
Load balancing prediction method
of cloud storage based on analytic hierarchy
process and hybrid hierarchical genetic
algorithm
Xiuze Zhou1, Fan Lin1  , Lvqing Yang1*, Jing Nie2, Qian Tan1, Wenhua Zeng1 and Nian Zhang2

Background
With the extensive applications of cloud computing, open-source projects of cloud
computing platform construction such as Hadoop, Eucalyptus, CloudStack, and Open-
Stack are also increasing (Peng et al. 2009). For now, OpenStack (Pepple 2011) is one
of the most popular open source projects (Sefraoui et al. 2012). Many large companies
at home and abroad such as Intel, IBM, Cisco, and HP regard OpenStack as promising
open source project. The main reasons include its fully open source, good design and
high community vitality. OpenStack Swift (2012) is a storage system aiming at objects
which have multi-tenant, powerful extensibility, redundancy and persistency, which can
store large amounts of unstructured data through HTTP-based RESTful APIs at a low
cost, and also has the advantage of no single point of failure. Using OpenStack Swift to
construct cloud storage platform applications under production environments needs a

Abstract 

With the continuous expansion of the cloud computing platform scale and rapid
growth of users and applications, how to efficiently use system resources to improve
the overall performance of cloud computing has become a crucial issue. To address
this issue, this paper proposes a method that uses an analytic hierarchy process group
decision (AHPGD) to evaluate the load state of server nodes. Training was carried out
by using a hybrid hierarchical genetic algorithm (HHGA) for optimizing a radial basis
function neural network (RBFNN). The AHPGD makes the aggregative indicator of
virtual machines in cloud, and become input parameters of predicted RBFNN. Also, this
paper proposes a new dynamic load balancing scheduling algorithm combined with
a weighted round-robin algorithm, which uses the predictive periodical load value of
nodes based on AHPPGD and RBFNN optimized by HHGA, then calculates the cor-
responding weight values of nodes and makes constant updates. Meanwhile, it keeps
the advantages and avoids the shortcomings of static weighted round-robin algorithm.

Keywords:  Radial basis function neural network (RBFNN), Analytic hierarchy process
(AHP), HHGA (hybrid hierarchical genetic algorithm), Load balancing, Cloud storage,
Group decision

Open Access

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Zhou et al. SpringerPlus (2016) 5:1989
DOI 10.1186/s40064-016-3619-x

*Correspondence: lqyang@
xmu.edu.cn
1 Software School, Xiamen
University, Xiamen, China
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0003-2530-859X
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-3619-x&domain=pdf

Page 2 of 23Zhou et al. SpringerPlus (2016) 5:1989

load balancer to distribute access requests to Proxy Node (Pepple 2011). Therefore, load
balancing is still needed for optimization.

Currently, load balancing can be classified from several different angles, including
(1) static load balancing and dynamic load balancing, in which dynamic load balancing
(Dhakal et al. 2007; Alakeel 2010) can determine the state of cluster nodes in real time
and balance scheduling timely, thus improving the overall performance without adding
too much computational overhead; (2) centralized and distributed load balancing. A
common centralized load balancing cluster can achieve global optimal scheduling pol-
icy, while distributed load balancing is more adapted to complex situations of multiple
rooms, multiple clusters and elastic expansion. Compared with the simple structure of
centralized load balancing, the distributed load balancing strategy (Randles et al. 2010)
often requires more communication overhead and network complexity; its schedul-
ing strategy often achieves greater local optimal solutions. (3) The main differences of
recipient, sender and symmetric start algorithm lie in which the starting point of load
scheduling is between task requester and service provider (Waraich 2008). (4) Other cat-
egories also include: local and global load strategies (Waraich 2008; Khan et al. 2011),
collaboration and non-cooperative load strategies (Waraich 2008; Yagoubi et al. 2006),
adaptive load strategy and so on. In view of the characteristics of commercial computing
services and management costs of cloud computing, this paper mainly studies how to
realize the centralized, dynamic load balancing intelligent strategy.

Compared with static load balancing algorithm, the dynamic load balancing algorithm
is of high complexity, because it needs to collect the extra overhead of load information,
but it takes the current state of each service node in the cluster into consideration, and
can give full play to the processing capacity of each service node to improve the through-
put of cluster system. If allocation scheduling is proper, the overhead paid is necessary
for improving the cluster system performance. Wherein the running state of service
nodes is reflected through a variety of load information, and thus the load evaluation
determines the merits of the request-allocation algorithm.

Typical methodology on load forecasting are BP neural network algorithm (Xiao et al.
2009) and the prediction algorithm based on filtering theory (Xu et al. 2000). However,
it is very difficult to establish a common prediction method for all applications. Due to
the differences of nature, different applications need corresponding and appropriate pre-
diction methods for load predictions. Taking the virtual cluster OpenStack as the study
object, this paper uses Proxy Node to monitor the load of Cloud computing nodes reg-
ularly, and puts forward that OpenStack cloud load prediction method of RBF neural
networks combined with AHP and hybrid hierarchy genetic training. Simulation experi-
ment results have shown that the prediction accuracy of the method is relatively good
and it is feasible to provide services for the load balancing algorithm.

There are many the common load balancing algorithms in cloud computing environ-
ments: Round-Robin Scheduling (RR) (Hahne 1991), Weighted Round-Robin Schedul-
ing (WRR) (Katevenis et al. 1991), Least-Connection Scheduling (LC) (He et al. 2015),
Equally Spread Current Execution Load (ESCEL) (Tangang et al. 2014), Throttled load
balancing algorithm (Throttled) (Tyagi and Kumar 2015) and Honeybee Foraging Algo-
rithm (HFA) (Nakrani 2004). We introduce three of them briefly as follows:

Page 3 of 23Zhou et al. SpringerPlus (2016) 5:1989

1.	 Round-Robin Scheduling (RR)

RR Scheduling (Hahne 1991) is to distribute assignment requests sequentially to multi-
ple cluster nodes, and that cycle repeats. RR Scheduling is simple and has high efficiency
when the configurations and performance of hardware and software nodes are consist-
ent, but when the cluster nodes have different performance and processing capacities, as
RR Scheduling does not consider the load of each node, it is likely to cause load imbal-
ance, thereby making the entire system perform poorly. RR Scheduling is adopted as the
load balancing strategy for the Eucalyptus-based cloud computing platform (Shreedhar
and Varghese 1996).

2.	 Equally Spread Current Execution Load (ESCEL)

ESCEL is a dynamic load balancing algorithm that requires a load balancer to monitor
tasks to be addressed (Tangang et al. 2014). The function of the load balancer is to put
the requested tasks into queue and assign them to different service nodes for processing.
The load balancer frequently checks new tasks in the queue and then assigns them to a
series of idle service nodes for treatment, while at the same time also maintaining the
assignment list that has been assigned to be processed in the service node, which can
help identify which services node is idle and new tasks can be assigned to it.

3.	 Throttled load balancing algorithm (Throttled)

The Throttled load balancing algorithm is entirely based on the virtual machine and
it is a dynamic load balancing algorithm (Tyagi and Kumar 2015). In this algorithm,
the user first requests the load balancer to find a suitable virtual machine to perform
the task requested. In cloud computing of multiple virtual machine cases, according to
the capabilities of the virtual machine to process assignment requests, first pre-assign a
maximum number of user requests. When the requested tasks have reached the maxi-
mum number of the virtual machine, it will no longer continue to receive tasks.

Load evaluation model based on AHP group decision making
Analytic hierarchy process (AHP) which is put forward by Saaty (Saaty 2003), is a tool
for dealing with complex decisions and can help policy-makers to determine priorities
and make optimal decisions. With such characteristics as systematic, flexible, simple,
practical (Zhou and Wen 2014; Gass and Rapcsák 2004; Srdjevic 2005). AHP can be
used for quantitative analyses of load evaluation of cloud storage, and calculates the load
evaluation metric of the system by constructing a hierarchical structure model and com-
parative judgment matrix. Put forward the load evaluation based on the Group Decision
Making AHP, by the combination with the characteristics of cloud computing environ-
ments, and the selection of information indicators which affect node load in the estab-
lishment of hierarchical structure, that including: CPU usage rate, internal storage usage
rate, network I/O throughput, response time and so on. In the construction of the AHP
comparison judgment matrix, the geometric mean method in group decision making is
used, thereby reducing the subjective factor of man-made judgment matrix. It makes the
load evaluation of service nodes in cloud computing environments more accurate.

Page 4 of 23Zhou et al. SpringerPlus (2016) 5:1989

Establish hierarchical structure model

AHP requires dividing decision problems into the destination layer, criterion layer and
project layer in accordance with their nature and affiliation to the establishment of a
hierarchical structure. Among all levels, in order to avoid difficulties caused by the pair-
wise comparison of elements, the number of elements in the next layer dominated by
a single element is generally no more than nine (Srdjevic 2005). Based on the study of
the load of service nodes in cloud computing environments, we selected the load index
which can accurately reflect the load condition of nodes to the maximum extent and fol-
lowed the principles of integrity, measurability, dependence, simplicity and maneuver-
ability of the cloud computing system. Eventually a hierarchical structure model for load
evaluation of service nodes were established, which is shown in Fig. 1.

In Fig. 1, we present two first-grade indexes of the total load evaluation index: perfor-
mance index (B1) and time index (B2). The performance index reflects the performance
of nodes, which contains a number of common load information evaluation indexes—
CPU utilization rate, memory utilization rate, number of work processes, and disk I/O
throughput. Meanwhile, taking the importance of cloud computing network indexes into
account, bandwidth utilization rate and network I/O throughput are included into node
performance indexes. In time index series, response time, mean failure time, Http link
failure rate and network response delay are selected since they all have a great relation-
ship with the reliability of node service, and affect the quality of cloud storage service.

Construct judgment matrix of pairwise comparison

Judgment matrix construction is a critical step of AHP, and after the establishment of
hierarchical structure, the relationship between various elements (such as paralleling
and affiliation) is determined. A judgment matrix is for a certain element of the upper
layer, and evaluates the relative superiority degree between this layer and its associated

Total Index (A)

Performance Index
(B1) Time Index (B2)

Service Node 1 Service Node 2 Service Node N

et
a

R
no

it
az

ili
t

U
UP

C
C

11 et
a

R
no

it
az

ili
t

U
yr

o
me

M
C

12

N
um

ber O
f W

ork Processes
C

13

B
andw

idth U
tilization R

ate
C

14

D
isk I/O

 Throughput
C

15

N
etw

ork I/O

T
hroughput

C
16

M
ean Failure Tim

e
C

22

H
ttp L

ink Failure R
ate

C
23

C
orresponding N

etw
ork D

elay
C

24

R
esponse T

im
e (C

21)

Destination Layer

Criterion Layer

Project Hierarchy...

Fig. 1  Hierarchical structure model of load evaluation

Page 5 of 23Zhou et al. SpringerPlus (2016) 5:1989

elements. In order to have a certain degree of recognition and quantitative results, the
general scale could be adopted to quantify the relative superiority degree of various ele-
ments, and thus a pairwise comparison judgment matrix will be constructed.

The comparison judgment matrix has the following three features:

1.	 aij > 0
(

i, j = 1, 2, 3, . . . , n
)

;

2.	 aij = 1
aji
;

3.	 aii = 1;

The scale values aij often take the reciprocals of the scales, and the meaning of each
scale is shown in Table 1.

Since the integer and reciprocal between meet the mental habits of people when they
are making judgment, and just as many psychology researches show that when compar-
ing certain property of a set of things, and if being satisfied with the judgment, average
people can generally and correctly identify the grade of property or the amount of things
between (Benítez et al. 2015), thus choosing as the quantization of qualitative level are
accepted and applied widely.

Here, we adopt the group decision-making method to construct a judgment matrix.
First, people with relevant knowledge construct the judgment matrix of A, B1 and B2
separately and independently. Then, they adopt the geometric method which calculates
corresponding elements of different judgment matrixes to construct the group decision
making judgment matrix (Benítez et al. 2015) to meet the matrix consistency and reduce
one-sidedness and subjectivity of individual construct matrixes. Suppose the judgment
matrix person k construct is:

Wherein aij = 1/aji, k = 1, 2, . . . , m, A(1),A(2), . . . ,A(m) meets the order consistency.

(1)A =







1 a12 · · · a1n
1/a12 1 · · · a2n
· · · · · · · · · · · ·

1/a1n 1/a2n · · · 1







(2)A(k) =
�

aij
�

n×n
=









1 a
(k)
12 · · · a

(k)
1n

a
(k)
12 1 · · · a

(k)
2n

· · · · · · · · · · · ·

a
(k)
n1 a

(k)
n2 · · · 1









Table 1  Scale values and their meanings

Scale Meaning

1 The two comparison elements are equally important

3 The former element is slightly more important than the latter

5 The former element is more important than the latter

7 The former element is much more important than the latter

9 The former element is definitely more important than the latter

2, 4, 6, 8 The important degree is between that of the above scales

Reciprocal If the importance ratio of element i and element j is, then the importance ratio of element j and
element i is

Page 6 of 23Zhou et al. SpringerPlus (2016) 5:1989

Then make Ā =
(

āij
)

n×n

The elements āij =

(

m
∏

k=1

a
(k)
ij

)
1
m

 of the formula are made up of the Ā geometric mean

of the corresponding elements of m judgment matrixes.
For the performance index B1 in Fig. 1, the judgment matrix B1 obtained by group

decision-making is shown as follows:

For the time index B2, the judgment matrix B2 obtained by group decision-making is
shown as follows:

For the total index, the judgment matrix A obtained by group decision-making is
shown as follows:

Relative weight calculation and consistency check

In the analytic hierarchy process, the corresponding comparative judgment matrix of
each criterion can be obtained by factors at their disposal. The single factor weight is
obtained mainly through the ordering vector of solving matrix. Calculation steps are as
follows:

1.	 Normalize the column vector of judgment matrix and get:

2.	 Get Ãij according to the line

3.	
⌣

W Normalize and get W = (w1, w1, . . . , wn)
T ;

4.	 At last, get the eigenvalue � = 1
n

∑n
i=1

(AW)i
wi

 of maximum A.

In order to avoid inconsistent judgments from impacting the feasibility of weight, and
further ensure that the judgment meets the conformance requirements, we tested the

(3)B1 =















1 2 3 5 3 5
1/2 1 2 4 2 4
1/3 1/2 1 3 1 3
1/5 1/4 1/3 1 1/2 1
1/3 1/2 1 2 1 2
1/5 1/4 1/3 1 1/2 1















(4)B2 =







1 1/3 3 2
3 1 6 5
1/3 1/6 1 1/2
1/2 1/5 2 1







(5)A =

[

1 3
1/3 1

]

(6)Ãij =

(

aij
∑n

i=1 aij

)

(7)

⌣

W =





n
�

j=1

a1j
�n

i=1 aij
,

n
�

j=1

a2j
�n

i=1 aij
, . . . ,

n
�

j=1

anj
�n

i=1 aij





T

;

Page 7 of 23Zhou et al. SpringerPlus (2016) 5:1989

consistency of the judgment matrix. When verifying its consistency, we introduce CI
(Consistency Index) as a quantity standard of the consistency degree of the judgment
matrix.

Equation (8) shows that the judgment matrix is completely consistent, and the larger
the value is, the worse the consistency of the judgment matrix will be. Due to the com-
plexity of objective things and the diversity of people’s understandings, and also the
relationships between the one-sidedness properly produced in people’s understanding
and the amount of factors that causes problems & the size of the problem (Yang et al.
2013; Kim et al. 2016), the standard of judging whether a matrix has consistency alone
is not enough. Therefore, AHP introduces mean random consistency index, as shown in
Table 2. The ratio of consistency index and mean random consistency index constitute
the consistency ratio of judgment matrix, viz. At that time, general definition considers
the consistency of judgment matrix as acceptable, or that the judgment matrix has no
consistency, which needs policymakers to make appropriate adjustment and corrections
of the judgment matrix.

Calculating according to the steps on the basis of the judgment matrix obtained above,
we can get the eigenvalue maximum through B2, thus the relative weight vectors (eigen-
vectors) and consistency index CI are shown as follows:

From Table 2, we can know the value of the mean random consistency index RI,
thereby knowing that Matrix B1 satisfying the following consistency by the CR value:

We can get the eigenvalue maximum through B2, thus its relative weight vector and
consistency index CI are shown as follows:

From Table 2, we can know that the value of the mean random consistency index RI,
thereby knowing Matrix B2 satisfying the following consistency by the CR value:

(8)CI =
�max − n

n− 1

(9)WB1 = (0.3709, 0.2380, 0.1452, 0.0607, 0.1244, 0.0607)T ;

(10)CI =
�max(B1)

n− 1
=

6.075− 6

6− 1
= 0.0150;

(11)CR =
CI

RI
=

0.0150

1.24
= 0.0122 < 0.1

(12)WB2 = (0.2220, 0.5743, 0.0773, 0.1264)T ;

(13)CI =
�max(B2)

n− 1
=

4.05− 4

4 − 1
= 0.0170;

Table 2  Mean random consistency index RI

n 1 2 3 4 5 6 7 8 9

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45

Page 8 of 23Zhou et al. SpringerPlus (2016) 5:1989

We can get the eigenvalue maximum through A, thus its relative weight vector and
consistency index CI are shown as follows:

By CI = 0, we can get that matrix A has consistency.

Calculate load evaluation metric value

Based on the relative weight of each factor, we assume the data vectors of performance
index and time index collected at the service nodes are a = (c11, c12, c13, c14, c15, c16),
b = (c21, c22, c23, c24); the formula of computing node load evaluation metric S is shown
as follows:

As we can see from the equation above, the larger the load evaluation metric S is, the
heavier the node load will be. Conversely, the smaller the value of S is, the lighter the
node load will be.

Optimization of RBF neural networks using HHGA
Here, we combine AHP group decision making with RBF neural networks effectively to
make RBF neural networks become a neural network with the experience of experts in
related fields through training. Training data are from the load evaluation framework of
AHP group decision making. When a new evaluation process proceeds, we can obtain a
comprehensive evaluation value, thus effectively reduce the complexity of the computa-
tion process simply through modifying the trained and mature input parameter RBFNN
(Kim et al. 2016; Hopfield 1982; Kohonen 1982). The hierarchy system established
according to the above method of Analytic Hierarchy, obtains the load evaluation met-
ric from the relative load information index data collected from service nodes and AHP
Group Decision Making as RBF neural network’s data set, of which some is regarded
as the training set, and the rest is as test set, to validate the load prediction role of RBF
neural network.

The basis Gaussian function is expressed as:

Wherein, ||x − ci|| represents Euclidean distance between x and ci; Ti(x) represents
the output of the ith hidden layer node; x is the n-dimensional input vector; m is the
number of hidden layer neurons; ci is the basis function center; σi is the basis width of
the ith hidden layer node. Each neuron node of hidden layer has a radial basis func-
tion center vector ci, this vector and the input sample “x” have the same dimension and

(14)CR =
CI

RI
=

0.0170

0.90
= 0.0189 < 0.1

(15)WA = (0.7500, 0.2500)T ;

(16)CI =
�max(A)

n− 1
=

2.00− 2

2− 1
= 0;

(17)S = (a×WB1, b×WB2)×WA

(18)Ti(x) = e−�x−ci�
2/2δ2i i = 1, 2, . . . ,m

Page 9 of 23Zhou et al. SpringerPlus (2016) 5:1989

ci = [ci1, ci2, . . . , cim]
T , i = 1, 2, . . . ,m; if the hidden layer has “m” neurons, it has “m”

radial basis function centers.
The output layer of RBF network is a linear combination of hidden layer node outputs,

and the output expression is shown as follows:

Wherein, ωi is the weight from the ith hidden layer node to the output layer node, and
p is the number of neurons at the output layer. In a RBF neural network, the output of
hidden layer node represents the degree of departure of input sample “X” from radial
basis function center “Ci” of hidden layer node. The network input layer implements
non-linear mapping and the output layer implements linear mapping.

The load prediction model based on RBF neural networks is shown as Fig. 2.
Previously, Sharifian and Motamedi compared the WRR, RBF and ANFIS on load bal-

ancing, the result show that RBF was better than others on convergence rate and pre-
diction accuracy (Sharifian et al. 2011). Load prediction model based on HHGA-RBF
neural network consists of three RBF neural networks, of which the RBFNN1 input in
upper left corner is the data value of the load information evaluation index in the previ-
ous section, while the RBFNN2 input in lower left corner is C21,C22,C23,C24, and these
two RBF neural network outputs constitute the RBF input on the right and the final pre-
dicted value will be outputted by RBFNN3 on the right.

HHGA optimizes RBF neural networks
A RBF neural network has a very good approximation performance. But in terms of
design, there are two main difficulties. One is the parameters design, including: radial
basis function’s center, width, and weight from hidden layer to output layer. Another is
the numbers of nodes of the input layer and output layer are fixed, and the number and

(19)
Yk =

m
∑

i=1

wikTi(x)

C11

C12

C13

C14

C15

C16

C1

C2

Cn

C1

C2

Cn

C21

C22

C23

C24

C1

C2

Cn

...

...
...

RBFNN1

RBFNN2

RBFNN3

Fig. 2  Load prediction model of RBF Neural Networks

Page 10 of 23Zhou et al. SpringerPlus (2016) 5:1989

weight of the hidden layer nodes directly affect RBF performance. A common approach
is to use the genetic algorithm to determine the node number, center and width of the
hidden layer of RBF neural networks, which is a new study direction (Vesin and Grüter
1999; Billings and Zheng 1995; Gen et al. 2001) in recent years.

The hierarchical genetic algorithms (HGA) (Xing et al. 2011; Barreto et al. 2006) were
put forward based on the hierarchy of biological chromosome which has two parts: con-
trolling genes and parameter genes. The controlling genes which determine whether the
parameter genes are activated, are expressed in binary form, in which “1” indicates that
the underlayer genes are active, while “0” indicates that the underlayer genes are inac-
tive. The hybrid coding method which combines binary coding with real number coding,
takes the center, width, connection weights and topology of hidden layer nodes of RBF
neural network as a whole and encodes them as a chromosome, and then selects the
appropriate population size. The optimal results of number of the center, width, con-
nection weight parameters and hidden node number of the hidden layer of RBF neural
network are obtained through progressive optimization by genetic iterations. Although
the hierarchical genetic algorithm is able to determine the parameters and structure
of the RBF neural network, networking learning is slow in the convergence speed and
efficiency.

This paper uses the Hybrid Hierarchy Genetic Algorithms (HHGA) to train RBF neu-
ral networks, namely to combine the HGA with the recursive least-squares method. The
HGA can only determine the structure of RBF neural networks, the center and width of
the hidden layer nodes, so this paper combines the HGA with the recursive least-squares
method to construct connection weights between the hidden layer and the output layer.
Determining the weights between the hidden layer and the output layer by the recur-
sive least-squares method can ensure high convergence speed (Wang et al. 2012). Hybrid
hierarchy genetic algorithm improves the efficiency of training the RBF neural network
through hierarchical genetic algorithm, meanwhile retains the advantages of hierarchical
genetic algorithm.

 Processes of training RBF neural networks by the HHGA are as shown in Fig. 3.
Processes of training RBF neural networks by the HHGA are as follows:

Step 1 Code: Considering the parameters and its ability to find optimized solution of
RBF neural network, genetic parameters are really encoded, and each gene is repre-
sented by a real number. The controlling genes are still adopts binary coding and each
binary bit corresponds to the central coding and the width coding of a hidden layer
node.
Step 2 Generate initial population,
Step 3 Decode individual, and construct the hidden layer of RBF neural networks.
Step 4 Determine the weights by recursive squares

The exact weight solution is obtained by the recursion of the covariance matrix which
is formed by the training sample input in each iteration. Error objective function is
defined as follows:

(20)
E(n) =

1

2

n
∑

k=1

�
n−k

M
∑

i=1

(

di − yi
)2

Page 11 of 23Zhou et al. SpringerPlus (2016) 5:1989

Wherein formula (20) λ is the forgetting factor; yi and di respectively represent the
actual output and expected output.

Combining with the Eqs. (18) and (19):

The train data x, is the n-dimensional input vector. ci = [ci1, ci2, . . . , cim]
T is the load

evaluation index shown in Fig. 1. According to the Eq. (20), the error objective function
E(n), and the output of train data yi and the expected output di, refer to reference (Chen
et al. 2011), training the connection weights of RBF neural networks, wik, by using the
recursive least squares (RLS) method.

Step 5 Evaluate the performance of RBF neural networks and calculate the individual
fitness degree.

Considering that the objective of training RBF neural networks is to make it the sim-
plest network structure while meet certain precision requirements, that is to make the
approximation error precision and the complexity of the neural network in compre-
hensive index reach the minimum, in which the network approximation error precision
objective function is represented by error sum of squares, and the network complexity is
represented by the node number of the hidden layer, this paper adopts the fitness func-
tion as follows:

Ti(x) = e−�x−ci�
2/2δ2i i = 1, 2, . . . ,m

Yk =

m
∑

i=1

wikTi(x)

Fig. 3  Processes of training RBF neural networks by HHGA

Page 12 of 23Zhou et al. SpringerPlus (2016) 5:1989

In Eq. (21), N is the number of samples, M is the number of nodes in the hidden layer,
n is the number of neural network input nodes, yi is the network output corresponding
to the ith input sample, di is the desired output, a, b, and d is constant.

Step 6 Judge whether it meets the termination condition or not. If meet, then end it;
otherwise, continue to the next step.
Step 7 Select individual as parent based on individual fitness.

This paper adopts the selection operation which is based on the proportion of adapta-
tion value, the probability of individual i being selected, where fi is the fitness value of
individual i, and denotes the sum of individual fitness values of the population.

Step 8 The parent generation generates new individuals through cross and mutation,
and parents are new individuals form new population.

In a hierarchical genetic strategy, it is necessary to do the crossover and mutation oper-
ations simultaneously with the controlling genes and parameter genes. The crossover
probability and mutation probability adopt adaptive crossover and mutation probability.
The crossover operation of the controlling genes follows the binary-coded cross rules. In
order to make the real number coding of parameter genes produce new parameter genes
through crossover operations, parameter genes generate a new parameter gene string by
using a linear combination of the value of cross-bit corresponding to two parameter gene
strings. The mutation operation of the controlling genes is a complementary operation of
themselves with a certain probability. While the parameter genes follow an offset muta-
tion, which is to add a random offset value to the mutation bit with a certain probability.

Step 9 Return to Step 3 to continue.

Dynamic load balancing algorithm implementation based on AHP
and HHGA‑RBFNN
Request tasks in a cloud computing environment are mutually independent. We use the
HHGA-RBFNN model described above to predict the load of the current cloud com-
puting system, and use the prediction result to calculate the polling weight of the cloud
computing nodes periodically, and form a new dynamic load balancing algorithm—
DPWRR through the combination with weighted round-robin algorithm.

Basic principle of algorithm

The dynamic load balancing algorithm proposed here belongs to a centralized algo-
rithm, which is to allocate the request tasks and deal with load balancing issues through
a central node. When users issue a request, the load balancing policy of the central node
decides which node to handle this task. The centralized load balancing algorithm mainly
contains three steps:

(21)f =
2N

(

a+ be
M
dn

)

∑N
i=1

(

di − yi
)2

.

Page 13 of 23Zhou et al. SpringerPlus (2016) 5:1989

1.	 The cloud computing load balancing center nodes predict the load of service nodes
as per periodic time T;

2.	 Calculating a corresponding polling weight value for each back-end service node
according to the prediction results by using HHGA-RBF model;

3.	 The central node allocates based on the polling weight value after receiving the
request tasks.

After a period T, re-predict the load of nodes and calculate the corresponding poll-
ing weights. This method turns the static weight of the weighted polling algorithm to a
dynamic adjustment one.

Processes of load balancing algorithm based on load prediction are shown in Fig. 4.
In an arithmetic process, the pseudo code of nodes which allocate tasks according to

the weights of each node is shown in Algorithm 1.

Algorithm.1 Node pseudo-code allocation

Input: service node group S = {S0, S1, ···, Sn-1} and weights of each node as the
polling weight of the service node Sk;

Output: service node

Initialization: is the greatest common divisor of the service node in the service node group
S; is the maximum weight of the service node in S; is the weights of the current schedule;
k is the service node chosen the last time;

Repeat
k = (k + 1) mod n

IF k = 0
cw = cw – sw_gcd(S)
IF

cw = sw_max(S)
IF cw = 0

Return null
ENDIF

ENDIF
ENDIF
IF
Return Sk

ENDIF

Detail design

The information policy in this paper adopts the periodic collection methods and col-
lects load index information on time, and the triggering policy is triggered by the central
control node, that is to use the sender initiative. The algorithm proposed in this paper
is focused on positioning strategy, and mainly considers the allocation of user request
tasks, and it does not involve the migration strategy, thus involving no migration of vir-
tual machines in cloud computing.

Several major modules of algorithm design is shown in Fig. 5.

Page 14 of 23Zhou et al. SpringerPlus (2016) 5:1989

1.	 Node load information monitoring module

In order to grasp the node load condition more accurately, solve the problem of node
load prediction, and then calculate the polling weights of back-end service node accord-
ing to the node load prediction results, we adopt the indexes chosen by the AHP group
decision making and load evaluation method: performance index B1 and time index B2.
The time period T which is related to the node load information collection is set in this
module. And when the periodic time is reached, the node load information monitoring
will be informed to collect the load information of the back-end node. Time period T
must be set reasonably. Theoretically, the shorter the cycle time is, the more frequently
the node load information collection will be, thus it is more able to reflect the node load
condition, but if the node load information collection frequency is too high, it will cause
unnecessary overhead and aggravation load. Generally, the collected time period T is set
in 5–10 s (Drougas et al. 2006).

2.	 Load prediction module

Before performing load prediction, first we used group decision making AHP to
make a load quantification of the index information collected by nodes. After collecting

Fig. 4  Processes of the load balancing algorithm

Page 15 of 23Zhou et al. SpringerPlus (2016) 5:1989

sufficient data, we can take them as the sample data to train the RBF neural network.
Meanwhile we perform parameter optimization to RBF neural network with hierarchi-
cal genetic algorithm and recursive least square method. After obtaining the prediction
model, the load prediction module predicts the load of data provided by the load infor-
mation monitoring module.

3.	 Request scheduling module

We can first calculate the polling weights of the back-end service nodes and dynami-
cally adjust the node weights as per the node load prediction value provided by the load
prediction module, select the appropriate node to deal with tasks received following the
weighted polling algorithm. The calculation formula of node polling weights is:

where Wi is the weights of node i, Wi is the load prediction of node i, C adjusts constant
in order to get an integer Wi. When request scheduling module is in the initial state, all
the polling weights of each node can be set as 1.

Experiments
Load prediction experiment of HHGA‑RBF

MATLAB software was used for doing a simulation experiment. Firstly, we can collect
1000 sets of data on the host of server, in which the parameter data under the perfor-
mance indicators B1 as training samples to train RBFNN1 in the upper left corner of
Fig. 6. Before network training, each class of sample parameter data is normalized.

The normalization formula is shown as follows:

(22)Wi = C ×

(

1− Vi

/

n
∑

i=0

Vi

)

(23)y = (x −MinValue)/(MaxValue −MinValue)

Load Prediction Module

Load Information
Monitoring Module

Request Scheduling Module

U
se

r
T

as
k

Pe
rf

or
m

an
ce

In

de
x

B
1

T
im

e
In

de
x

B
2

Node 1 Node 2 Node 1

T Time Period
T

...

Fig. 5  Algorithm block diagram

Page 16 of 23Zhou et al. SpringerPlus (2016) 5:1989

In Eq. (23), MaxValue is the maximum of such sample parameter data, and MinValue
is the minimum of such sample parameter data.

According to Qiang et al. (2011), we set the training parameters of RBF1 neural net-
works by the HHGA. Similarly, RBFNN2 should be trained. Finally, we can take the pre-
diction value of RBFNN1 and RBFNN2 and input it in RBFNN3, and the server node
load is predicted by RBFNN3.

Figures 7 and 8 are the prediction results comparison of index B1 and index B2 respec-
tively, in which the HHGA-RBF prediction result is compared with the load evaluation
value of AHP group decision making and BP prediction. The results show that the aver-
age relative error of RBF prediction values and AHP group decision making are less than
0.01, and are significantly better than the BP prediction results.

The comparison of the prediction results of the total index A is shown in Fig. 9, which
is the comparison of server node load predictions. The final server node load prediction
uses HHGA-RBF prediction results, the average relative error is also less than 0.01 with
the load evaluation value of AHP group decision making, and is also better than the pre-
diction results of BP.

Simulation environment configuration

In a CloudAnalyst simulation platform (Wickremasinghe et al. 2010), we configure user
information, as shown in Table 3. Configurating user groups at different regional loca-
tions: UB1, UB2, UB3, UB4, UB5 and UB6; the cloud computing data center configura-
tion is shown in Table 4. Here, we divides the cloud computing data center configuration
into two kinds when testing the balancing algorithm performance: one is cloud comput-
ing data center CDC1 which is constituted by the data center DC1, and the other is the
cloud computing data center CDC2 which is constituted by three data centers of DC1,
DC2 and DC3; DC1 consists of 50 virtual machines which are virtualized by 10 physical
hosts, DC2 consists of 35 virtual machines which are virtualized by eight physical hosts,
DC3 consists of 25 virtual machines which are virtualized by 5 physical hosts.

The transmission delay and bandwidth between regional locations are shown in
Tables 5 and 6, with a total of six regional locations.

Analysis of simulation results

In the cloud computing data center DC1 formed by CDC1, the simulation results of
RR, ESCEL, Throttled and DPWRR load balancing algorithm proposed in this paper

Fig. 6  Hierarchical genetic algorithm for optimization of RBF hidden layer parameters

Page 17 of 23Zhou et al. SpringerPlus (2016) 5:1989

are shown in Tables 7 and 8. Table 7 is the overall response time of user groups under
four different load balancing algorithms; Avg is the average response time of entire user
groups of UB1, UB2, UB3, UB4, UB5 and UB6, Min is the minimum response time in the
user groups, Max is the maximum response time in the user groups. Table 8 is the pro-
cessing time of the data center.

In the cloud computing data center formed by DC1, DC2 and DC3, the simulation
results of RR, ESCEL, Throttled and DPWRR load balancing algorithm proposed in this
paper are shown in Tables 9 and 10.

The comparison of the average response time of user groups between the load balanc-
ing algorithm DPWRR designed by this paper and RR, ESCEL, Throttled under different
configurations of CDC1 and CDC2 is shown in Fig. 10. In cloud computing data center
CDC1, DPWRR is slightly better than the other three kinds of load balancing algorithms,
as it has the minimum average response time in the user groups; in CDC2, the effects of
DPWRR and Throttled are almost the same, but they are better than the RR and ESCEL
load balancing algorithms.

The comparison of the average processing time of data center among the four kinds of
load balancing algorithms—DPWRR, RR, ESCEL and Throttled under cloud computing

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
�v

e
Va

lu
e

Serial Number Of Test Record

Predic�on of index B1

AHP

BP

HHGA-
AHP-RBF

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Variance of BP and AHP-HHGA-RBF with AHP

BP HHGA-RBF
Fig. 7  Prediction of index B1

Page 18 of 23Zhou et al. SpringerPlus (2016) 5:1989

data centers of CDC1 and CDC2 is shown in Fig. 11. In the cloud computing data center
CDC1, DPWRR is slightly better than the other three load balancing algorithms, as it
has the minimum average processing time of all data centers; in CDC2, the average pro-
cessing time of DPWRR, ESCEL and Throttled load balancing algorithms is almost the
same, but slightly better than that of RR.

Conclusion
This paper presents a dynamic load algorithm based on AHPGD and HHGA-RBF neu-
ral networks under the cloud computing environment, in order to solve the problem of
load balancing of the allocation of user request tasks in cloud computing environment.
It describes the basic idea and design of the algorithm based on the load prediction
model, that constructed in the load prediction process uses a HGA and the recursive

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
�v

e
Va

lu
e

Serial Number Of Test Record

Predic�on of index B2

AHP

BP

AHP-HHGA-
RBF

0

0.05

0.1

0.15

0.2

0.25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Variance of BP and AHP-HHGA-RBF with AHP

BP AHP-HHGA-RBF
Fig. 8  Prediction of index B2

Page 19 of 23Zhou et al. SpringerPlus (2016) 5:1989

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

Pr
ed

ic
�v

e
Va

lu
e

Serial Number Of Test Record

Predic�on of index A

AHP

BP

AHP-
HHGA-
RBF

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Variance of BPNN and AHP-HHGA-RBFNN with AHP

BP AHP-HHGA-RBF
Fig. 9  Prediction of total index A

Table 3  User group configuration

User base Region Requests
per user per Hr

Data size
per Request
(bytes)

Peak hours
(GMT)

Avg peak users Avg off-peak
users

UB1 0 90 200 3–5 3000 1000

UB2 1 50 200 5–7 2000 800

UB3 2 75 250 8–10 2800 1100

UB4 3 105 180 2–4 3500 1500

UB5 4 60 150 10–12 1500 600

UB6 5 80 200 3–9 2000 1000

Table 4  Data center configuration

Data center Region Arch OS VMM Physical HW units VMs

DC1 3 ×86 Linux Xen 10 50

DC2 3 ×86 Linux Xen 8 35

DC3 3 ×86 Linux Xen 5 25

Page 20 of 23Zhou et al. SpringerPlus (2016) 5:1989

Table 5  Transmission delay between regions, unit is ms

Region\region 0 1 2 3 4 5

0 25 100 150 250 250 100

1 100 25 250 500 350 200

2 150 250 25 150 150 200

3 250 500 150 25 500 500

4 250 350 150 500 25 500

5 100 200 200 500 500 25

Table 6  Bandwidth allocation between regions, unit is Mbps

Region\region 0 1 2 3 4 5

0 2000 1000 1000 1000 1000 1000

1 1000 800 1000 1000 1000 1000

2 1000 1000 2500 1000 1000 1000

3 1000 1000 1000 1500 1000 1000

4 1000 1000 1000 1000 500 1000

5 1000 1000 1000 1000 1000 2000

Table 7  The overall response time of user groups under CDC1

Overall response time Avg (ms) Min (ms) Max (ms)

RR 454.60 36.09 1300.27

ESCEL 454.47 35.84 1300.27

Throttled 454.47 35.84 1300.27

DPWRR 454.45 35.81 1300.24

Table 8  The processing time of data center under CDC1

Data center processing time Avg (ms) Min (ms) Max (ms)

RR 0.64 0.09 11.21

ESCEL 0.50 0.09 2.01

Throttled 0.50 0.09 1.38

DPWRR 0.48 0.09 1.12

Table 9  The overall response time of user groups under CDC2

Overall response time Avg (ms) Min (ms) Max (ms)

RR 485.83 36.74 1265.30

ESCEL 485.78 36.71 1265.30

Throttled 485.77 36.74 1265.30

DPWRR 485.77 36.69 1265.30

Page 21 of 23Zhou et al. SpringerPlus (2016) 5:1989

least-squares method to train parameters of RBF neural networks. The algorithm com-
bines with weighted round-robin algorithm and dynamically updates the weights of each
node within the time period. In the design details of the algorithm, we propose three
modules of the algorithm: node load information monitoring module, load prediction
module and request scheduling module; meanwhile this paper also designs the time
period T and the calculation method of node weights. Finally, we further describe the
simulation experiments of the proposed algorithm conducted with CloudAnalyst, and

Table 10  The processing time of data center under CDC1

Data center processing time Avg (ms) Min (ms) Max (ms)

RR 0.49 0.09 2.17

ESCEL 0.44 0.10 1.61

Throttled 0.44 0.09 1.14

DPWRR 0.44 0.09 1.29

454.35

454.4

454.45

454.5

454.55

454.6

454.65

CDC1

spuorgresufo
e

mit
senopser

egareva
(m

s)

RR

ESCEL

Thro�led

DPWRR

485.74

485.75

485.76

485.77

485.78

485.79

485.8

485.81

485.82

485.83

CDC2

av
er

ag
e

re
sp

on
es

 �
m

e
of

 u
se

r g
ro

up
(m

s)

RR

ESCEL

Thro�led

DPWRR

Fig. 10  Comparison of average response time of user groups under CDC1 and CDC2 among the algorithm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CDC1 CDC2

av
er

ag
e

pr
oc

es
sin

g
�m

e
of

 d
at

a
ce

nt
er

(m
s)

RR

ESCEL

Thro�led

DPWRR

Fig. 11  Comparison of average processing time of data centers under CDC1 and CDC2 among the algo-
rithm

Page 22 of 23Zhou et al. SpringerPlus (2016) 5:1989

analyze its comparison with the algorithms of RR, ESCEL and Throttled, the results of
which show that the algorithm is slightly better than the other three load balancing algo-
rithms, which is effective and feasible.

Authors’ contributions
 The work presented here was carried out with the collaboration of all authors. FL, LY and WZ defined the research
theme. XZ, LY and QT designed methods and redone the experiments, carried out the laboratory experiments, analyzed
the data, interpreted the results and wrote the paper. NZ and JN co-designed the dispersal and colonization experi-
ments, and co-worked on associated data collection and interpretations. XZ and LY re-designed experiments, discussed
analyses, interpretations, and presentation. All authors have contributed to the manuscript. All authors read and
approved the final manuscript.

Author details
1 Software School, Xiamen University, Xiamen, China. 2 Xiamen Institute of Software Technology, Xiamen, China.

Competing interests
Xiuze Zhou has received research grants from Software School of Xiamen University. Fan Lin has received research grants
from Xiamen University. Lvqing Yang, Qian Tan and Wenhua Zeng are the member of Xiamen University. Jing Nie and
Nian Zhang has received research grants from Xiamen University of Technology. The authors declare that they have no
competing interests.

Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.

Ethical standards
This study was supported by the National Natural Science Foundation of China (No. 61402386, No. 61305061 and Grant
No. 61402389). And we wish to thank the anonymous reviewers who helped to improve the quality of the paper.

Received: 21 May 2016 Accepted: 28 October 2016

References
Alakeel AM (2010) A Guide to dynamic load balancing in distributed computer systems. Int J Comput Sci Netw Secur

10(6):153–160
Barreto AMS, Barbosa HJC, Ebecken NFF (2006) GOLS—Genetic orthogonal least squares algorithm for training RBF

networks. Neurocomputing 69(16–18):2041–2064
Benítez J, Delgado Galván X, Izquierdo J, Pérez García R (2015) Consistent completion of incomplete judgments in deci-

sion making using AHP. J Comput Appl Math 290(C):412–422
Billings SA, Zheng GL (1995) Radial basis function network configuration using genetic algorithms. Neural Netw

8(6):877–890
Chen H, Gong Y, Hong X (2011) Adaptive modelling with tunable RBF network using multi-innovation RLS algorithm

assisted by swarm intelligence. Presented at the 2011 IEEE international conference on acoustics, speech and signal
processing (ICASSP), Prague, pp 2132–2135

Dhakal S, Hayat MM, Pezoa JE, Yang C, Bader DA (2007) Dynamic load balancing in distributed systems in the presence of
delays: a regeneration-theory approach. IEEE Trans Parallel Distrib Syst 18(4):485–497

Drougas Y, Repantis T, Kalogeraki V (2006) Load balancing techniques for distributed stream processing applications in
overlay environments. In: Ninth IEEE international symposium on object and component-oriented real-time distrib-
uted computing (ISORC’06), p 8

Gass SI, Rapcsák T (2004) Singular value decomposition in AHP. Eur J Oper Res 154(3):573–584
Gen M, Cheng R, Oren SS (2001) Network design techniques using adapted genetic algorithms. Adv Eng Softw

32(9):731–744
Hahne EL (1991) Round-robin scheduling for max-min fairness in data networks. IEEE J Sel Areas Commun

9(7):1024–1039
He H, Feng Y, Li Z, Zhu Z, Zhang W, Cheng A (2015) Dynamic load balancing technology for cloud-oriented CDN. Comput

Sci Inf Syst 12(2):765–786
Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl

Acad Sci USA 79(8):2554–2558
Katevenis M, Sidiropoulos S, Courcoubetis C (1991) Weighted round-robin cell multiplexing in a general-purpose ATM

switch chip. IEEE J Sel Areas Commun 9(8):1265–1279
Khan Z, Singh R, Alam J, Saxena S (2011) Classification of load balancing conditions for parallel and distributed systems.

Int J Comput Sci Issues 8(5):411–419
Kim Y, Warren SC, Stone JM, Knight JC, Neil MAA, Paterson C, Dunsby CW, French PMW (2016) Adaptive multiphoton

endomicroscope incorporating a polarization-maintaining multicore optical fibre. IEEE J Sel Top Quantum Electron
22(3):171–178

Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43(1):59–69
Nakrani S (2004) On honey bees and dynamic server allocation in internet hosting centers. Adapt Behav 12(3–4):223–240

Page 23 of 23Zhou et al. SpringerPlus (2016) 5:1989

Peng J, Zhang X, Lei Z, Zhang B, Zhang W, Li Q (2009) Comparison of several cloud computing platforms. In: 2009 Second
international symposium on information science and engineering, pp 23–27

Pepple K (2011) Deploying OpenStack. O’Reilly Media, Inc., Sebastopol
Qiang G, Li-jun J, Yuan-long H, Zhong-zhi T, Yong J (2011) Modeling of electro-hydraulic position servo system of pump-

controlled cylinder based on HHGA-RBFNN. In: 2011 International conference on electronics, communications and
control (ICECC), 2011, pp 335–339

Randles M, Lamb D, Taleb-Bendiab A (2010) A comparative study into distributed load balancing algorithms for cloud
computing. In: 2010 IEEE 24th international conference on advanced information networking and applications
workshops (WAINA), 2010, pp 551–556

Saaty TL (2003) Decision-making with the AHP: why is the principal eigenvector necessary. Eur J Oper Res 145(1):85–91
Sefraoui O, Aissaoui M, Eleuldj M, Iaas O, Scalableifx V (2012) OpenStack: toward an open-source solution for cloud com-

puting. Int J Comput Appl 55(3):38–42
Sharifian S, Motamedi SA, Akbari MK (2011) A predictive and probabilistic load-balancing algorithm for cluster-based

web servers. Appl Soft Comput 11(1):970–981
Shreedhar M, Varghese G (1996) Efficient fair queuing using deficit round-robin. IEEEACM Trans Netw 4(3):375–385
Srdjevic B (2005) Combining different prioritization methods in the analytic hierarchy process synthesis. Comput Oper

Res 32(7):1897–1919
Tangang, Zhan R, Shibo, Xindi (2014) Comparative analysis and simulation of load balancing scheduling algorithm based

on cloud resource. In: Proceedings of international conference on computer science and information technology.
Springer, India

Tyagi V, Kumar T (2015) ORT broker policy: reduce cost and response time using throttled load balancing algorithm. Proc
Comput Sci 48:217–221

Vesin J, Grüter R (1999) Model selection using a simplex reproduction genetic algorithm. Sig Process 78(3):321–327
Wang F, Yu JL, Zhu PC, Wei XF (2012) RBF network based on improved niche hybrid hierarchy genetic algorithm. Mater

Sci Inf Technol 433:775–780
Waraich SS (2008) Classification of dynamic load balancing strategies in a network of workstations, pp 1263–1265
Welcome to Swift’s documentation! (2012) http://docs.openstack.org/developer/swift/
Wickremasinghe B, Calheiros RN, Buyya R (2010) CloudAnalyst: a CloudSim-based visual modeller for analysing cloud

computing environments and applications. In: 2010 24th IEEE international conference on advanced information
networking and applications, pp 446–452

Xiao Z, Ye S-J, Zhong B, Sun C-X (2009) BP neural network with rough set for short term load forecasting. Expert Syst Appl
36(1):273–279

Xing Z, Pang X, Ji H, Qin Y, Jia L (2011) Hierarchical genetic algorithm based RBF neural networks and application for
modelling of the automatic depth control electrohydraulic system. Int J Control Autom Syst 9(4):759–767

Xu J, Zhu Q, Hu N, Li X (2000) Predicting allocation algorithm in distributed real-time systems. J Softw 11(1):95–103
Yagoubi B, Lilia HT, Moussa HS (2006) Load balancing in grid computing. Asian J Inf Technol 5(10):1095–1103
Yang X, Yan L, Zeng L (2013) How to handle uncertainties in AHP: the cloud delphi hierarchical analysis. Inf Sci

222:384–404
Zhou H, Wen Q (2014) Load balancing solution based on AHP for Hadoop. In: 2014 IEEE workshop on electronics, com-

puter and applications, pp 633–636

http://docs.openstack.org/developer/swift/

	Load balancing prediction method of cloud storage based on analytic hierarchy process and hybrid hierarchical genetic algorithm
	Abstract
	Background
	Load evaluation model based on AHP group decision making
	Establish hierarchical structure model
	Construct judgment matrix of pairwise comparison
	Relative weight calculation and consistency check
	Calculate load evaluation metric value

	Optimization of RBF neural networks using HHGA
	HHGA optimizes RBF neural networks
	Dynamic load balancing algorithm implementation based on AHP and HHGA-RBFNN
	Basic principle of algorithm
	Detail design

	Experiments
	Load prediction experiment of HHGA-RBF
	Simulation environment configuration
	Analysis of simulation results

	Conclusion
	Authors’ contributions
	References

