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Background
Nowadays, graphs do not represent all the systems like networks, routes, schedules, 
images, etc. properly due to the uncertainty or haziness of the parameters of systems. 
For example, a social network may be represented as a graph, where vertices represent 
an account (person, institution, etc.) and edges represent the relation between those 
accounts. If the relations among accounts are measured as either good or bad accord-
ing to the frequency of contacts among those accounts, then fuzzyness can be added 
for such representations. This and many other problems lead to define fuzzy graphs. 
The first definition of a fuzzy graph was introduced by Kauffman (1973). But, Rosen-
feld (1975) described fuzzy relations on fuzzy sets and developed some theory of fuzzy 
graphs. Using these concept of fuzzy graphs, Koczy (1992) discussed fuzzy graphs 
to evaluate and to optimize any networks. Samanta and Pal (2013) showed that fuzzy 
graphs can be used in competition in ecosystems. After that, they introduced some dif-
ferent types of fuzzy graphs (Samanta and Pal 2015; Samanta et al. 2014). Bhutani and 
Battou (2003) and Bhutani and Rosenfeld (2003) discussed different arcs in fuzzy graphs. 
For further details of fuzzy graphs, readers may look in Mathew (2009), Mordeson and 
Nair (2000), Pramanik et al. (2014, 2016) and Rashmanlou et al. (2015). Applications of 
fuzzy graph include data mining, image segmentation, clustering, image capturing, net-
working, communication, planning, scheduling, etc.

Abstract 

Fuzzy graphs are the backbone of many real systems like networks, image, scheduling, 
etc. But, due to some restriction on edges, fuzzy graphs are limited to represent for 
some systems. Generalized fuzzy graphs are appropriate to avoid such restrictions. In 
this study generalized fuzzy graphs are introduced. In this study, matrix representation 
of generalized fuzzy graphs is described. Completeness and regularity are two impor-
tant parameters of graph theory. Here, regular and complete generalized fuzzy graphs 
are introduced. Some properties of them are discussed. After that, effective regular 
graphs are exemplified.
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Sunitha (2001) introduced and discussed some properties of complete fuzzy graphs. 
The same technique as in crisp complete graph, is used. After that, Parvathi and 
Karunambigai (2006) extended the concept of fuzzy graphs to introduce intuitionistic 
fuzzy graphs. Here, membership values and non-membership values are associated. 
Nagorgani and Radha (2012) defined regular fuzzy graphs in which the degree of ver-
tices are assumed as same as in crisp graphs. Akram (2011) introduced interval valued 
fuzzy graphs. In that paper, vertex and edge membership values are taken as intervals 
but the same technique applied for edge restriction as in fuzzy graphs. After that, Akram 
and Dudek (2011) introduced bipolar fuzzy graphs. Here, positive and negative mem-
bership values of vertices and edges are taken. Kittur (2012) and Radha and Kumaravel 
(2014) described some important properties of complete and regular fuzzy graphs.

In all these fuzzy graphs, there is a common property that edge membership value is 
less than to the minimum of it’s end vertex membership values. Suppose, a social net-
work is to be represented as fuzzy graphs. Here, all social units are taken as fuzzy nodes. 
The membership values of the vertices may depend on several parameters. Suppose, the 
membership values are measured according to the sources of knowledge and the relation 
between those units is represented by fuzzy edges. Thus, the membership value is meas-
ured according to the transfer of knowledge. But, transfer of knowledge may be greater 
than one of the social actors/units as more knowledgeable person informs less knowl-
edgeable person. But, this concept cannot be represented in fuzzy graphs as edge mem-
bership value should be less than membership values of end vertices. Thus, all images/
networks cannot be represented by fuzzy graphs. To remove the restriction, generalized 
fuzzy graphs are introduced here.

Matrix representation is another way of representations. Different authors established 
different properties of fuzzy graph matrices. Recently, Khansamy and Thangaraj (2015) 
discussed about some properties of matrices of fuzzy graphs. In this research, gener-
alized fuzzy graphs are represented by appropriate matrices. Sunitha (2001) discussed 
different major properties of fuzzy graphs in her research work. She described fuzzy 
complete graphs, regular graphs and many more. Kittur (2012) provided some proper-
ties on complete fuzzy graphs. Nagorgani and Radha (2012), Nagorgani and Latha (2008) 
and Radha and Kumaravel (2014) described some of the properties of regularity and 
irregularity of fuzzy graphs. These studies are regular extension of crisp graphs. In this 
paper, regularity is defined in more generalized way.

After introductory section, generalized fuzzy graphs of type 1 and type 2 (GFG1, 
GFG2) are described with suitable examples. After that, GFG1 and GFG2 are repre-
sented by matrices. Complete GFG1, GFG2 are introduced. Then, regular and effective 
regular GFG1, GFG2 are introduced and several properties are established. At last, con-
clusions are given.

Problem definition of this work
The direction of this work is to generalize the fuzzy graphs by removing the edge restric-
tion. The relation between vertices and edges are to be established. Two properties, 
completeness and regularity, are to be discussed.
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Generalized fuzzy graphs
A fuzzy graph ξ = (V , σ ,µ) is a non-void set V with a pair of functions σ : V → [0, 1] 
and µ : V × V → [0, 1] such that for each x, y ∈ V , µ(x, y) ≤ σ(x) ∧ σ(y), where 
σ(x) and µ(x, y) represent the membership values of the vertex x and edge (x, y) in ξ 
respectively.

Now, generalized fuzzy graphs are to be defined. The membership value of vertices of 
graphs depend on membership values of the adjacent edges. The membership values of 
isolated vertices are taken as 0. The membership function is defined from a non-void set 
to a closed interval [0, 1]. Thus, any linguistic term can be defined by membership val-
ues. Some times, vertex membership values are considered first and depending on vertex 
membership values, the edge membership values are assumed. For example, social net-
works, where social actors and its stability are considered first. Depending on stability, 
vertex membership values are determined. After that, relation among the actors are con-
sidered. The membership values may be taken from the parameter ‘relationship’. In some 
real problems, edges are considered first and depending on edge membership values the 
vertex membership values are considered. For example, capacities of pipelines can be 
taken as edge membership values and depending on the capacities, vertex membership 
values are decided (Table 1). 

Here, two types of relations are considered. In the following, generalized fuzzy graph 
of first kind is defined. Here, vertex membership values are considered first. Then, 
depending on vertex membership values, edge membership values are considered.

Definition 1  Let V be a non-void set. Two functions are considered as follows: 
ρ : V → [0, 1] and ω : V × V → [0, 1]. We suppose A = {(ρ(x), ρ(y))|ω(x, y) > 0}. 
The triad (V , ρ,ω) is defined to be generalized fuzzy graph of first kind (GFG1) if there 
exists a function φ : A → (0, 1] such that ω(x, y) = φ((ρ(x), ρ(y))) where x, y ∈ V . Here 
ρ(x), x ∈ V  is the membership value of the vertex x and ω(x, y), x, y ∈ V  is the member-
ship value of the edge (x, y).

Table 1  Authors contributions towards generalized fuzzy graphs

Authors Year Contributions

Kauffman (1973) 1973 Introduction of fuzzy graphs

Rosenfeld (1975) 1975 Modification of the concept of fuzzy graphs given by Kauffman 
(1973). He added that edge membership value is less than mini-
mum of vertex membership values

Sunitha (2001) 2001 Introduction and discussion of properties of complete fuzzy graphs

Parvathi and Karunambigai (2006) 2006 Introduction of intuitionistic fuzzy graphs

Nagorgani and Radha (2012) 2008 Introduction of regular fuzzy graphs

Akram (2011) 2011 Introduction of interval valued fuzzy graphs

Akram and Dudek (2011) 2011 Introduction of bipolar fuzzy graphs

Kittur (2012) 2012 Some properties of complete fuzzy graphs

Radha and Kumaravel (2014) 2014 Introduction of edge regular fuzzy graphs

Khansamy and Thangaraj (2015) 2015 Introduction of vertex-edge matrix of fuzzy graphs

This paper – Introduction of generalized fuzzy graphs Matrix representation of 
generalized fuzzy graphs Introduction of regular and complete 
generalized fuzzy graphs
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Example 1  Let the vertex set be V = {x, y, z, t} and edge set be {(x, y), (x, z), (x, t), (y, 
t)} and ρ(x) = 0.5, ρ(y) = 0.9, ρ(z) = 0.3, ρ(t) = 0.8. Let us consider φ(m, n) = m ∨ n . 
Here, A  =  {(0.5, 0.9), (0.5, 0.3), (0.5, 0.8), (0.9, 0.8)}. Then ω(x, y) = 0.5 ∨0.9 = 0.9, 
ω(x, z) = 0.5, ω(x, t) = 0.8, ω(y, t) = 0.9. The corresponding generalized fuzzy graph is 
shown in Fig. 1.

Now, generalized fuzzy graphs of second kind is defined. Here, the membership values 
of edges are considered first. Then, depending on edge membership values, vertex mem-
bership values of vertices are assigned.

Definition 2  Let V be a non-void set. Two functions are considered as follows: 
ρ : V → [0, 1] and ω : V × V → [0, 1] and let B be the range set of ω. The triad (V , ρ,ω) 
is defined to be generalized fuzzy graph of second kind (GFG2) if there exists a function 
ψ : B → (0, 1] such that for every x ∈ V , ρ(x) = ψ(ω(ex)), where ex = (x, y) such that 
y ∈ V . Here, ρ(x), x ∈ V  is the membership values of the vertex x and ω(x, y) is the gen-
eralized membership value of the edge (x, y).

Introduction of fuzzy graphs

Modification of fuzzy graphs

By Kauffman (1973)

By Rosenfeld (1975)

Bipolar fuzzy graphs

By Akram (2011)

Generalized fuzzy graphs

This paper

Complete fuzzy graphs

Complete GFGs Regular GFGs

Regular fuzzy graphs

By Sunitha (2001)

This paper

By Nagoorgani (2008)

This paper

Intuitionistic fuzzy graphs

By Parvathi et al. (2006)

Interval valued fuzzy graphs

By Akram (2011)

Fig. 1  Flow chart of authors contribution
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Note 1  In GFG2, the co-domain set of ψ excludes the number 0, as the membership 
values of vertices are always positive.

Example 2  Let us consider a generalized fuzzy graph of second kind (GFG2) shown in 
Fig. 2. Here, V = {a, b, c, d, e} be a non-void set and {((a, b), 0.4), ((a, c), 0.5), ((a, e), 0.6), 
((b, c), 0.8), ((b, e), 0.3), ((c, e), 0.7), ((d, e), 0.7), ((c, e), 1)} is the fuzzy edge set. Also let, 
ρ(x) =

∑

y∈V ω(x,y)

n  in which n is the whole number of existing edges adjacent to x. Now, 
ρ(a) = 0.4+0.5+0.6

3 = 0.5. The vertex set is {a(0.5), b(0.5), c(0.75), d(0.85), e(0.575)}.

Matrix representation of generalized fuzzy graphs
Any graph can be represented by a some well known matrices like adjacency matrices, 
incident matrices and many more (Khansamy and Thangaraj 2015). Among them, adja-
cent matrix and incident matrix are widely used. Fuzzy graphs can also be represented 
by these matrices. Here, two types of generalized fuzzy graphs are represented by two 
different types of matrices (Table 2).

Matrix representation of GFG1

This type of graph has one property that edge membership value depends on the mem-
bership values of adjacent vertices. Suppose ξ = (V , ρ,ω) is a GFG1 where vertex set 
V = {v1, v2, . . . , vn}. Now, φ : A → (0, 1] is taken such that ω(x, y) = φ((ρ(x), ρ(y))) 
where x, y ∈ V  and A = {(ρ(x), ρ(y))|ω(x, y) > 0}. This graph can be represented by 
(n+ 1) × (n+ 1) matrix MG1 = [a(i, j)] as follows: in the first row and first column, verti-
ces with membership values are provided. The (i + 1, j + 1)-th entry is the membership 
value of the edge (xi, xj), i, j = 1, . . . , n if i �= j. (i, i)-th entry is ρ(xi), where i = 1, 2, . . . , n . 
This membership value can be calculated easily using φ which is in (1, 1)-position of the 
matrix. The representation of the matrix is as follows:

x(0.5)

y(0.9) z(0.3)

t(0.8)

0.9
0.50.9

0.8

Fig. 2  An example of generalized fuzzy graph of first kind (GFG1)

Table 2  Matrix representation of GFG1

φ v1(ρ(v1)) v2(ρ(v2)) . . . vn(ρ(vn))

v1(ρ(v1)) ρ(v1) φ(ρ(v1), ρ(v2)) . . . φ(ρ(v1), ρ(vn))

v2(ρ(v2)) φ(ρ(v2), ρ(v1)) ρ(v2) . . . φ(ρ(v2), ρ(vn))

. . . . . . . . . . . . . . .

vn(ρ(vn)) φ(ρ(vn), ρ(v1)) φ(ρ(vn), ρ(v2)) . . . ρ(vn)
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Note 2  1.	 The total information of GFG1 can be interpreted perfectly from the 
matrix representation.

2.	 The function φ is put in (1, 1)-position. Entries of the matrix are calculated from the 
function φ and vertex membership values which are put in 1st row and 1st column.

3.	 As matrices are considered for un-directed graphs, edges (u, v) and (v, u) are same 
and hence the matrices are symmetric.

4.	 Number of rows = number of columns = |V|.
5.	 If a row (column) has all its entries to be zero then that vertex is an isolated vertex.

Example 3  In this example, GFG1 of Fig. 2 is considered. Here, vertices of the graph 
are put along the rows and the columns. The corresponding matrix is shown in Table 3.

Theorem  1  Let MG1 be the matrix representation of GFG1. Then D(xk) =
∑n

j=1,j �=k a(k + 1, j + 1), xk ∈ V  or D(xp) =
∑n

i=1,i �=p a(i + 1, p+ 1), xp ∈ V .

Proof  Here, MG1 is the matrix representation of GFG1. Then (i + 1, j + 1)-th entry is 
the membership value of the edge (xi, xj), i, j = 1, . . . , n if i �= j i.e.,

Now, degree of a vertex is the sum of the membership values of incident edges of the ver-
tex. Thus, D(x) =

∑

y∈V ω(x, y). Again, the entries of a row or column are the member-
ship values of corresponding edges except at diagonal entries. Hence, it is observed that 
D(xk) =

∑n
j=1,j �=k a(k + 1, j + 1), xk ∈ V  or D(xp) =

∑n
i=1,i �=p a(i + 1, p+ 1), xp ∈ V . ��

Matrix representation of GFG2

These types of graphs have one common property that edge membership value depends 
on adjacent vertex membership values. Suppose ξ = (V , ρ,ω) is a GFG2, where ver-
tex set is V = {v1, v2, . . . , vn} and {e1, e2, . . . , em} is the edge set. Now, ψ : B → (0, 1] is 
taken such that for every x ∈ V , ρ(x) = ψ(ω(x, y)) where y ∈ V  and B is the range set 
of ω. This graph can be represented by (n + 1) × (m + 2) matrix MG2 = [a(i, j)] as fol-
lows: here, edges with membership value are put in first row and vertices are put in first 

a(1, 1) = φ,

a(1, j + 1) = xj(ρ(xj)), where j = 1, 2, 3, . . . , n,

a(i + 1, 1) = xi(ρ(xi)), where i = 1, 2, 3, . . . , n,

a(i + 1, j + 1) = ω(xi, xj), where i, j = 1, 2, . . . , n. and i �= j

a(i + 1, i + 1) = ρ(xi), where i = 1, 2, . . . , n.

a(i + 1, j + 1) = ω(xi, xj), where i, j = 1, 2, . . . , n. and i �= j.

Table 3  An example of matrix representation of Fig. 2

φ(x, y) = max{x, y} x(0.5) y(0.9) z(0.3) t(0.8)

x(0.5) 0.5 0.9 0.5 0.8

y(0.9) 0.9 0.9 0 0.9

z(0.3) 0.5 0 0.3 0

t(0.8) 0.8 0.9 0 0.8
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column. The (i + 1, j + 1)-th entry is either 1 or 0. If vertex vi is one of the end vertex of 
the edge ej, then (i + 1, j + 1)-th entry is ‘1’ and ‘0’ otherwise. The (m + 2)-th column 
represents the membership values of the corresponding vertices. This value can be cal-
culated by the function ψ, which is put in the (1, 1)-position. The matrix representation 
of the graph is determined as follows:

Note 3  1.  The total information of GFG2 can be interpreted perfectly from the matrix  
representation.

2.	 The function ψ is put in (1, 1)-position. Entities of last column of the matrix are cal-
culated from the function ψ and edge membership values which are put in corre-
sponding positions of 1st row.

3.	 If a row (column) has all its entries to be zero, then that vertex is an isolated vertex.

Example 4  Let us consider the GFG2 of Fig.  3. Here, the edges are assigned as 
(a, e) → e1, (a, b) → e2, (a, c) → e3, (b, c) → e4, (c, d) → e5, (d, e) → e6, (e, b) → e7, 
(c, e) → e8. In this graph, ψ(x1, x2, . . . , xk) =

∑k
i=1 xi
k

 is assumed. The calculation is shown 
in Table 4.

First row of the matrix indicates the existence of vertices among the edges. Here, the 
vertex ‘a’ is incident to the edges e1, e2, e3. Hence, ‘1’ is put in the corresponding col-
umns and ‘0’ in the remaining columns. The membership value of the vertices will be 

a(1, 1) = ψ

a(1, j + 1) = ej(ω(ej)), where j = 1, 2, . . . ,m

a(i + 1, 1) = vi, where i = 1, 2, . . . , n

a(i + 1, j + 1) =

{

1, if j-th edge ej is incident on i-th vertex vi, For i, j = 1, 2, . . . , n
0, otherwise, For i, j = 1, 2, . . . , n.

a(i + 1,m+ 2) = ρ(vi), where i = 1, 2, . . . , n

Table 4  Matrix representation of GFG2

ψ e1(ω(e1)) e2(ω(e2)) . . . em(ω(em)) ρ(v)

v1 0 1 … 0 ψ(ω(e1))

v2 1 1 … 1 ψ(ω(e1),ω(e2), . . . ,ω(e1))

… … … … … …

vn 1 0 … 1 ψ(ω(e1),ω(em))

0.5

0.4

0.6

0.70.8

0.3

1

0.7

a(0.5)

b(0.5)

c(0.75) d(0.85)

e(0.575)

Fig. 3  An example of generalized fuzzy graph of second kind (GFG2)
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calculated from the function ψ(x1, x2, . . . , xk) =
∑k

i=1 xi
k

, where xi, i = 1, 2, . . . , k are the 
edge membership values.
Theorem  2  Let MG2 be the (n+ 1) by (m+ 2) matrix of GFG2, ξ. Also let, i + 1-th 
row has ‘1’ as entries in a(i + 1,m1), a(i + 1,m2), . . . , a(i + 1,mp) positions where 
i = 1, 2, . . . , n. Then, a(i + 1,m+ 2) = φ(em1 , em2 , . . . , emp).

Proof  Let ξ = (V , ρ,ω) be a GFG2 with ψ : B → (0, 1] such that for every x ∈ V , 
ρ(x) = ψ(ω(x, y)) where y ∈ V . Here, MG2 is a (n+ 1) by (m+ 2) matrix of ξ. Thus,

Now, each row has ‘0’ or ‘1’ as entries. Without loss of generality, (i + 1)-th row has ‘1’ 
as entry in a(i + 1,m1), a(i + 1,m2), . . . , a(i + 1,mp) positions. Now, ‘1’ as entry, means 
the vertex xi is incident with the corresponding edge of column. Thus, the vertex xi is 
incident with the edges em1 , em2 , . . . , emp. Thus, ρ(xi) = ψ(em1 , em2 , . . . , emp). � �

Complete generalized fuzzy graphs
In general, if the membership value of an edge is greater than half of its maximum of 
membership values of its end vertices, the edge is called to be an effective edge. Suppose, 
someone informs another person about any news. If the transfer of knowledge is greater 
than to a certain amount (may be assumed half of the source knowledge), then the sec-
ond person can be informed effectively. Thus, transfer of knowledge (which indicates the 
membership value of an edge) helps a person (a vertex with lower membership value) to 
be informed from a source (a vertex with greater membership value). Definition of an 
effective edge is given below.

Definition 3  Let ξ = (V , ρ,ω) be a GFG1 (or GFG2). An edge (x, y) is defined to be 
effective edge if ω(x, y) ≥ 1

2 max{ρ(x), ρ(y)}. A generalised fuzzy graph GFG1 (or GFG2) 
is defined to be effective, if for all x, y ∈ V , ω(x, y) ≥ 1

2 max{ρ(x), ρ(y)}.

Note 4  It is obvious that for GFG1, ω(x, y) = φ(x, y). Now, if an edge of a gener-
alized fuzzy graph is effective, then others edge may not be effective. The follow-
ing is the analytic description of this statement. Let ξ be a GFG1 and it has ver-
tex set {a(0.8), b(0.2), c(0.3)} and edge set {(a, b), (b, c)} and φ(x, y) = min{x, y} . 
Then, it can be found φ(a, b) = 0.2,φ(b, c) = 0.2. The edge (b,  c) is effective as 
φ(b, c) = 0.2 > 1

2max{b, c} = 1.5. Thus, the edge (a, b) is not effective.

A simple graph G is defined to be complete if every vertex in G is connected with every 
other vertex, i.e., if G contains only one edge between each pair of distinct vertices. Now, 
we have to check the completeness of generalized fuzzy graphs. Now, it is easy to con-
sider that an edge is called to be non-effective if it is not effective. In that case, the edge 
may be ignored for some representation. Thus to consider that a generalized fuzzy graph 
is complete, effectiveness of edges are important. The definition of complete generalized 
fuzzy graph is defined below.

a(i + 1, j + 1) =

{

1, if j-th edge ej is incident on i-th vertex vi
0, otherwise.
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Definition 4  Let ξ = (V , ρ,ω) be a GFG1 (or GFG2). The graph ξ is defined to be 
complete if all pairs of vertices are connected by effective edges. Otherwise, the graph is 
defined to be incomplete generalized fuzzy graph.

Example 5  Let ξ be a GFG1 with vertex set {a(0.8), b(0.1), c(0.5), d(0.7)} and edge set 
{(a, b), (a, c), (a, d), (b, c), (b, d), (c, d)} and φ(x, y) = x+y

2 . Then, the membership values 
of the edges (a, b), (a, c), (a, d), (b, c), (b, d), (c, d) are 0.45, 0.65, 0.75, 0.3, 0.4, 0.6, respec-
tively (see Fig. 4a). Then, ξ is complete as all the edges are effective.

Note 5  If we change the function φ of Fig. 4 and redefine the function φ(x, y) = |x − y|, 
then the graph is not complete as some of its edges are non-effective (see Fig. 4b).

Theorem 3  Let ξ = (V , ρ,ω) be a complete GFG1 or GFG2. Then D(x) ≥ |V |−1
2 ρ(a) 

for all x ∈ V .

Proof  Here, ξ = (V , ρ,ω) be a complete GFG1 or GFG2. From the definition of 
complete GFG1 or GFG2, every vertex is connected with all remaining vertices, 
i.e. (|V | − 1) vertices by effective edges. Now, effective edges have a property that 
2ω(x, y) ≥ max{ρ(x), ρ(y)}. Hence, D(x) = sum of membership values of all adjacent 
edges of x which is obviously greater than |V |−1

2 ρ(a). Hence, it proves Theorem 3. � �

Regularity of generalized fuzzy graphs
A graph, with all vertices are of equal degree, is defined to be a regular graph. If each 
vertex is of degree r, then the graph is defined to be a regular graph with degree r. For 
example, in Fig. 5, a regular graph with degree 2 is shown.

a(0.8)

b(0.1)

d(0.7)

c(0.5)

0.75

0.45

0.3

0.6

0.65

0.4

Complete GFG1

a(0.8)

b(0.1)

d(0.7)

c(0.5)

Non-complete GFG1

0.7

0.4

0.2

0.1

0.6

0.3

a b
Fig. 4  Complete and non-complete generalized fuzzy graphs

ba

cd
Fig. 5  Crisp regular graph of degree 2
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The degree of a vertex in generalized fuzzy graph is defined here. Let ξ = (V , ρ,ω) be 
a generalized fuzzy graph (GFG1 or GFG2). Now, the degree of a vertex x is denoted as 
D(x) =

∑

y∈V ω(x, y). The regularity of a generalized fuzzy graph means that the degrees 
of each vertex is same. But, for large networks, it is difficult to confirm that all vertices 
have same degree. If major number of vertices have the same degree or almost same 
degree, then the graph is defined to be regular. The definition of the regular generalized 
fuzzy graphs is given below (Table 5).

Definition 5  Let ξ = (V , ρ,ω) be a GFG1 (or GFG2). Now, degree of a vertex x in ξ is 
denoted as D(x) and is defined as D(x) =

∑

y∈V ω(x, y)). Also, let k =

∑

x∈V D(x)
n , where n 

is the whole number of existing elements of V. Now ξ is defined to be regular if for every 
x ∈ V , |D(x)− k| ≤ ǫ, where ǫ is very small number and 0 ≤ ǫ ≤ 1.

In this study, ǫ is assumed as the upper bound of |D(x)− k|. This value may vary for 
different networks and it is decided by decision makers. This graph can be called ǫ-regu-
lar generalized fuzzy graphs.

Note 6  If ǫ = 0, then D(x) = k for all x ∈ V . Hence, it is called regular GFGs i.e. 0-reg-
ular GFGs are regular GFGs.

Example 6  Let, ξ be a GFG1 vertex set {a(0.4), b(0.8), c(0.41)}. Let 
φ(x, y) = min{x2, y2} . Thus, the membership values of (a, b), (b, c), (a, c) are 
0.16, 0.168, 0.16 respectively (see Fig.  6). Now, the degree of the vertices are 
D(a)  =  0.32, D(b)  =  0.328, D(c)  =  0.328. k = 0.32+0.328+0.328

3 = 0.325. Let us take 
ǫ = 0.00325. Now, |D(a)− k| = 0.005 > 0.00325 , |D(b)− k| = 0.003 < 0.00325 and 
|D(c)− k| = 0.003 < 0.00325. Thus, the graph is not regular as degree of ‘a’ does not 
satisfy the condition. Although other vertices satisfy the condition. If ǫ is decreased, then 
the graph may be regular.

Table 5  An example of matrix of Fig. 3

ψ e1(0.6) e2(0.4) e3(0.5) e4(0.8) e5(1) e6(0.7) e7(0.3) e8(0.7) ρ(x)

a 1 1 1 0 0 0 0 0 0.5

b 0 1 0 1 0 0 1 0 0.5

c 0 0 1 1 1 0 0 1 0.75

d 0 0 0 0 1 1 0 0 0.85

e 1 0 0 0 0 1 1 1 0.575

a(0.4)

b(0.8) c(0.41)

0.16

0.16

0.1681 φ(x, y) = min{x2, y2}

Fig. 6  A non-regular GFG1
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Theorem  4  Let ξ be ǫ-regular GFG1. Also, let the corresponding crisp graph be a 
cycle. Suppose, the length of the crisp cycle is odd. Then, supA− inf A ≤ 2ǫ, where 
A = {φ(x, y) : x, y ∈ V }.

Proof  Let ξ = (V , ρ,ω) be a ǫ-regular fuzzy graphs. Thus, |D(x)− k| ≤ ǫ for all 
x ∈ V , where k =

∑

x∈V D(x)
n  in which n is the whole number of existing elements of V. 

Here, it is considered as A = {φ(x, y) : x, y ∈ V }. Now, let e1, e2, . . . , e2n+1 be the edges 
of the graph (see Fig. 7). As, the supremum and infimum are to be found out for this 
proof, the maximum/minimum value of the range set of φ are considered without 
loss of generality. Let φ(e1) = k1, then φ(e2) = k − k1 ± ǫ. φ(e3) = k − (k − k1 ± ǫ) 
= k1 ± ǫ, thus, φ(e2n+1) = k1 ± ǫ. If v is the connecting vertex of e1 and e2n+1, then 
D(v) = φ(e1)+ φ(e2n+1) = k ± ǫ. Thus, it can be found as k1 + k1 ± ǫ = k ± ǫ which 
gives k1 = k

2 or k2 + ǫ or k2 − ǫ. Thus, supA− inf A ≤ 2ǫ. � �

Note 7  The converse of the Theorem 4 is not necessarily true. If the condition of edge 
of any cycle is true, the cycle need not be regular.

Theorem  5  Let ξ be ǫ-regular GFG1. Also, let the corresponding crisp graph be 
a cycle. Suppose the length of the cycle is even. Then, supA− inf A ≤ 2ǫ where 
A = {φ(x, y) : x, y ∈ V } or supB− inf B ≤ 2ǫ, where B = {φ(e): for all alternating edges 
e of the cycle ξ}.

Proof  Let ξ = (V , ρ,ω) be a ǫ-regular fuzzy graphs. Thus, |D(x)− k| ≤ ǫ for all x ∈ V  
and A = {φ(x, y) : x, y ∈ V }. Now, let e1, e2, . . . , e2n be the edges of the graph (see 
Fig.  7). As, the supremum and infimum are to be found out for this proof, the maxi-
mum/minimum value of the range set of φ are considered without loss of generality. Let 
φ(e1) = k1 then, φ(e2) = k − k1 ± ǫ, φ(e3) = k − (k − k1 ± ǫ = k1 ± ǫ, thus, it is found 
φ(e2n) = k − k1 ± ǫ. If u is the connecting vertex of e1 and e2n, D(u) = φ(e1)+ φ(e2n) 
= k ± ǫ. Thus, proceeding the concept of Theorem  4, it is found supA− inf A ≤ 2ǫ , 
where A = {φ(x, y) : x, y ∈ V }. Besides, for odd edges maximum/minimum value of 
φ(e) = k1 ± ǫ and for even edges φ(e) = k − k1 ± ǫ. Hence, supB− inf B ≤ 2ǫ, where 
B = {φ(e) : for all alternating edges e of the cycle ξ}. � �

Note 8  The size of generalized fuzzy graphs (GFG1 or GFG2) is the sum of member-
ship values of the edges. Again, the twice of the size of a fuzzy graph is equal to the 

e1

e2n+1

e2

e3

v

Fig. 7  A cycle of odd length
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aggregate of the degrees of vertices. Now, for ǫ-regular GFG1 or GFG2 with n vertices, 
size of the graph has upper bound as n(k+ǫ)

2  and lower bound as n(k−ǫ)
2 . Thus, if size of a 

GFG1 or GFG2, ξ is denoted by S(ξ), then

Effective edges have significant values in every systems. Thus, only these edges are 
counted for degree of a vertex and the definition of effective degree is given below 
(Fig. 8).

Definition 6  Let ξ = (V , ρ,ω) be a GFG1 (or GFG2) and let E be the set of all effective 
edges of ξ. Now, effective degree of a vertex x in ξ is denoted as D(x) and is defined as 
D(x) =

∑

(x,y)∈E,y∈V φ(x, y).

If all the vertices of a GFG1 or GFG2 are of same effective degree or almost same effec-
tive degree, the graph is defined to be effective regular graph. The definition is given in 
the following:

Definition 7  Let ξ = (V , ρ,ω) be a GFG1 (or GFG2) and let E be the set of all effective 

edges of ξ and k =

∑

(x,y)∈E D(x)

n  in which n is the whole number of elements of V. Now ξ is 
defined to be ǫ-effective regular if for all x ∈ V , |D(x)− k| ≤ ǫ.

Example 7  Let us consider a GFG1, ξ with vertex set {a(0.7), b(0.1), c(0.7), d(0.2)} and 
φ(x, y) = max{x2, y2}. Thus, the edge membership values of (a, b), (b, c), (c, d), (d, a), (b, 
d) are 0.49, 0.49, 0.49, 0.49, 0.04 respectively. Now by calculation, it can be observed that 
(b, d) is not effective. Thus, effective degrees of the vertices are same and equal to 0.98. 
Thus, the graph is ǫ-effective regular GFG1.

In the definition of ǫ-effective regular generalized graphs, ǫ is assumed as positive real 
number. But in the following definition, p is assumed a positive integer.

Definition 8  Let ξ = (V , ρ,ω) be a GFG1 or GFG2. ξ is defined to be p-regular effec-
tive generalized fuzzy graph if every vertex of ξ is incident to exactly p number of effec-
tive edges.

n(k − ǫ)

2
≤ S(ξ) ≤

n(k + ǫ)

2
.

a(0.7)

b(0.1) c(0.7)

d(0.2)

0.49

0.49

0.49

0.490.04 φ(x, y) = max{x2, y2}

Fig. 8  An effective regular GFG1
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Example 8  A generalized graph is shown in Fig. 9. All vertices has 3 adjacent vertices. 
Thus, this graph can be called as 3-regular effective generalized fuzzy graphs.

Theorem  6  Let ξ = (V , ρ,ω) be a p-regular effective GFG1 or GFG2, then 
D(x) ≥

p−1
2 ρ(x).

Proof  Proof of this theorem is obvious, keeping the reference of the proof of Theo-
rem 3. � �

Theorem 7  Every complete generalized fuzzy graph ξ = (V , ρ,ω) (GFG1 or GFG2) is 
(|V | − 1)-regular effective generalized fuzzy graph.

Proof  Let ξ = (V , ρ,ω) be a complete GFG1 or GFG2. Now, every vertex of a complete 
GFG1 or GFG2 is adjacent to remaining (|V | − 1) vertices. By the definition of p-effec-
tive regular fuzzy graphs, it is easy to verify that ξ is (|V | − 1)-regular effective general-
ized fuzzy graph.�  �

Insights of this study
• • Fuzzy graphs are generalized with removal of the edge restriction. Thus any kinds of 

networks can be represented by GFGs.
• • Vertex and edge relation of GFGs are established.
• • Matrix representation of GFGs are given. This is the easier way to represent any 

GFGs.
• • Two major properties of GFGs, completeness and regularity, are provided. Some 

important results are proved.

Conclusions
This study described some major properties of generalized fuzzy graphs. In the litera-
ture, adjacent matrices and incident matrices are available. Here, GFG1 was represented 
by matrices, which was similar to adjacent matrices of fuzzy graphs. But, the difference 
is that each element is determined from the function φ. Again, GFG2 was represented by 
matrices similar to incident matrices. These representations are helpful to understand 

a(1)

b(1)

c(1) d(1)

e(1)

f(1)

g(1)

h(1)

r(1)
s(1)

0.5

0.55

0.7

0.65

0.56

0.85

0.65
0.9

0.87

0.58 0.75
0.5

Fig. 9  A 3-regular effective generalized fuzzy graph
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the generalized fuzzy graphs in easier way. This study also introduced two properties 
namely, completeness and regularity of GFG1 or GFG2. Effective regular and p-effec-
tive regular GFG1 or GFG2 were described. Some results regarding the definitions were 
established. In near future, eigenvalues of matrices and their properties will be estab-
lished (Gholmy and Hawary 2016). This study will develop the theory of fuzzy graphs 
along with some important algorithms and networking problems (Oghlan et al. 2016).
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