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Abstract

Background: Alterations of gut microbiota are associated with colorectal cancer (CRC) in different populations and
several bacterial species were found to contribute to the tumorigenesis. The potential use of gut microbes as markers
for early diagnosis has also been reported. However, cohort specific noises may distort the structure of microbial
dysbiosis in CRC and lead to inconsistent results among studies. In this regard, our study targeted at exploring
changes in gut microbiota that are universal across populations at species level.

Results: Based on the combined analysis of 526 metagenomic samples from Chinese, Austrian, American, and
German and French cohorts, seven CRC-enriched bacteria (Bacteroides fragilis, Fusobacterium nucleatum, Porphyromonas
asaccharolytica, Parvimonas micra, Prevotella intermedia, Alistipes finegoldii, and Thermanaerovibrio acidaminovorans) have
been identified across populations. The seven enriched bacterial markers classified cases from controls with an
area under the receiver-operating characteristics curve (AUC) of 0.80 across the different populations. Abundance
correlation analysis demonstrated that CRC-enriched and CRC-depleted bacteria respectively formed their own
mutualistic networks, in which the latter was disjointed in CRC. The CRC-enriched bacteria have been found to
be correlated with lipopolysaccharide and energy biosynthetic pathways.

Conclusions: Our study identified potential diagnostic bacterial markers that are robust across populations, indicating
their potential universal use for non-invasive CRC diagnosis. We also elucidated the ecological networks and functional
capacities of CRC-associated microbiota.
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Background
Colorectal cancer (CRC) is one of the most common can-
cers in the world with over 1 million cases diagnosed
every year [1]. Many risk factors, including genetic, diet-
ary, and other environmental factors contribute to CRC.
The association of CRC with an altered gut microbiota
has been studied in different populations, identifying bac-
teria such as Fusobacterium nucleatum and Bacteroides

fragilis that are associated with tumorigenesis [2]. In this
regard, F. nucleatum was found to modify the tumor im-
mune microenvironment [3], while B. fragilis could pro-
duce DNA-damaging genotoxins in host cells [4].
Prevotella has been reported to be enriched in proximal
colon cancer [5] and associated with interleukin (IL)-17-
producing cells [6]. Porphyromonas has also been identi-
fied to be associated with CRC in different populations
[7–9]. The potential use of these microbes as non-invasive
biomarkers for the detection of CRC has been explored
[10, 11]. However, studies from different populations may
produce cohort-specific results. Furthermore, the gut
microbiome is highly dynamic and influenced by dietary,
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xenobiotic, physiological, host genetics, and other factors
[12], implying that results from metagenomic studies may
not be applicable across different populations. Technically,
metagenomic studies are also influenced by sample qual-
ities, sequencing platforms, and the bioinformatic pipe-
lines used for analysis [13]. These factors may result in
heterogeneity and inconsistency among studies. Meta-
analysis has an advantage of increasing statistical power
over individual studies [12]. With a larger sample size,
meta-analysis can pinpoint differences that are too small
to be detected by single cohort studies while simultan-
eously considering population-specific characteristics [12].
By combining 16S rRNA gene sequence data sets from
nine studies, Shah and colleagues recently identified a
general composite microbial marker for CRC [14]. Never-
theless, interpretation of results generated by 16S rRNA
sequencing may be limited by its low taxonomical and
functional resolution. The use of shotgun metagenomics
sequencing allows the identification of bacterial taxa to
species level [14] and is useful for analyzing gut micro-
biota functions without reliance on prediction [15]. We
have previously reported on metagenomic features shared
by CRC patients of different ethnicities [16]. We extended
this work by performing a comprehensive meta-analysis
of shotgun metagenomic data acquired from CRC pa-
tients and control subjects of American, Austrian,
Chinese, and German and French cohorts to achieve
greater statistical power to investigate the association of
gut microbiota with CRC.

Results
Microbiota composition across cohorts
We accumulated shotgun metagenomic sequencing se-
quences from four cohorts (USA (USA), Austria (AT),
China (HK), and Germany and France (FD)), including
271 controls and 255 CRC cases (demographic, clinical,
and technical details are shown in Table 1). The se-
quences were curated, and we used Kraken v_0.10.5-beta
for sequence classification and alignment. The Shannon
diversity indexes were not significantly different between
CRC cases and controls in USA, AT, and FD cohorts.
Nevertheless, the diversity index decreased significantly
in cases compared to controls in HK cohort (p = 0.045,
Additional file 1: Figure S1A). Principal coordinate ana-
lysis based on Bray-Curtis dissimilarity index identified
significant bacteria compositional difference among cohorts
(PERMANOVA, in control samples, p < 1 × 10−4, Fig. 1a; in
CRC samples, p < 1 × 10−4, Fig. 1b). We also found
significant differences in overall bacterial composition
between cases and controls (PERMANOVA, p < 1 × 10−4,
Fig. 1c).

Bacteria differing in abundance between CRC cases and
controls across cohorts
We performed simulation analysis to compare the statis-
tical powers between the meta-analysis and single cohort
studies. Our power simulation analysis showed an in-
creased statistical power with the rank sum meta-analysis
approach. Simulation analysis showed an estimated power

Table 1 Fecal samples’ demographic, clinical, and technical details

Cohort Factor Control CRC P value Sample collection Sequencing platform

Cohort C1 (American, 2016) Sample size 52 48 NA Prior to surgery and treatment Sequencing Platform: Illumina
Hiseq 2000/2500; Sequencing
Target Depth: 5GB; read length:
100 bp

Age 61.23(11.03) 60.96(13.56) 0.913

Gender Male:37;
Female:15

Male:35;
Female:13

1

BMI 25.35(4.27) 24.90(4.29) 0.601

Cohort C2 (Austrian, 2014) Sample size 63 46 NA Not available

Age 67.1(6.37) 67.1(10.91) 0.999

Gender Male:37;
Female:26

Male:28;
Female:18

0.978

BMI 27.57(3.78) 26.50(3.53) 0.132

Cohort C3 (Chinese, 2015) Sample size 92 73 NA No antibiotics and no invasive
medical intervention for 3 months;
no vegetarian diet; no history of
cancer or inflammatory disease of
intestine

Age 58.51(7.55) 65.90(10.61) < 0.0001

Gender Male:51;
Female:41

Male:47;
Female:26

0.316

BMI 23.87(3.31) 24.07(3.18) 0.697

Cohort C4 (German and
French, 2014)

Sample size 64 88 NA No previous colon or rectal
surgery, colorectal cancer,
inflammatory, or infectious
injuries of the intestine; no need
for need for emergency
colonoscopy

Age 58.75(12.96) 68.44(12.22) 0.007

Gender Male:32;
Female:32

Male:53;
Female:35

0.276

BMI 24.72(3.19) 25.89(4.29) 0.056
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of 0.88 with a bacterial abundance change of 20%. This
shows an advantage over single-cohort studies with an ap-
proximate power of 0.5 at abundance fold change of 20%
(Fig. 1d).
We applied this meta-analysis approach to identify bacter-

ial species that exhibited differential abundance in CRC
compared to controls across all the four cohorts. After ex-
cluding bacteria showing ‘divergent directional changes,’ 994
species were obtained for further analysis (Additional file 2:
Text). Using the rank sum method, we identified 7 enriched
species and 62 depleted species in CRC cases compared to
controls (Fig. 2a). We demonstrated that the significance
levels (pfp) of the 69 different abundant species were not af-
fected by our filtering pipeline (Additional file 3: Table S14).
These results were validated with another independent
pipeline, MetaPhlan [17] (Additional file 4: Table S4). The
seven CRC-enriched species included Bacteroides fragilis,
Fusobacterium nucleatum, Porphyromonas asaccharolytica,

Parvimonas micra, Prevotella intermedia, Alistipes finegol-
dii, and Thermanaerovibrio acidaminovorans.
Among the seven CRC-enriched species, Bacteroides

fragilis was observed to be consistently enriched across
all four cohorts (Fig. 2b), whereas five bacteria showed
significant changes in abundance in two of the four co-
horts (P. asaccharolytica, P. micra, P. intermedia, A.
finegoldii, and T. acidaminovorans). Five bacterial spe-
cies among the 62 CRC depleted bacteria have been re-
ported to confer health benefits, including Clostridium
butyricum [18, 19], Streptococcus salivarius [20, 21],
Streptococcus thermophilus [22], Carnobacterium mal-
taromaticum [23], and Lactobacillus gallinarum [24].
To identify whether the 69 CRC-associated bacteria
correlated with CRC progression, we investigated their
abundance difference between early- and late-stage
CRC (Additional file 5: Table S1). Three species showed
decreasing trends across control, early- and late-stage
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Fig. 1 Microbial composition and statistical power difference across cohorts. a–c Principal coordinate analysis for control samples, CRC samples,
and all samples, respectively. (CA, CRC; NC, negative control) The correlations between phenotypes and PCoAs are labeled with their corresponding
coordinates. d Statistical power to detect differentially abundant bacteria of various fold change (fold change = 10, 20, and 40%) versus cohort sample
size (number of control samples × number of case samples)
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CRC (Streptococcus sp. I-G2, Shewanella woodyi, Myco-
plasma penetrans, Additional file 6: Figure S5).

Classification of CRC cases and controls with bacterial
markers
To classify CRC cases from controls based on bacterial
composition, the seven CRC-enriched bacterial species

were fitted into a support vector machine (SVM) model
with radial kernel [25]. We obtained areas under the
receiver-operating curve (AUCs) of 0.83, 0.87, 0.84, and
0.82, respectively, for USA, AT, HK, and FD cohorts
(Additional file 7: Figure S3B). As we used a SVM model
with 10-fold cross validation, it achieved average AUC of
0.75 on the testing fold (Additional file 8: Figure S12A).
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The overall AUC was 0.80 for the combined population,
and this performance was not significantly skewed by a
single cohort (Additional file 7: Figure S3A). We further
evaluated the classification power of bacteria markers by
leaving-one-cohort-out approach. We leaved one cohort
as the validation samples at each time and used the three
cohorts left to select markers and train the SVM model.
Our model achieved an average AUC at 0.73 on the valid-
ation samples (Additional file 8: Figure S12B). After the
inclusion of clinical phenotype information, namely, age,
gender, and body mass index (BMI), the overall AUC in-
creased to 0.88 (Fig. 2c). Optimal F1 scores (harmonic
mean of recall and precision) could reach 0.67 and 0.80,
respectively using bacteria markers alone and combining
clinical phenotype information (Additional file 9: Figure
S4A, Additional file 10: Table S13 and Additional file 11:
Table S15). Additionally, the potential of using the seven
bacterial markers for diagnosis of early-stage CRC was
evaluated. We calculated the significance of available bac-
terial abundance changes in AT, HK, and FD cohorts (can-
cer stage information is missing in USA). The results
showed significant abundance changes for the seven CRC-
enriched species in three cohorts, indicating that data
from the three cohorts (besides cohort USA) were
sufficiently informative for the stage-specific analysis
(Additional file 12: Figure S6A). Using the SVM model,
the seven CRC-enriched species classified early-stage CRC
patients from controls with AUCs of 0.84, 0.82, 0.84 in
AT, HK, and FD cohorts, respectively (Additional file 12:

Figure S6B), suggesting an outstanding classification per-
formance between early-stage CRC cases and controls.

Correlations between CRC-related bacterial species
To gain insights into the bacteria-bacteria interactions
from an ecological perspective, we further investigated
the correlations between the CRC-enriched and CRC-
depleted bacteria based on SparCC algorithm. The
average correlation strength across the populations was
also estimated (see “Methods”). We observed that the
enriched and depleted bacteria, respectively, formed
their own mutualistic networks that were negatively
correlated with each other (Additional file 13: Figure
S7). Interestingly, the number of significant correlation
pairs and correlation strengths among CRC-depleted
bacteria were higher in controls than in CRC cases (dif-
ference of significant correlation proportions: p = 6.4 ×
10−5; difference of correlation strength: p = 2.6 × 10−8)
(Fig. 3b). Most of the correlations between CRC-enriched
and CRC-depleted bacteria were negative. The seven
CRC-enriched bacteria were more closely correlated in
early-stage than late-stage CRC, while the correlation
networks between them was disrupted in late-stage
CRC (Additional file 14: Figure S9C, correlation
strength: p = 0.013). With weighted degree centrality, we
found that Clostridium species (Additional file 15: Table
S2) had the highest centralities in the network. These cen-
tral species may play a pivotal role in the network, sup-
ported by analyses of the global efficiency and weighted

Parvimonas
micra

Parvimonas
micra

Bacteroides
fragilis

Bacteroides
fragilis

Alistipes
finegoldii
Alistipes
finegoldii

Thermanaerovibrio
acidaminovorans

Thermanaerovibrio
acidaminovorans

Porphyromonas
asaccharolytica
Porphyromonas
asaccharolytica

Prevotella
intermedia
Prevotella
intermedia

Fusobacterium
nucleatum

Fusobacterium
nucleatum

0.2 0.4 0.6 0.8
Correlation Strength

0

10

20

30

40

50

C
or

re
la

tio
n 

C
ou

nt
s

Control
CRC

Clostridium
spp.

Clostridium
spp.

Carnobacterium
maltaromaticum
Carnobacterium
maltaromaticum

Streptococcus
salivarius

Streptococcus
salivarius

Streptococcus
thermophilus

Streptococcus
thermophilus

Clostridium
butyricum

Clostridium
butyricum

0 < 0 < 
0.4 < 0.4 < 

 > 0.6 > 0.6

 < 0 < 0
 < –0.4 < –0.4

a b
CRC-depleted

CRC-enriched

Probiotics

Fig. 3 Meta-analysis of correlations among CRC-associated bacteria. a Correlation between the 69 CRC differentially abundant bacteria in CRC
samples. Nodes having correlations between circles were labeled with dark blue, and the four CRC-enriched oral species were labeled with dark
red. Five commensal bacterial species were denoted with triangle shape nodes. The size of the nodes is proportional to their corresponding
centrality. Node attributes are included in Additional file 28: Table S3. b Comparison of the correlation network between CRC-depleted bacteria in
control and CRC showing the mid-points of histogram bars. Cubic spline was used to connect the points

Dai et al. Microbiome  (2018) 6:70 Page 5 of 12



network connectance (Additional file 16: Figure S8). Com-
pared with the removal of random nodes, the network con-
nectivity decreased very sharply when nodes of
Clostridium species were removed.

Functional gene families associated with CRC-enriched
and CRC-depleted bacteria
The metagenome sequences were mapped to UniRef data-
base and grouped into 10,675 gene ontology (GO) and
8695 KEGG ontology (KO) categories with HUMAnN2.
The GO/KO reads were normalized to relative abundance
(copy per million units) for comparison. A total of 311
GO categories and 217 KO categories were identified to
be enriched in CRC (FDR < 0.05); whereas 31 GO cat-
egories and 74 KO categories were depleted in CRC
(Additional file 17: Table S6 and Additional file 18:
Table S7). We investigated the correlation between

the seven CRC-enriched species and GO/KO categor-
ies with Spearman’s correlation, and identified 167 GO
categories and 143 KO categories that have significant
positive correlations (FDR < 0.05) with the CRC-enriched
bacteria (Fig. 4, Additional file 16: Figure S8 and
Additional file 14: Figure S9). We defined these GO/
KO categories as CRC-enriched bacteria correlated
GO/KO categories.
To investigate the functional pathways involved, we

mapped the KO categories to the KEGG pathway. KO
categories that were involved in the same pathway were
treated as correlated KO categories. We observed 45
KEGG pathways involving at least two CRC enriched-
bacteria correlated KO categories (Additional file 19:
Table S10). To identify the pathways shared by multiple
KO categories in association with cancer development,
we found seven KEGG pathways whose overall
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abundance were enriched in CRC, namely, ko00020 (Cit-
rate cycle (TCA cycle)), ko00540 (Lipopolysaccharide
biosynthesis), ko00130 (ubiquinone and other terpenoid-
quinone biosynthesis), ko00785 (lipoic acid metabolism),
ko00280 (valine, leucine, and isoleucine degradation),
ko00440 (phosphonate and phosphinatemetabolism), and
ko00511 (other glycan degradation) (Fig. 4). Some com-
mensal bacterial species were found to be correlated with
CRC-depleted GO/KO categories; Clostridium butyricum
and Carnobacterium maltaromaticum were strongly cor-
related with GO0051606 (stimulus detection; ρ=0.56 and
0.51, respectively) while Streptococcus salivarius and S.
thermophiles were correlated with K07104 (catechol 2,3-
dioxygenase; ρ=0.78 and 0.67, respectively) and K07570
(general stress protein 13; ρ=0.74 and 0.66, respectively)
(Additional file 20: Figure S11).

Discussion
In this study, we performed the first comprehensive
meta-analysis of shotgun metagenomics on CRC. We as-
sembled samples from three different continents and
four different ethnic cohorts including a large number of
CRC cases and control fecal samples. We identified
species-level bacterial markers that were enriched and
depleted in CRC across cohorts with a robust statistical
method, rank sum, which was a model-free approach
suitable for handling non-normal data. Further analysis
provided inferences about the correlations between the
bacterial markers and their possible functional roles.
This study shows how meta-analysis of shotgun metage-
nomics data can provide useful biological information by
identifying biomarkers with higher statistical power.
Heterogeneity of the microbiota was observed across

different cohorts. From the principal component analysis
results, we observed very significant P values for the dif-
ference in microbial composition among the popula-
tions. This observation is consistent with previous
studies showing effects of ethnicity and technical differ-
ences on gut microbiota [26–28] and highlights the need
for combined analysis.
The meta-analysis approach has been used to evaluate

and combine results of comparable studies [29] with
major advantages of increasing statistical power and im-
proving estimates of effect size in association studies
[30]. Our meta-analysis, using the rank sum method,
identified seven bacterial markers that were CRC-
enriched across four cohorts. Our results are supported
by the fact that six out of the seven identified CRC-
enriched bacteria, namely, P. asaccharolytica, F. nuclea-
tum, B. fragilis, P. intermedia, P. micra, and A. finegoldii
have been reported previously to be associated with
CRC [5] in some but not all populations. P. micra was
found to be significantly enriched in CRC and strongly
correlated with F. nucleatum in Chinese cohort [16].

Our results suggest that P. micra can be universally as-
sociated with CRC across the cohorts. The Alistipes
genus was found to be associated with CRC in a previ-
ous study [31], while A. finegoldii was isolated from the
blood culture of CRC patient [32]. These observations
support their roles in colorectal carcinogenesis. Prevo-
tella was found to be enriched in proximal colon cancer
[5], despite the controversial results reported in another
study [33]. From our analysis, P. intermedia was clearly
an enriched species in CRC, after combining the infor-
mation from four cohorts. Interestingly, among the
seven CRC-enriched species, four are oral bacteria (P.
asaccharolytica, F. nucleatum, P. intermedia, and P.
micra). Though the correlation between oral bacteria
and CRC has been reported [34], our results suggest
such a relationship exists across populations.
Our results also show a good performance of the seven

CRC-enriched bacteria in classifying CRC from controls
across cohorts. Population-specific variations may limit
the classification performance of individual bacterial
markers. For example, F. nucleatum has been used for
CRC diagnosis in our previous study (AUC = 0.85) [10],
but it is unknown whether it may be discriminative for
other populations (Fig. 2b). However, through meta-
analysis, we found a set of bacterial markers that was ro-
bust to population variations, which was exemplified by
the performance of the seven bacterial markers achiev-
ing AUCs of at least 0.80 across all four populations.
Our study also has the advantage of an overall balanced
case-control sample size, which, under similar AUCs,
usually provides a higher F1 score compared with a co-
hort with imbalanced case-control sample size due to ac-
curacy paradox. As shown in our simulation analysis,
when the sample size was imbalanced with a much
smaller size in CRC cases than controls, the optimal F1
score was much smaller. Our result suggests that the pru-
dent addition of markers may improve diagnostic per-
formance and emphasize the advantage of meta-analysis
in identifying markers applicable to multiple populations.
Besides the CRC-enriched bacteria, we identified five

bacterial species previously reported to confer health
benefits among the 62 CRC-depleted bacteria. The pro-
tective role of the bacteria during the colorectal carcino-
genesis has not been thoroughly studied. Clostridium
butyricum, identified in this study, was previously found
to promote the apoptosis of CRC cells and inhibit intes-
tinal tumorigenesis in mice [35]. This supports our find-
ing of negative association between these bacteria and
CRC (Fig. 3), and suggest that they may potentially act
as probiotics to inhibit CRC progression.
In addition to bacterial abundance, changes in bacterial

correlations could partially explain colorectal tumorigen-
esis. A closely correlated network between the CRC-
depleted bacteria which may play a role in stabilizing the
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gut microbiota was observed. Its disruption may potentially
contribute to colorectal carcinogenesis. On the other hand,
the negative correlations between CRC-enriched and
-depleted bacteria suggest the possibility of reciprocally an-
tagonistic effects between them. The depletion of some
commensal bacteria could reduce the suppressive effects
on CRC-enriched bacteria, contributing to their enrich-
ment. We also observed some interesting changes of the
bacterial correlation pairs. Two oral bacteria, P. micra and
F. nucleatum, were proposed to be strongly correlated in
CRC in a previous study [16], which was also validated in
our meta-analysis. This correlation was observed not to be
significant in control samples, indicating that the CRC en-
vironment may be an important factor for the formation of
this correlation and the two species may function coopera-
tively in CRC.
The metabolic functions of microbiota associated with

CRC remain largely unknown. Our analysis revealed
some functional shifts related to bacterial enrichments.
Bacterial changes in CRC may result in the alteration of
some functional gene-families and pathways to contrib-
ute to colorectal carcinogenesis. According to our re-
sults, over 50% of the CRC-enriched GO/KO categories
significantly correlated with the CRC-enriched bacteria,
suggesting their non-negligible contribution to the over-
all metabolic functionality in CRC. Interestingly, most of
the CRC-enriched GO/KO categories that correlated
with B. fragilis were discrete from other CRC-enriched
bacteria, suggesting that B. fragilis may function inde-
pendently in CRC (Fig. 4, Additional file 21: Figure S10).
We also found some CRC-associated pathways identified
by previous researchers. This included the pathway re-
lated to lipopolysaccharide (LPS), a gram-negative bac-
terial antigen that can induce toll-like receptor 4
signaling and promote cell survival and proliferation in
CRC [36]. LPS has been shown to enhance cell migra-
tion in esophageal cancer cell line [37]. Our observation
of the enrichment of this pathway in CRC and its correl-
ation with CRC-enriched bacteria suggests its role in
CRC and supports previous observations. Other bacterial
functions involving biosynthetic pathways, metabolism of
cofactors and vitamins and energy production pathways
positively correlated with the CRC-enriched bacteria.
These pathways may serve as alternative bioenergetic
sources for metabolically stressed cancer cells [38].
Though we considered possible confounding factors,

namely age, gender and BMI, other potential con-
founders such as tumor location, comorbidities, and
cancer status were not included in this study. We used a
filtering pipeline to remove bacteria showing divergent
abundance changes (Additional file 22: Figure S13).
While this may have led to the missing of some interest-
ing species, this approach should have minimized the
false positive discovery rate. It is likely that the seven

identified species are genuinely related to CRC. Statisti-
cally, the sparsity of the bacterial abundance data makes
it difficult to select features accurately. Additionally, the
correlation and functional analysis were performed
based on bacterial abundance and sequencing data. The
difference between the mucosal and fecal microbiota
may lead to the inconsistency of our findings and the
real changes of microbiota in gut during the colorectal
carcinogenesis. Despite these limitations, our study ag-
gregated and uniformly analyzed deep-sequenced micro-
bial fecal samples from diverse populations and found
bacterial species that were consistently enriched in CRC
across cohorts. The shotgun metagenome sequences
used in this study equipped us with species-level identifi-
cation and allowed analyses on bacterial correlations and
metabolic functions. Importantly, our study provides di-
rections for further research on the CRC microbiota.

Conclusions
With the advancement in next generation sequencing
technique, more metagenomic sequencing data sets are
available, providing higher resolution of bacterial se-
quences. Though previous studies have widely reported
the association between microbiota and CRC, it is essen-
tial to determine bacterial markers that are robust to
population specific characteristics. Our study identified a
group of bacteria that is consistently associated with
CRC and shows potential in the diagnosis of CRC across
multiple populations despite technical and biological
variations. Universal ecological and functional shifts re-
lated to bacterial enrichment and depletion were also re-
vealed, providing directions for further research on the
potential functional involvements of the gut microbiota
in contributing to colorectal tumorigenesis.
Future meta-analysis of gut microbiota dysbiosis in CRC

should include more high quality metagenomic sequences
especially from ethnic groups seldom covered by previous
studies, such as African and south-east Asian, to provide
higher statistical power and build up a more complete
overview of CRC associated microbial dysbiosis. New
methods for analyzing microbiome compositional data are
also indispensable. Present analysis of the microbiome
data treats every taxon independently, while the correl-
ation structure between taxa has not been well incorpo-
rated, which may lead to high false discovery rate. With
more available data sets and more powerful statistical ana-
lysis methods, better microbial CRC diagnostic tools and
deeper understanding of microbial functions in colorectal
carcinogenesis are obtainable.

Methods
Sequence curation and quality control
Raw sequences from CRC fecal metagenomics studies
published from year 2014 to 2016 and with similar
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sequencing depths and target read lengths were retrieved
from NCBI database [16, 31, 39, 40]. A total of 255 CRC
patients and 271 controls from four cohorts (USA (US),
Austria (AT), China (HK), and Germany & France (FD))
were included in this meta-analysis. Whole-genome
shotgun sequencing of the samples from all cohorts was
carried out on Illumina HiSeq 2000/2500 (Illumina, San
Diego, USA) platform with similar sequencing depths
(read length 100 bp, target sequencing depth 5 GB).
Trimmomatic v_0.36 was used to remove low quality se-
quences. Human sequences were removed after align-
ment with reference genome (hg38 database [41]) using
Bowtie2 v_2.2.9, with default settings. Kraken v_0.10.5-
beta was then used to for taxonomic classification of un-
mapped microbial reads [42]. By the default setting of
Kraken, only complete genome sequences were included
as the reference genome database to reduce the errors
from contaminants [42]. Since our project focused on
bacteria community, we only included the sequences
whose lowest common ancestor can be aligned to bac-
teria database. In HK and FD cohorts, we removed one
sample respectively with low bacterial read count com-
pared with other samples (removed samples’ bacteria
read count = 57,547 and 165,287). Species level read
counts were rarefied to the minimum read counts in se-
lected samples of each cohort, namely; 2,419,973,
1,596,424, 1,222,507 and 856,204 per sample, respect-
ively, in US, AT, HK and FD cohorts to reduce the ef-
fects of uneven sampling in each cohort. Because the
real sequencing depth varied across the cohorts, though
their target sequencing depths were the same, we did
not rarefy all the samples to the same read counts to
maintain this difference. This approach gave us larger
read counts in US, AT and HK cohorts, which could re-
duce the variance of the estimated relative abundance
(Var(yij/yi+) decreases provided a larger yi+). Principal
coordinates analysis was used with Bray-Curtis dissimi-
larity matrix to visualize microbiota composition.

Meta-analysis of differentially abundant bacteria
We performed combined analyses on bacteria showing
concordant changes in the individual study cohorts. We
excluded a bacterial candidate from the analysis, if it ex-
hibited significant contradictory abundance change di-
rections among different cohorts. In our project, we
gave a point estimation for the bacteria abundance
change direction using the median. We removed species
showing a balanced discrepancy in abundance changes
in the four cohorts (positive abundance changes in two
cohorts and negative abundance changes in two other
cohorts), or species showing significantly discrepant
change in one or more cohorts. Statistical significance
was defined by p < 0.05 by the Mann-Whitney U test
(see Additional file 2: Text for details). Considering the

non-normality and over-dispersion of the microbial
composition data, the non-parametric rank sum method
was used for meta-analysis [43–45]. To control the con-
founding effects, any bacterial taxa whose abundance
was significantly associated with the confounding vari-
able was adjusted for the confounder using linear regres-
sion: log(yi) = β0 + Xi ∗ β1, i = 1, 2, …, n; where yi is the
abundance of sample i and Xi is the value of confound-
ing variable of sample i. The adjusted bacteria abun-
dance has the form yi

′ = yi ∗ exp(−Xi ∗ β1). With this
approach, the effect of the confounder on the fold

change was adjusted: yi
0

y j
0 ¼ yi

y j
� expð−ðXi−X jÞ � β1Þ .

Species with estimated percentage of false-positives (pfp)
smaller than 0.01 were considered significant. The sig-
nificance of bacterial abundance change in the individual
cohort was estimated using conditioned Mann-Whitney
test with COIN package in R. Age was observed to be a
confounding factor in HK and FD cohorts (Table 1).
Since age is continuous, we divided the ages into 4
groups (Additional file 23: Figure S2) and treated the age
groups as the conditioned variable for the test.

Evaluation of statistical power
To evaluate the statistical power of rank sum meta-
analysis method, we simulated microbial composition
data following Dirichlet-multinomial distribution [46].
Most of the species were assumed to have similar rela-
tive abundance in CRC and control. Only a small pro-
portion of the species (50 species) were simulated to be
associated with CRC. We applied rank sum on the simu-
lated microbial composition data and selected the top 50
species with the smallest rank sum statistics as bacteria
exhibiting differential abundance. Among the 50 species,
the proportion of real differentially abundant bacteria in
the simulation data was used as an estimation of the
statistical power. The statistical powers were compared
under the fold change of 10%, 20%, and 40%.

Correlation and network analyses
Correlations between species were calculated with the
SparCC algorithm, a robust method for correlation infer-
ence of sparse compositional data [47]. We calculated
the correlation separately in the four cohorts. The over-
all correlation across the cohorts was estimated using
Hedges and colleagues’ method, where the correlations
were first taken as Fisher’s r-to-Z transformation and
then, calculated through weighted average of the trans-
formed scores [48, 49]. Only significant correlations with
P value < 0.05 were included in the downstream analysis.
Correlation estimation was implemented with package
‘metacor’ in R, and the network was visualized with
Cytoscape v_3.4.0. The centrality of nodes in the correl-
ation network was evaluated by weighted degree centrality
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using correlation strength as the weight. Network con-
nectivity was measured by global efficiency and weighted
network connectance, where the global efficiency is de-

fined as EglobalðGÞ ¼ EðGÞ
EðG idealÞ ¼ 2

nðn−1Þ �
X

i≠ j∈G

1
dði; jÞ (d(i,

j) denotes distance between vertex i and j; if vertex i
and j are not connected, 1

dði; jÞ is defined as 0; n is the

number vertices in the network; in our case, E(Gideal)

=1); weigthed network connectance ¼
X

i≠ j
wði; jÞ

n2 (w(i, j)
denoted the weight of the edge between vertex i and
j).

Functional analysis
We processed HMP Unified Metabolic Analysis Network
(HUMAnN2) to determine the abundance of gene families
[50]. MetaPhlAn2 and ChocoPhlAn pangenome database
were used for functional profiling. Gene families deter-
mined by UniRef were mapped to Kyoto Encyclopedia of
Genes and Genomes (KEGG) Orthogroups (KO and Gene
Ontology (GO) database and were grouped into functional
categories. The conditioned Mann-Whitney test estimated
the P values for the abundance change of the KO/GO cat-
egories from control to CRC in each cohort and the MaxP
method was used to determine the overall f for abundance
change [51]. Spearman correlation was applied to estimate
association strengths in determining the relationship be-
tween bacteria and KO/GO categories.
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