygous variants per kb across the entire
assembled genome
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Another method of measuring population microdiver-
sity involves determining the number of multiallelic sites
(sites with more than two sequence variants). Tests with
simulated reads were performed to confirm that
non-specific mapping of reads from unrelated species does
not bias results (see the “Methods” section). All of our ge-
nomes have more multiallelic sites than isolate-sequenced
genomes (Fig. 4b), suggesting that all of our genomes have
appreciable population microdiversity. Further, genomes
from the room had higher microdiversity than those from
the gut, although this comparison is not statistically sig-
nificant (p = 0.09).
Finally, overall heterozygosity for each genome was

measured by calculating the number of heterozygous
SNPs per kilo-base pair (Fig. 4c). A wide range of het-
erozygosity was observed within genomes. For most or-
ganisms, there was low heterozygosity, and for C.
albicans and C. parapsilosis, comparable to that of refer-
ence isolates. Malassezia restricta S2_018_000R1 has
both a particularly high rate of SNPs per kilo-base pair
and high population microdiversity.

Discussion
Eukaryotic genome recovery from metagenomes
augments information from isolate studies
In contrast with prior studies that have investigated mi-
crobial eukaryote genomes via sequencing of isolates, we
employed a whole-community sequencing approach and
could detect population microdiversity in both NICU
and infant-derived samples. Malassezia on NICU sur-
faces has particularly high population microdiversity.
Given that Malassezia are skin-associated fungi [32],
their high population microdiversity may be the conse-
quence of the accumulation of numerous strains
throughout the hospital via shedding of skin from differ-
ent individuals. This could also reflect naturally large
population variation present within the skin of a single
individual, as has been reported for skin-associated
bacteria [40, 41].
In the current analysis, most of the samples contained

one dominant eukaryotic genotype, presumably one well
adapted to the habitat, but other allele variants indicate
the presence of lower-abundance genotypes (Fig. 4b).
Given this dominance, it was possible to directly esti-
mate genome heterozygosity. Prior studies have reported
that C. albicans grows clonally in vivo [42], yet Candida,
when expressing a certain phenotype, undergoes mating
[42], most likely via a parasexual cycle [38]. For C. albi-
cans, the measured heterozygosity was comparable to
that of previously sequenced isolate genomes [34, 39].
Despite high heterozygosity of C. albicans, we see low
strain heterogeneity. It has been hypothesized that C.
albicans mating may occur primarily on the skin [43].
We speculate there may be more strain heterogeneity on

the skin or other areas of the human microbiome be-
sides in the gut, as it is probable that heterozygosity in
Candida populations in the human and room micro-
biomes arises due to mating with distinct coexisting
strains.
The heterozygosity measurements of all other fungi

except Malassezia were low, possibly indicating diversity
reduction due to inbreeding and/or strong selection for
specific alleles. We speculate that this reflects a long his-
tory of colonization of a habitat type that strongly selects
for a specific genotype, so genome structure reflects the
relatively low probability of recombination with strains
with divergent alleles (in other words, the presence of
gut-adapted and sink-adapted strains). However, without
the availability of similar genomes to compare to from
other habitats, we cannot rule out genetic bottlenecks
that took place prior to introduction to the hospital.
An important aspect of the current study is the se-

quencing of reagent controls, which allowed us to iden-
tify P. lilacinum as a likely contaminant. It is interesting
to note that peak allele frequency analysis indicated high
population microdiversity for the contaminant. Genomic
microdiversity of the reagent-associated population may
indicate its long-term persistence in the reagents, analo-
gous to that shown for Delftia metagenome contamin-
ation that was present in Pippin size selection cassettes
for many years [44]. Given the increasing use of metage-
nomic sequencing for pathogen detection and prior re-
ports of P. lilacinum as both a contaminant and disease
agent [45, 46], it will be important to rule out a reagent
source of P. lilacinum in future diagnostic studies.

Premature infants are colonized by eukaryotes early in
life
Six percent of infants in this study were colonized by
fungi, lower than most previous studies of infants [2, 12–
14]. Compared to shotgun sequencing, DGGE and ITS
methods should be more sensitive due to the use of PCR,
and thus may be more suitable for broad ecological sur-
veys. However, the ability to amplify very rare sequences
from organisms present at exceedingly low abundance
levels complicates interpretation of the measured
colonization frequencies. Our shotgun sequencing-based
methods provide a more balanced view of community
composition than methods that rely on PCR, and detec-
tion of populations that comprise more than ~ 0.05% of
the community DNA is possible with read-mapping (Add-
itional file 1: Table S1; Additional file 6: Figure S2). Fur-
ther, whole-community sequencing measures the relative
abundance of eukaryotes in the context of the whole com-
munity, something that cannot be done using ITS, DGGE,
or culturing-based methods. Fungi are generally consid-
ered low-abundance members of the gut microbiome [1],
yet in this study, they reached levels as high as 55%, 78%,
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and 96% of the entire community (Fig. 2). Differences
in fungal communities during early life are known to
have effects on infant health later in life [8], and it
remains to be seen if extreme abundance levels like
this have long-lasting effects.
All infants profiled in this study received 2–7 days of

prophylactic antibiotics upon birth, meaning antibiotic
use is highly correlated with earlier days of life
(Additional file 7: Table S4). While both antibiotic ad-
ministration and DOL were significantly correlated with
eukaryote abundance, consistent with previous studies of
fungal colonization of low birth weight infants [2, 47],
infants who received antibiotics later in life were not col-
onized by eukaryotes. This suggests that day of life is the
more important factor. However, eukaryotes may have
not been detected in later collected microbiome samples
from those infants due to increased relative abundance
of bacteria. In other words, the sensitivity of the shotgun
sequencing method may be insufficient to detect fungi
that persist at low abundance.
Interestingly, permutation testing revealed that fungi

colonized the same infants more often than expected by
random chance. There may be several explanations for
this phenomenon. For example, some infants may be
more genetically predisposed to fungal colonization. Al-
ternatively, fungi may interact synergistically, with the
first colonizing species establishing a niche in the gut
that makes it more suitable for other fungi. Should this
effect prove to be important, it may help to explain how
fungal colonization contributes to development of
asthma or allergies [8].

Differences in colonization patterns of NICU sinks and
surfaces
Yeasts of the genus Malassezia, a common member of the
skin microbiome [5, 30], dominated NICU surfaces.[5,
32]. This result is analogous to findings of previous stud-
ies, which showed that typically skin-associated bacteria
dominate consortia associated with hospital surfaces and
parts of other built environments [19, 26, 27, 48, 49].
The same eukaryotes were never detected in sinks and

surfaces, and the sinks hosted a comparatively diverse
and variable eukaryotic community (Fig. 3). Sinks are in-
herently heterogeneous environments with different
moisture levels and chemical conditions. Punctuated
cleaning events may also give rise to temporal variation.
Diptera S2_005_002R2 (fly), which was present in only
one sink sample, may be explained by sequencing of
sink-associated eggs, as no macroscopic organisms were
detected during the collection process. Recent studies
have suggested that insects play significant roles in the
dispersal of fungi, and this may occasionally occur in the
NICU [50].

The other metazoan detected, the worm Rhabditida
S2_005_001R2, was found in sinks from multiple rooms
and samples collected months apart. These organisms
may also be a source of fungi, and like the fly, could im-
pact the overall NICU microbiome. Intriguingly, the par-
tial genome appears to derive from an organism that is
equally related to a bovine lungworm and Caenorhabdi-
tis elegans and is potentially novel at the class level
(Fig. 1). Although we cannot evaluate its medical im-
portance, the organism may have been macroscopically
described but lack of a reference genome prevents
identification.

Conclusions
We applied genome-resolved metagenomics to study eu-
karyotes in the gut microbiomes of infants and their
NICU rooms and detected eukaryotes associated with
pathogenesis of immunocompromised humans, com-
mensals of human skin, and fungi typical of environ-
ments such as soil and drain pipes. Genomic analysis of
diploid organisms found low rates of heterozygosity that
may be explained by persistence of hospital-associated
lineages in environments that impose strong selective
pressure. The application of this approach in other con-
texts should greatly expand what is known about
eukaryotic genomic diversity and population variation.

Methods
Subject recruitment, sample collection, and metagenomic
sequencing
This study made use of many different previously analyzed
infant datasets. These datasets have previously published
descriptions of the study design, patient selection, and
sample collection, and are referred to as NIH1 [51, 52],
NIH2 [19], NIH3 [53], NIH4 [54], Sloan2 [19], and
SP_CRL [55]. Infants were chosen for inclusion in this
study irrespective of fungal disease state. Negative extrac-
tion controls were performed and sequenced during the
sequencing of the Sloan2 cohort. The last well of the ex-
traction block (H12) was left empty, and this well was
treated the same as all other samples throughout the ex-
traction protocol. It is therefore a control for the kit re-
agents, the sterility of the kit tubes/plates, and the aseptic
technique of the technician who performed the extraction.
S2_CON_001E1, S2_CON_002E1, and S2_CON_003E1
were all on different extraction blocks, and S2_
CON_002E2 was a second well on the same block as
S2_CON_002E1.
This study also involved the collection and processing of

an additional 269 samples from 53 infants. Newly
collected infant fecal samples followed the same sample
collection and DNA extraction protocol as described pre-
viously [53, 56]. Metagenomic sequencing of newly col-
lected infant fecal samples was performed in collaboration
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with the Functional Genomics and Vincent J. Coates
Genomics Sequencing Laboratories at the University of
California, Berkeley. Library preparation on all samples
was performed using the following basic protocol: (1)
gDNA shearing to target a 500 bp average fragment size
was performed with the Diagenode Bioruptor Pico, (2)
end repair, A-tailing, and adapter ligation with an Illumina
universal stub with Kapa Biosystems Hyper Plus Illumina
library preparation reagents, and (3) a double AMpure XP
bead cleanup, followed by indexing PCR with dual-
matched 8 bp Illumina compatible primers. Final sequence
ready libraries were visualized and quantified on the Ad-
vanced Analytical Fragment Analyzer, pooled into 11 sub-
pools based on mass, and checked for pooling accuracy by
sequencing on Illumina MiSeq Nano sequencing runs. Li-
braries were then further purified using 1.5% Pippin Prep
gel size selection assays collecting library pools from 500
to 700 bp. Pippin pools were visualized on fragment
analyzer and quanted with Kapa Illumina library quant
qPCR reagents and loaded at 3 nM. The 11 pools were
then sequenced on individual Illumina HiSeq4000 150
paired-end sequencing lanes with 2% PhiX v3 spike-in
controls. Post-sequencing bcl files were converted to
demultiplexed fastq files per the original sample count
with Illumina’s bcl2fastq v2.19 software. New metage-
nomic data was processed in the same manner as in the
prior studies, and as described previously [54].
Environmental metagenomes were described and pub-

lished previously as part of the Sloan2 cohort study [19].
All samples were collected over a roughly one-year
period from the same NICU at the University of Pitts-
burgh Magee-Womens Hospital. In order to generate
enough DNA for metagenomic sequencing, DNA was
collected from multiple sites in the NICU and combined
into three separate pools for sequencing. Highly-touched
surfaces included samples originating from the isolette
handrail, isolette knobs, nurses hands, in-room phone,
chair armrest, computer mouse, computer monitor, and
computer keyboard. Sink samples included samples from
the bottom of the sink basin and drain. Counters and
floors consisted of the room floor and surface of the
isolette. See previous publications for details [19, 57].

Eukaryotic genome binning and gene prediction
Reads from each sample were assembled independently
using IDBA-UD [58] under default settings. A co-assem-
bly was also performed for each infant, consisting of
reads from all samples taken from that infant
concatenated together. Binning assembled sequence
scaffold into eukaryotic genomes was performed using a
EukRep-based pipeline, described in detail in West et al.
[30]. In cases where time-series data were available, sam-
ples were pre-binned using time-series information and
eukaryotic bins were then subsequently identified with

EukRep. In cases where multiple genomes of the same or-
ganism were recovered from multiple samples from the
same infant, the most complete genome was selected for
further analysis. In addition to the gene prediction meth-
odology outlined previously [30], a second homology-
based gene prediction step was performed. Ribosomal S3
(rpS3) proteins were identified in genomes using a custom
ribosomal protein S3 (rpS3) profile HMM, and identified
sequences were searched against the NCBI database [59]
and UniProt [60] using BLAST [61]. For each de
novo-assembled genome, gene sets for the top 1–3 most
similar organisms were used as homology evidence for a
second-pass gene prediction step with AUGUSTUS [62],
as implemented in MAKER [63]. For Rhabditida
S2_005_001R2, first-pass gene predictions were used, as
homology evidence decreased overall estimated genome
completeness. Genome completeness was estimated using
BUSCO [64] and is based on the number of detected
single-copy orthologs. N50 was calculated using the pro-
gram checkM [65].
To verify bins, the taxonomy of each scaffold was de-

termined by searching gene sequences against the Uni-
Prot database [53]. All bins were found to have a
consistent phylogenetic signal, except the bin created
from sample S2_009_000R2. Scaffolds had similar GC
content and sequencing coverage, but were either domi-
nated by genes with homology to the class Sordariomy-
cetes or Eurotiomycetes. Scaffolds from the original
“megabin” were split into two separate bins based on
this phylogenetic signal, resulting in the genomes Nec-
tria haematococca S2_009_000R2 and Exophiala sp.
S2_009_000R2. Gene prediction was run again for both
of these genomes, as described above.

Phylogenetic analyses
In order to construct a phylogenetic tree, rpS3 proteins
from each de novo genome were detected as described
above and searched against the NCBI database using
BLAST. Protein sets of the 3–5 most similar organisms on
NCBI were downloaded for inclusion. Other phylogenetic-
ally important genomes, such as A. thaliana, were in-
cluded as well. For each protein set, 16 ribosomal proteins
(bacterial ribosomal protein names L2, L3, L4, L5, L6, L14,
L15, L16, L18, L22, L24, S3, S8, S10, S17, and S19) were
identified using custom-built hidden Markov models
(HMMs) with HMMER [66], using the noise cutoff (NC).
The 16 ribosomal protein datasets were then aligned with
MUSCLE [67] and trimmed by removing columns con-
taining 90% or greater gaps. The alignments were then
concatenated. A maximum likelihood tree was constructed
using RAxML v.8.2.10 [68] on the CIPRES web server [69]
with the LG plus gamma model of evolution (PROTGAM-
MALG) and with the number of bootstraps automatically
determined with the MRE-based bootstrapping criterion.
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The constructed tree was visualized with Interactive Tree
of Life (ITOL) [70].
Average nucleotide identity (ANI) between binned ge-

nomes and reference genomes was determined with dRep
[35]. Resulting whole genome ANI values were used in
combination with a 16 ribosomal protein phylogenetic
tree to determine the taxonomy of de novo genomes. For
genomes without a species-level taxonomy, genomes were
searched against the entire NCBI nucleotide database
using BLAST. This resulted in a species-level call for
Malassezia restricta S2_018_000R1. For genomes without
a genus-level taxonomy (Rhabditida S2_005_001R2 and
Diptera S2_005_002R2), an additional step was taken.
Mitochondrial COI genes were identified by searching D.
melanogaster and C. elegans COI genes against our
PRODIGAL [71] predicted genes sets with UBLAST [72].
Significant hits from our protein sets were then searched
against the Barcode Of Life Database (BOLD) [31] and
NCBI in order to identify sequences with high identity to
our novel genomes. No significant hits were identified.

Mapping-based genome detection
To detect eukaryotes in an assembly-free manner, reads
were mapped to a curated genome collection. This gen-
ome collection consists of all fungal genomes in RefSeq
(accessed 9/14/17) [73], as well as genomes assembled in
this study with no close representatives in RefSeq (average
nucleotide identity of 90% or higher according to Mash
[74]). The six genomes with no close representatives in
RefSeq were Malassezia restricta S2_018_000R1, Diptera
S2_005_002R2, Exophiala sp. S2_009_000R2, Verruconis
sp. S2_005_001R2, and Rhabditida S2_005_001R2. Can-
dida parapsilosis CDC317 was also included, as there
were no genomes of C. parapsilosis in RefSeq.
Reads from all samples were mapped to this reference

genome list using Bowtie 2 [75]. To determine which or-
ganisms were present in each sample, we primarily relied
on breadth of coverage as reported by strainProfiler
(https://github.com/MrOlm/strainProfiler). In NICU
samples, all genomes with 50% breadth of coverage or
above were considered present. For infant samples, reads
resulting from concatenating all samples belonging to
the same infant were first used to determine which fungi
are reliably detected. Genomes with 50% breadth of
coverage or above were considered present with two ex-
ceptions, Malassezia pachydermatis and Malassezia
sympodialis, at ~ 0.2 and 0.4 breadth, respectively. Con-
sidering the extensive and distributed breadth of cover-
age for these genomes (Additional file 3: Figure S1C),
they were considered present in the infant despite hav-
ing low breadth of coverage overall. Reads from each in-
dividual sample from each infant were then mapped to
all fungi considered to be present in that infant to deter-
mine changes over time. Relative abundance of genomes

was determined using the formula: (number of reads
mapping to genome/total number of reads in sample).
The lowest coverage genome with this breadth thresh-

old was 1.1× coverage. To determine the limit of detec-
tion, we first determined the relative abundance needed
to achieve 1.1× coverage using the median infant
co-assembly depth (27.5 Gb) and the median eukaryotic
genome length in our database of organisms that were
detected at least once (13.7 Mbp). We then calculated
the limit of detection using the formula ((min coverage ×
median length)/median co-assembly depth). This lead to
an estimated limit of detection of 0.05% relative abun-
dance for infant fungi detection, through this number
has significant variability depending on how deep each
individual infant was sequenced.

Negative extraction control analysis
Sequences resulting from negative extraction controls
were computationally processed in an identical manner to
other samples. Reads from all control samples were
mapped to the curated genome collection described
above, and the relative abundance of all genomes with at
least 10% breadth was plotted in Additional file 3: Figure
S1. The program strainProfiler (https://github.com/
MrOlm/strainProfiler) was used to compare reads in sam-
ple S2_CON_000E3 to P. lilacium genomes assembled in
this study and all publically available P. lilacinum ge-
nomes. Version 0.2 of the program was run with default
settings, resulting in an average nucleotide identity meas-
ure between sample S2_CON_000E3 and all P. lilacinum
genomes. Next, dRep v1.4.3 [35] was used to compare the
P. lilacinum genomes with each other using the command
“dRep cluster --SkipMash”. The resulting distance matrix
was merged with the values generated from strainProfiler
to generate the dendrogram in Additional file 3: Figure
S1B. Full code for implementation is available at https://
github.com/MrOlm/InfantEukaryotes.
All publically available Malassezia genomes were ac-

quired by searching for the term “Malassezia” in the as-
sembly section of NCBI and downloading them manually.
Genomes were compared to each other, and representa-
tive genomes were chosen using dRep v1.4.3 and the com-
mands “dRep compare --SkipMash” and “dRep choose
--noQualityFiltering -sizeW 0.5”. A concatenation of all
negative extraction control sequences was then mapped to
the resulting genomes using Bowtie 2. Custom scripts
were used to determine the breadth of coverage of each
10,000 bp window of each fungal genome in each sample,
and each window with at least 50% breadth was marked
with a tick using Circos [76] to visualize. Open source
code detailing this analysis is available at https://github.
com/MrOlm/InfantEukaryotes.
To determine the expected breadth of coverage (per-

centage of genome base pairs with at least one read) for
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a given depth of coverage (average number of reads at
any given genome base pair), a simulation was per-
formed. Metagenomic reads were first simulated for
Escherichia coli and Candida albicans reference ge-
nomes using pIRS (https://github.com/galaxy001/pirs).
Simulated reads were mapped back to the original refer-
ence genome, and the resulting .bam file was subset 20
times to simulate various depths of coverage. The
breadth and depth of coverage was plotted and an ex-
ponential line of best fit was calculated using SciPy
[77]. The line had an R2 value over 0.99 and was de-
fined using the equation: breadth = (− 1 ×e^(− 0.883 ×
coverage)) + 1. This equation was used to determine the
expected breadth of coverage for a given depth of
coverage.

Statistical analyses and generation of MDS plot
To compare the eukaryotic communities present in
NICU room samples, multidimensional scaling (MDS)
based on Bray-Curtis distance was performed. The
Bray-Curtis distance was calculated based on the relative
abundance of each eukaryote present in a sample using
the python library SciPy (command scipy.spatial.distan-
ce.braycurtis) [77]. Eukaryotes with at least 50% breadth
of coverage were considered present in a sample. MDS
was performed on the resulting all-vs-all distance matrix
using the python library sklearn (command sklearn.ma-
nifold. MDS) [78]. MDS was plotted using a custom
function in Matplotlib [79]. Stress was calculated using
sklearn. Open source code detailing this analysis is avail-
able at https://github.com/MrOlm/InfantEukaryotes.
We tested for significant associations between samples

containing eukaryotes and various forms of metadata
using the python SciPy package [77]. Included were six
pieces of continuous metadata (DOL, infant birth weight,
etc.), 23 pieces of categorical metadata (specific antibiotics
given and specific NICU room locations), and the
phyla-level abundance of all bacterial genomes (seven total
phyla) (Additional file 7: Table S4). Bacterial phyla-level
abundance was determined by summing the relative abun-
dance of all bacterial genomes present in a sample. Bacter-
ial genomes for previously sequenced samples are
available in a previous publication [54], and bacterial ge-
nomes for newly sequenced genomes were binned using
the same methods. Metadata was filtered such that be-
tween 20 and 80% of values were non-zero in both sam-
ples containing eukaryotes and samples not containing
eukaryotes. This resulted in a total of 13 pieces of meta-
data for statistical testing (Additional file 7: Table S4).
In order to eliminate statistical bias introduced

through sampling the same infant multiple times, one
sample from each infant was chosen for statistical tests.
If the infant was not colonized by a eukaryote, the sam-
ple was chosen at random. If the infant was colonized by

a eukaryote, the sample with the highest eukaryotic
abundance was chosen. Samples were considered to have
a eukaryote present if the sum of the relative abundance
of eukaryotes with at least 50% breadth was at least 0.1%
relative abundance. Fisher’s exact test was used for cat-
egorical metadata, and Wilcoxon rank-sum test was used
for continuous data. Benjamini-Hochberg p value cor-
rection [80] was performed to account of multiple hy-
pothesis testing. The results of all statistical tests are
provided in Additional file 8: Table S5. Open source
code detailing this statistical analysis is available at
https://github.com/MrOlm/InfantEukaryotes.
A permutation test was performed to determine if

fungi were distributed randomly among the infants.
First, 100,000 trials were run where each trial consisted
of randomly selecting 13 individuals with replacement
from a total population of 161 individuals. The number
of infants chosen was determined for each trial, and an
empirical p value was determined based on how many
trials had 10 of less infants chosen. Open source code
detailing this statistical analysis is available at https://
github.com/MrOlm/InfantEukaryotes.

Ploidy, heterozygosity, and population microdiversity
In order to identify variants, reads from the sample in
which a particular genome was binned from were
mapped back to the de novo assembled genome using
Bowtie 2 [75] with default parameters. The PicardTool
(http://broadinstitute.github.io/picard/) functions “Sort-
Sam” and “MarkDuplicates” were used to sort the result-
ing sam file and remove duplicate reads. FreeBayes [81]
was used to perform variant calling with the options
“--pooled-continuous -F 0.01 -C 1.” Variants were fil-
tered downstream to include only those with support of
at least 10% of total mapped reads in order to avoid false
positives. Furthermore, to avoid including variants as a
result of mismapping reads, variants were filtered to in-
clude only those with coverage depth within a range of
the average genome coverage plus or minus half of the
genome mean coverage. SNP read counts were calcu-
lated using the “AO” and “RO” fields in the FreeBayes
vcf output file. Multiallelic sites were defined as sites
with two or more non-reference alleles. Variants were
called using the same methodology for both simulated
read datasets and isolate genomes. Variants were used to
determine ploidy, heterozygosity, and population micro-
diversity as described in the “Results” section. Source
code with full implementation details is available at
https://github.com/MrOlm/InfantEukaryotes.
To confirm that multiallelic sites are not the result of

non-specifically mapped reads from the bacterial com-
munity, we fragmented with pIRS (https://github.com/
galaxy001/pirs) a diploid C. parapsilosis genome into
simulated reads and added these reads to an infant gut
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metagenome sample without C. parapsilosis. The result-
ing read dataset along with a separate dataset comprised
of only the simulated reads were then mapped to the
original C. parapsilosis genome. No additional variants
were detected between the sample with metagenomic
reads and the sample without, indicating non-specifically
mapped reads from bacterial community members have
a minimal effect.
In order to determine the effect of stochastic read

coverage on variant frequencies, simulated haploid, dip-
loid, and triploid genomes were generated using the
pIRS (https://github.com/galaxy001/pirs) diploid com-
mand with the C. albicans P57072 reference genome.
The command was used once to generate a diploid gen-
ome and twice to generate a triploid genome. Simulated
reads were then generated for each genome using the
pIRS simulate command at 10×, 50×, and 100× cover-
age. Assemblies and raw reads were downloaded for
both C. albicans A48 and C. parapsilosis CDC317 from
NCBI to be used as example isolate genomes for com-
parison. Based on this analysis, only the two genomes
with at least 50× coverage were included in peak allele
frequency analysis.
Genome aneuploidy was analyzed in two ways. First,

reads from each sample were mapped back to genomes
assembled from that sample. The coverage of each scaf-
fold was determined in 10 kbp windows, and the coverage
of all windows for each scaffold over 10 kbp was plotted.
Plots were then analyzed for scaffolds with differing cover-
age, indicative of the presence of multiple copies of a sub-
set of the chromosomes (Additional file 13: Figure S6).
Second, reads from samples with genomes assembled
from them were mapped to the closest available reference
genome. The same procedure was then performed with
these reference genomes in all cases where at least 80% of
the genome was covered by reads. This allowed the deter-
mination of aneuploidy on the whole-chromosome level
(Additional file 14: Figure S7). Both methods agreed that
in all cases, no aneuploidy was detected.

Additional files

Additional file 1: Table S1. Sequencing metadata for all infant and
room metagenomic samples. (CSV 69 kb)

Additional file 2: Table S2. Detailed information about genome
assemblies.(CSV 1 kb)

Additional file 3: Figure S1. Fungal contaminants are present in
negative extraction controls. (A) Relative abundance of eukaryotes in four
sequenced extraction controls (based on read mapping). (B) P. lilacinum
sequences from the extraction control (red) closely resemble sequences
recovered from gut and room samples (blue), and are distinct from
publically available genomes (black). (C, D) Each ring shows the breadth
of coverage across (C) four different Malassezia genomes or (D) a
Purpureocillium lilacinum reference genomes for an individual sample.
Red, blue, and green rings are extraction controls, NICU room samples,
and premature infant guts samples respectively. Each colored tick

represents a 10 kb window in which the breadth of coverage is at least
50%. (PNG 461 kb)

Additional file 4: Figure S9. Breadth of coverage vs. depth of coverage.
The breadth of coverage and depth of coverage resulting from mapping
simulated reads of different depths back to the reference genome. The
equation for the line of best fit and R2 value are also shown. (PNG 16 kb)

Additional file 5: Table S3. Mapping-based abundance of eukaryote
genomes in all samples. (CSV 24934 kb)

Additional file 6: Figure S2. The sequencing depth and relative
abundance needed to detect eukaryotic genomes of various lengths at
1x coverage. (PDF 112 kb)

Additional file 7: Table S4. Metadata for statistical associations.
(CSV 349 kb)

Additional file 8: Table S5. Statistical associations of samples
containing eukaryotes with metadata. (CSV 1 kb)

Additional file 9: Figure S8. Metagenomic contaminants display similar
relative abundance patterns to genuine community members. The scaled
relative abundance of each eukaryote colonizing an infant is shown.
Numbers on the right indicate the maximum relative abundance of the
organism in that infant, and grey dividing lines indicate 0% relative
abundance. Dots on the line-plots indicate days of life on which fecal
samples were collected and sequenced. Both genuine community
members and metagenomic contaminants display a pattern of decreasing
relative abundance as infants age, suggesting that the decrease may be due
to bacterial grown rather than fungal decline. (PNG 100 kb)

Additional file 10: Figure S3. C. parapsilosis genomes from the NICU
sink of infant S2_005 and gut of infant N3_182 were more similar to
reference genomes than each other. (PNG 138 kb)

Additional file 11: Figure S4. Effect of coverage on variant frequency
determination as assessed through simulation of metagenomic reads.
(PNG 144 kb)

Additional file 12: Figure S5. Raw variant frequency graphs used to
determine ploidy of all de novo assembled genomes. (PDF 448 kb)

Additional file 13: Figure S6. Determination of aneuploidy for all de
novo assembled genomes based on scaffold coverage. The coverage of
each 10kb window of each scaffold is shown. Scaffolds are ordered from
largest to smallest, and rotate between red and black colors. No large
portions of chromosomes were detected as having a multiple of 1/2x the
coverage of the genome average as would be expected from a diploid
genome. (PNG 2848 kb)

Additional file 14: Figure S7. Alternative mapping-based
determination of aneuploidy for genomes with high quality reference
genomes. No large portions of chromosomes were detected as having a
multiple of 1/2x the coverage of the genome average as would be
expected from a diploid genome. (PNG 1497 kb)

Additional file 15: Figure S10. Population heterogeneity of the P.
lilacinum metagenomic contaminant. Histogram of the frequencies of the
four most abundant variants at each variant site in the genome. Black,
red, dark blue and light blue bars indicate the abundances of the most
abundant, second, third and fourth most abundant variant, respectively.
(PNG 19 kb)

Acknowledgements
We thank Christopher T. Brown for helpful discussions and Nicholas
Bhattacharya for advice on statistical methods.

Funding
This research was supported by the National Institutes of Health (NIH) under
award RAI092531A, the Alfred P. Sloan Foundation under grant APSF-2012-
10-05, and National Science Foundation Graduate Research Fellowships to
M.O. and P.W. under Grant No. DGE 1106400. This work used the Vincent J.
Coates Genomics Sequencing Laboratory at UC Berkeley, supported by NIH
S10 OD018174 Instrumentation Grant.

Olm et al. Microbiome            (2019) 7:26 Page 13 of 16

https://github.com/galaxy001/pirs
https://doi.org/10.1186/s40168-019-0638-1
https://doi.org/10.1186/s40168-019-0638-1
https://doi.org/10.1186/s40168-019-0638-1
https://doi.org/10.1186/s40168-019-0638-1
https://doi.org/10.1186/s40168-019-0638-1
https://doi.org/10.1186/s40168-019-0638-1
https://doi.org/10.1186/s40168-019-0638-1
https://doi.org/10.1186/s40168-019-0638-1
https://doi.org/10.1186/s40168-019-0638-1
https://doi.org/10.1186/s40168-019-0638-1
https://doi.org/10.1186/s40168-019-0638-1
https://doi.org/10.1186/s40168-019-0638-1
https://doi.org/10.1186/s40168-019-0638-1
https://doi.org/10.1186/s40168-019-0638-1
https://doi.org/10.1186/s40168-019-0638-1


Availability of data and materials
The datasets supporting the conclusions of this article are available in the
NCBI BioProeject repository, PRJNA471744 https://www.ncbi.nlm.nih.gov/
bioproject/?term=PRJNA471744, the Short Read Archive (SRA) SRR5420274
to SRR5420297, and GitHub, https://github.com/MrOlm/InfantEukaryotes.

Authors’ contributions
MO, BB, MJ, and JFB conceived of the study design. MO and PW performed
the computational analysis. RB recruited the study subjects and collected the
DNA samples, and BF performed the DNA extractions. MO, PW, and JFB wrote
the manuscript, and all authors contributed to the manuscript revisions. All
authors read and approved the final manuscript.

Ethics approval and consent to participate
This study was reviewed and approved by the University of Pittsburgh
Institutional Review Board (IRB PRO12100487 and PRO10090089).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details
1Department of Plant and Microbial Biology, University of California, Berkeley,
CA, USA. 2Department of Surgery, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA. 3Division of Newborn Medicine,
Magee-Womens Hospital of UPMC, Pittsburgh, PA, USA. 4Department of
Earth and Planetary Science, University of California, Berkeley, CA, USA.
5Department of Environmental Science, Policy, and Management, University
of California, Berkeley, CA, USA. 6Earth Sciences Division, Lawrence Berkeley
National Laboratory, Berkeley, CA, USA. 7Chan Zuckerberg Biohub, San
Francisco, CA, USA. 8Present address: Kaleido Biosciences, Bedford, MA, USA.

Received: 14 September 2018 Accepted: 29 January 2019

References
1. Schulze J, Sonnenborn U. Yeasts in the gut: from commensals to infectious

agents. Dtsch Ärztebl Int. 2009;106:837.
2. Baley JE, Kliegman RM, Boxerbaum B, Fanaroft AA. Fungal colonization in

the very low birth weight infant. Pediatr. 1986;78:225–32.
3. Tamburini S, Shen N, Wu HC, Clemente JC. The microbiome in early life:

implications for health outcomes. Nat Med. 2016;22:713–22.
4. Ott SJ, Kühbacher T, Musfeldt M, Rosenstiel P, Hellmig S, Rehman A, et al.

Fungi and inflammatory bowel diseases: alterations of composition and
diversity. Scand J Gastroenterol. 2008;43:831–41.

5. Parfrey LW, Walters WA, Knight R. Microbial eukaryotes in the human
microbiome: ecology, evolution, and future directions. Front Microbiol.
2011;2:153 Available from: http://journal.frontiersin.org/article/10.3389/fmicb.
2011.00153/abstract.

6. Surawicz CM, Elmer GW, Speelman P, McFarland LV, Chinn J, van Belle G.
Prevention of antibiotic-associated diarrhea by Saccharomyces boulardii: a
prospective study. Gastroenterology. gastrojournal.org. 1989;96:981–8.

7. Wildschutte H, Wolfe DM, Tamewitz A, Lawrence JG. Protozoan predation,
diversifying selection, and the evolution of antigenic diversity in Salmonella.
Proc Natl Acad Sci U S A. 2004;101:10644–9.

8. Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, et al.
Neonatal gut microbiota associates with childhood multisensitized atopy
and T cell differentiation. Nat Med. 2016; Available from: http://www.nature.
com/doifinder/10.1038/nm.4176.

9. Fridkin SK, Jarvis WR. Epidemiology of nosocomial fungal infections. Clin
Microbiol Rev. 1996;9:499–511.

10. Manzoni P, Mostert M, Castagnola E. Update on the management of
Candida infections in preterm neonates. Arch Dis Child Fetal Neonatal Ed.
fn.bmj.com. 2015;100:F454–9.

11. Aliaga S, Clark RH, Laughon M, Walsh TJ, Hope WW, Benjamin DK, et al.
Changes in the incidence of candidiasis in neonatal intensive care units.
Pediatrics. 2014;133:236–42.

12. Stewart CJ, Marrs ECL, Magorrian S, Nelson A, Lanyon C, Perry JD, et al. The
preterm gut microbiota: changes associated with necrotizing enterocolitis
and infection. Acta Paediatr. 2012;101:1121–7.

13. Stewart CJ, Nelson A, Scribbins D, Marrs ECL, Lanyon C, Perry JD, et al.
Bacterial and fungal viability in the preterm gut: NEC and sepsis. Arch Dis
Child Fetal Neonatal Ed. 2013;98:F298–303.

14. LaTuga MS, Ellis JC, Cotton CM, Goldberg RN, Wynn JL, Jackson RB, et al.
Beyond bacteria: a study of the enteric microbial consortium in extremely
low birth weight infants. Driks A, editor. PLoS One. 2011;6:e27858.

15. Bush RK, Portnoy JM. The role and abatement of fungal allergens in allergic
diseases. J Allergy Clin Immunol. 2001;107:S430–40.

16. Fujimura KE, Johnson CC, Ownby DR, Cox MJ, Brodie EL, Havstad SL, et al.
Man’s best friend? The effect of pet ownership on house dust microbial
communities. J Allergy Clin Immunol. 2010;126:410–2 412.e1–3.

17. Laforest-Lapointe I, Arrieta M-C. Microbial eukaryotes: a missing link in gut
microbiome studies. mSystems. 2018;3:e00201–17.

18. Huffnagle GB, Noverr MC. The emerging world of the fungal microbiome.
Trends Microbiol. 2013;21:334–41.

19. Brooks B, Olm MR, Firek BA, Baker R, Thomas BC, Morowitz MJ, et al. Strain-
resolved analysis of hospital rooms and infants reveals overlap between the
human and room microbiome. Nat Commun. 2017;8:1814.

20. Sanchez V, Vazquez JA, Barth-Jones D, Dembry L, Sobel JD, Zervos MJ.
Epidemiology of nosocomial acquisition of Candida lusitaniae. J Clin
Microbiol. 1992;30:3005–8.

21. Vazquez JA, Sanchez V, Dmuchowski C, Dembry LM, Sobel JD, Zervos MJ.
Nosocomial acquisition of Candida albicans: an epidemiologic study. J Infect
Dis. academic.oup.com. 1993;168:195–201.

22. Pfaller MA. Nosocomial candidiasis: emerging species, reservoirs, and modes
of transmission. Clin Infect Dis. academic.oup.com. 1996;22(Suppl 2):S89–94.

23. Mesquita-Rocha S, Godoy-Martinez PC, Gonçalves SS, Urrutia MD, Carlesse F,
Seber A, et al. The water supply system as a potential source of fungal
infection in paediatric haematopoietic stem cell units. BMC Infect Dis.
bmcinfectdis.biomedcentral.com. 2013;13:289.

24. Oberauner L, Zachow C, Lackner S, Högenauer C, Smolle K-H, Berg G. The
ignored diversity: complex bacterial communities in intensive care units
revealed by 16S pyrosequencing. Sci Rep. 2013;3:1413.

25. Lax S, Sangwan N, Smith D, Larsen P, Handley KM, Richardson M, et al. Bacterial
colonization and succession in a newly opened hospital. Sci Transl Med. 2017;9
Available from: http://stm.sciencemag.org/content/9/391/eaah6500.abstract.

26. Shin H, Pei Z, Martinez KA, Rivera-Vinas JI, Mendez K, Cavallin H, et al. The
first microbial environment of infants born by C-section: the operating
room microbes. Microbiome. 2015;3 Available from: http://www.
microbiomejournal.com/content/3/1/59.

27. Hewitt KM, Mannino FL, Gonzalez A, Chase JH, Caporaso JG, Knight R, et al.
Bacterial diversity in two neonatal intensive care units (NICUs). Ravel J,
editor. PLoS One. 2013;8:e54703.

28. Bokulich NA, Mills DA, Underwood MA. Surface microbes in the neonatal
intensive care unit: changes with routine cleaning and over time. J Clin
Microbiol. 2013;51:2617–24.

29. Wilson MR, O’Donovan BD, Gelfand JM, Sample HA, Chow FC, Betjemann JP,
et al. Chronic meningitis investigated via metagenomic next-generation
sequencing. JAMA Neurol. 2018;75:947–55.

30. West PT, Probst AJ, Grigoriev IV, Thomas BC, Banfield JF. Genome-
reconstruction for eukaryotes from complex natural microbial communities.
Genome Res. genome.cshlp.org. 2018;28:569–80.

31. Ratnasingham S, Hebert PDN. BOLD: the barcode of life data system. Mol Ecol
Notes. 2007;7:355–64 Wiley Online Library. (http://www.barcodinglife.org).

32. Gaitanis G, Magiatis P, Hantschke M, Bassukas ID, Velegraki A. The Malassezia
genus in skin and systemic diseases. Clin Microbiol Rev. 2012;25:106–41.

33. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al.
Reagent and laboratory contamination can critically impact sequence-based
microbiome analyses. BMC Biol. 2014;12:87.

34. Huang Y-C, Li C-C, Lin T-Y, Lien R-I, Chou Y-H, Wu J-L, et al. Association of
fungal colonization and invasive disease in very low birth weight infants.
Pediatr Infect Dis J. 1998;17:819–22.

35. Butler G, Rasmussen MD, Lin MF, Santos MAS, Sakthikumar S, Munro CA, et
al. Evolution of pathogenicity and sexual reproduction in eight Candida
genomes. Nature. 2009;459:657–62.

Olm et al. Microbiome            (2019) 7:26 Page 14 of 16

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA471744
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA471744
https://github.com/MrOlm/InfantEukaryotes
http://journal.frontiersin.org/article/10.3389/fmicb.2011.00153/abstract
http://journal.frontiersin.org/article/10.3389/fmicb.2011.00153/abstract
http://www.nature.com/doifinder/10.1038/nm.4176
http://www.nature.com/doifinder/10.1038/nm.4176
http://stm.sciencemag.org/content/9/391/eaah6500.abstract
http://www.microbiomejournal.com/content/3/1/59
http://www.microbiomejournal.com/content/3/1/59
http://www.barcodinglife.org


36. Kothavade RJ, Kura MM, Valand AG, Panthaki MH. Candida tropicalis: its
prevalence, pathogenicity and increasing resistance to fluconazole. J Med
Microbiol. 2010;59:873–80.

37. Zhang N, O’Donnell K, Sutton DA, Nalim FA, Summerbell RC, Padhye AA, et
al. Members of the Fusarium solani species complex that cause infections in
both humans and plants are common in the environment. J Clin Microbiol.
2006;44:2186–90.

38. Chen T-A, Hill PB. The biology of Malassezia organisms and their ability to
induce immune responses and skin disease. Vet Dermatol. 2005;16:4–26.

39. Dawson TL Jr. Malassezia globosa and restricta: breakthrough understanding of
the etiology and treatment of dandruff and seborrheic dermatitis through
whole-genome analysis. J Investig Dermatol Symp Proc. 2007;12:15–9.

40. Chang HJ, Miller HL, Watkins N, Arduino MJ, Ashford DA, Midgley G, et al.
An epidemic of Malassezia pachydermatis in an intensive care nursery
associated with colonization of health care workers’ pet dogs. N Engl J Med.
Mass Medical Soc. 1998;338:706–11.

41. Ruan S-Y, Chien J-Y, Hsueh P-R. Invasive trichosporonosis caused by
Trichosporon asahii and other unusual Trichosporon species at a medical
center in Taiwan. Clin Infect Dis. 2009;49:e11–7.

42. Giraldo A, Sutton DA, Samerpitak K, de Hoog GS, Wiederhold NP, Guarro J,
et al. Occurrence of Ochroconis and Verruconis species in clinical specimens
from the United States. J Clin Microbiol. 2014;52:4189–201.

43. Porteous NB, Grooters AM, Redding SW, Thompson EH, Rinaldi MG, De
Hoog GS, et al. Identification of Exophiala mesophila isolated from treated
dental unit waterlines. J Clin Microbiol. 2003;41:3885–9.

44. Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate
genomic comparisons that enables improved genome recovery from
metagenomes through de-replication. ISME J. 2017; Available from: https://
doi.org/10.1038/ismej.2017.126.

45. Peter J, De Chiara M, Friedrich A, Yue J-X, Pflieger D, Bergström A, et al.
Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature.
nature.com. 2018;556:339–44.

46. Hirakawa MP, Martinez DA, Sakthikumar S, Anderson MZ, Berlin A, Gujja S, et
al. Genetic and phenotypic intra-species variation in Candida albicans.
Genome Res. 2015;25:413–25.

47. Bennett RJ, Johnson AD. Completion of a parasexual cycle in Candida
albicans by induced chromosome loss in tetraploid strains. EMBO J. 2003;
22(10):2505–15.

48. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, et al.
The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S
A. National Acad Sciences. 2004;101:7329–34.

49. Oh J, Byrd AL, Deming C, Conlan S, Barnabas B, Blakesley R, et al.
Biogeography and individuality shape function in the human skin
metagenome. Nature. 2014;514:59–64.

50. Tsai Y-C, Conlan S, Deming C, NISC Comparative Sequencing
Program, Segre JA, Kong HH, et al. Resolving the complexity of
human skin metagenomes using single-molecule sequencing. MBio.
2016;7:e01948–15.

51. Hull CM, Raisner RM, Johnson AD. Evidence for mating of the“asexual” yeast
Candida albicans in a mammalian host. Science. American Association for
the Advancement of Science. 2000;289:307–10.

52. Lachke SA, Lockhart SR, Daniels KJ, Soll DR. Skin facilitates Candida albicans
mating. Infect Immun. 2003;71:4970–6.

53. Olm MR, Butterfield CN, Copeland A, Boles TC, Thomas BC, Banfield JF. The
source and evolutionary history of a microbial contaminant identified
through soil metagenomic analysis. Brown CT, Newman DK, editors. MBio.
2017;8:e01969–16.

54. Shivaprasad A, Ravi GC, Shivapriya, Rama. A rare case of nasal septal
perforation due to Purpureocillium lilacinum: case report and review. Indian
J Otolaryngol Head Neck Surg. Springer. 2013;65:184–8.

55. Luangsa-ard J, Houbraken J, van Doorn T, Hong S-B, Borman AM, Hywel-
Jones NL, et al. Purpureocillium, a new genus for the medically important
Paecilomyces lilacinus: Purpureocillium, a new fungal genus for P. lilacinus.
FEMS Microbiol Lett. 2011;321:141–9.

56. Huang Y-C, Lin T-Y, Lien R-I, Chou Y-H, Kuo C-Y, Yang P-H, et al.
Candidaemia in special care nurseries: comparison of Albicans and
Parapsilosis infection. J Infect. 2000;40:171–5.

57. Chase J, Fouquier J, Zare M, Sonderegger DL, Knight R, Kelley ST, et al.
Geography and location are the primary drivers of office microbiome
composition. Gilbert JA, editor. mSystems. 2016;1 Available from: http://
msystems.asm.org/content/1/2/e00022-16.abstract.

58. Brooks B, Olm MR, Firek BA, Baker R, Geller-McGrath D, Reimer SR, et al. The
developing premature infant gut microbiome is a major factor shaping the
microbiome of neonatal intensive care unit rooms. bioRxiv. 2018:315689
Available from: https://www.biorxiv.org/content/early/2018/05/07/315689.
Cited 9 May 2018.

59. Madden AA, Epps MJ, Fukami T, Irwin RE, Sheppard J, Sorger DM, et al. The
ecology of insect-yeast relationships and its relevance to human industry.
Proc Biol Sci. 2018;285 Available from: https://doi.org/10.1098/rspb.2017.
2733. rspb.royalsocietypublishing.org.

60. Brown CT, Xiong W, Olm MR, Thomas BC, Baker R, Firek B, et al. Hospitalized
premature infants are colonized by related bacterial strains with distinct
proteomic profiles. MBio, Am Soc Microbiol. 2018:9 Available from: https://
doi.org/10.1128/mBio.00441-18.

61. Raveh-Sadka T, Firek B, Sharon I, Baker R, Brown CT, Thomas BC, et al. Evidence
for persistent and shared bacterial strains against a background of largely
unique gut colonization in hospitalized premature infants. ISME J. 2016;
Available from: http://www.nature.com/doifinder/10.1038/ismej.2016.83.

62. Raveh-Sadka T, Thomas BC, Singh A, Firek B, Brooks B, Castelle CJ, et al. Gut
bacteria are rarely shared by co-hospitalized premature infants, regardless of
necrotizing enterocolitis development. Kolter R, editor. Elife. 2015;4:e05477.

63. Rahman SF, Olm MR, Morowitz MJ, Banfield JF. Machine learning leveraging
genomes from metagenomes identifies influential antibiotic resistance
genes in the infant gut microbiome. mSystems. 2018;3:e00123–17.

64. Sharon I, Morowitz MJ, Thomas BC, Costello EK, Relman DA, Banfield JF.
Time series community genomics analysis reveals rapid shifts in bacterial
species, strains, and phage during infant gut colonization. Genome Res.
2013;23:111–20.

65. Olm MR, Brown CT, Brooks B, Firek B, Baker R, Burstein D, et al. Identical
bacterial populations colonize premature infant gut, skin, and oral
microbiomes and exhibit different in situ growth rates. Genome Res. 2017;
27(4):601–12.

66. Brooks B, Firek BA, Miller CS, Sharon I, Thomas BC, Baker R, et al. Microbes in
the neonatal intensive care unit resemble those found in the gut of
premature infants. Microbiome. 2014;2:1.

67. Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for
single-cell and metagenomic sequencing data with highly uneven depth.
Bioinformatics. 2012;28:1420–8.

68. NCBI Resource Coordinators. Database resources of the national center for
biotechnology information. Nucleic Acids Res. ncbi.nlm.nih.gov. 2017;45:D12–7.

69. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids
Res. academic.oup.com. 2015;43:D204–12.

70. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment
search tool. J Mol Biol. 1990;215:403–10.

71. Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B. AUGUSTUS:
ab initio prediction of alternative transcripts. Nucleic Acids Res. academic.
oup.com. 2006;34:W435–9.

72. Cantarel BL, Korf I, Robb SMC, Parra G, Ross E, Moore B, et al. MAKER: an
easy-to-use annotation pipeline designed for emerging model organism
genomes. Genome Res. genome.cshlp.org. 2008;18:188–96.

73. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM.
BUSCO: assessing genome assembly and annotation completeness with
single-copy orthologs. Bioinformatics. academic.oup.com. 2015;31:3210–2.

74. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM:
assessing the quality of microbial genomes recovered from isolates, single
cells, and metagenomes. Genome Res. 2015;25:1043–55.

75. Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence
similarity searching. Nucleic Acids Res. 2011;39 Available from: https://doi.
org/10.1093/nar/gkr367.

76. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Res. 2004;32:1792–7.

77. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses
with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90.

78. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for
inference of large phylogenetic trees, 2010 Gateway Computing
Environments Workshop (GCE). ieeexplore.ieee.org; 2010. p. 1–8.

79. Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for
phylogenetic tree display and annotation. Bioinformatics. academic.oup.
com. 2007;23:127–8.

80. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal:
prokaryotic gene recognition and translation initiation site identification.
BMC Bioinformatics. 2010;11:119.

Olm et al. Microbiome            (2019) 7:26 Page 15 of 16

https://doi.org/10.1038/ismej.2017.126
https://doi.org/10.1038/ismej.2017.126
http://msystems.asm.org/content/1/2/e00022-16.abstract
http://msystems.asm.org/content/1/2/e00022-16.abstract
https://www.biorxiv.org/content/early/2018/05/07/315689
https://doi.org/10.1098/rspb.2017.2733
https://doi.org/10.1098/rspb.2017.2733
https://doi.org/10.1128/mBio.00441-18
https://doi.org/10.1128/mBio.00441-18
http://www.nature.com/doifinder/10.1038/ismej.2016.83
https://doi.org/10.1093/nar/gkr367
https://doi.org/10.1093/nar/gkr367


81. Edgar RC. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics. 2010;26:2460–1.

82. Pruitt KD, Maglott DR. RefSeq and LocusLink: NCBI gene-centered resources.
Nucleic Acids Res. 2001;29:137–40.

83. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et
al. Mash: fast genome and metagenome distance estimation using
MinHash. Genome Biol. 2016;17 Available from: http://genomebiology.
biomedcentral.com/articles/10.1186/s13059-016-0997-x.

84. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat
Methods. 2012;9:357–9.

85. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al.
Circos: an information aesthetic for comparative genomics. Genome Res.
2009;19:1639–45.

86. Jones E, Oliphant T, Peterson P. SciPy: open source scientific tools for
Python. URL http://scipy. org. 2001.

87. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.

88. Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng.
2007;9:90–5.

89. Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple
testing under dependency. Ann Stat. Institute of Mathematical Statistics.
2001;29:1165–88.

90. Garrison E, Marth G. Haplotype-based variant detection from short-read
sequencing. arXiv [q-bio.GN]. 2012; Available from: http://arxiv.org/abs/
1207.3907.

Olm et al. Microbiome            (2019) 7:26 Page 16 of 16

http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0997-x
http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0997-x
http://arxiv.org/abs/1207.3907
http://arxiv.org/abs/1207.3907

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Recovery of novel eukaryotic genomes from metagenomes
	Fungal contaminants in extraction controls
	Fungal microbiome of the premature infant gut
	Fungal microbiome of the neonatal intensive care unit
	Sequence analysis of new genomes

	Discussion
	Eukaryotic genome recovery from metagenomes augments information from isolate studies
	Premature infants are colonized by eukaryotes early in life
	Differences in colonization patterns of NICU sinks and surfaces

	Conclusions
	Methods
	Subject recruitment, sample collection, and metagenomic sequencing
	Eukaryotic genome binning and gene prediction
	Phylogenetic analyses
	Mapping-based genome detection
	Negative extraction control analysis
	Statistical analyses and generation of MDS plot
	Ploidy, heterozygosity, and population microdiversity

	Additional files
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

