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Background
In superconducting Tokamak, cryogenic temperature insulating materials were widely 
used in super-conducting magnets system, such as superconducting magnets, high tem-
perature superconducting current leads and feeders (Canfer et al. 2011, 2013; Bondar-
enko et al. 2009; Hemmi et al. 2009; Usami et al. 1999; Li et al. 2014; Ivanov et al. 2012; 
Humer et al. 2013; Glukhikh et al. 2000; Bursikov et al. 2014). Compared with insulat-
ing materials used in room temperature, the cryogenic temperature resistant insulat-
ing materials were fabricated in room temperature but used in cryogenic temperature, 
such as 77, 4.2, 1.8 K and so on. Due to different thermal shrinkage rate of metal and 
insulating material, thermal stress will be come into being during cool-down from room 
temperature to cryogenic temperature. As a result, excellent mechanical properties at 
cryogenic temperature of the cryogenic temperature resistant insulating materials are 
expected (Usami et al. 1999). To reveal the influence of content and glass fiber direction 
on the performance of glass fiber reinforced epoxy resin composites, R&D on glass fiber 
reinforced epoxy resin composites for superconducting Tokamak was performed.

Material design (Sawa et al. 1995; Schutz 1998)
Epoxy resin system

To resist crack propagation, DWZ cryogenic epoxy resin system was developed for 
glass fiber adhesive, which includes two components. Component A is a mixture of 

Abstract 

The glass fiber reinforced epoxy resin composites play an important role in supercon-
ducting Tokamak, which are used to insulate the metal components, such as supercon-
ducting winding, cooling pipes, metal electrodes and so on. For the components made 
of metal and glass fiber reinforced epoxy resin composites, thermal shrinkage leads to 
non-ignorable thermal stress, therefore, much attention should be paid on the thermal 
shrinkage rate of glass fiber reinforced epoxy resin composites. The structural design of 
glass fiber reinforced epoxy resin composites should aim at reducing thermal stress. In 
this paper, the density, glass fiber content and thermal shrinkage rate of five insulation 
tubes were tested. The testing results will be applied in structural design and mechani-
cal analysis of isolators for superconducting Tokamak.

Keywords:  Cryogenic temperature, Glass fiber reinforced epoxy resin composites, 
Superconducting Tokamak

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Hu et al. SpringerPlus  (2016) 5:1564 
DOI 10.1186/s40064-016-2995-6

*Correspondence:  
hunanan1983@sohu.com 
1 Power Research Institute 
of Yunnan Power Grid Co., 
Ltd., Kunming 650217, China
Full list of author information 
is available at the end of the 
article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-2995-6&domain=pdf


Page 2 of 11Hu et al. SpringerPlus  (2016) 5:1564 

bisphenol-A epoxy resin, Qishi toughening agent and silane-coupling agents (KH-560), 
and component B is aromatic condensation amine (GY-051) polymer, the mass ratio of 
component A and component B is 4:1. The curing chemical reaction of the two compo-
nents is as shown in Fig. 1, which is a bimolecular chemical reaction. The principal of 
chemical reaction is as follows:

(a)		�  The combination of oxygen atom of epoxy groups and the hydroxyl hydrogen atom 
of aromatic condensation amine (GY-051) forms hydrogen bonds.

(b)		 Hydrogen bonds leads to further polarization of epoxy group, which results in the 
nucleophilic attack of C atom of epoxy groups by N atom of amino-group. There-
fore, each epoxy group will be opened by one active hydrogen from amino-group. 
As a result, the cured epoxy resin system is intermolecular cross-linking.

In the cured DWZ cryogenic epoxy resin system, epoxy resin is continuous phase and 
curing agent is dispersed phase, the toughening effect of the two-phase structure under 
cryogenic temperature is effective, which corresponds to insensitivity service tempera-
ture. Table 1 shows the tensile strength of DWZ epoxy resin at different temperature. 
Table 2 shows the shearing strength testing results of DWZ epoxy resin at different tem-
perature. Figure  2 shows the scanning electron microscopy from the fracture area of 
pure DWZ epoxy resin at 293 and 77 K.

Due to different modulus of elasticity of continuous phase and dispersed phase, forces 
can be detoured and transmitted along the interface between the two phases, so the 
stresses can be consumed around the border of spheroidal structure, especially the ther-
mal stresses. More energy was consumed due to the deformation of continuous phase 
at the interface and the brittle rupture of particles, so the stress concentration was dis-
persed, the crack propagation was prevented, stress state was improved and the sensi-
tivity of mechanical property to temperature was reduced. Because the participation of 
silane-coupling agents, better linkage at the interface of the two phases was obtained. 
Therefore, the toughness of DWZ epoxy resin system under cryogenic temperature was 
increased. In addition, the mechanical property degradation due to dispersed phase 
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Fig. 1  Curing of DWZ epoxy resin system
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softening with increasing temperature was improved. Clearly, the mechanical proper-
ties of DWZ cryogenic epoxy resin system under room temperature and cryogenic 
temperature are excellent. Therefore, the DWZ epoxy resin system can fulfil expected 
requirements.

Glass fiber

E and R glass fibers are compared below. Tables 3 and 4 show the chemical composition 
of E and R glass fibers respectively. Table 5 shows the specifications of these two types 
of glass fiber. Due to no Boron, R glass fiber can be used in superconducting Tokamak 

Table 1  Tensile strength testing results of DWZ epoxy resin at different temperature

Specimen name Room temperature (293 K) Liquid nitrogen temperature (77 K)

No. Tensile 
strength 
(MPa)

Average 
value

Standard 
deviation

No. Tensile 
strength 
(MPa)

Average 
value

Standard 
deviation

DWZ 1 63.40 59.79 3.23 4 75.81 84.47 9.99

2 57.15 5 95.40

3 58.83 6 82.21

Table 2  Shearing strength testing results of DWZ epoxy resin at different temperature

Specimen 
name

Room temperature (293 K) Liquid nitrogen temperature (77 K)

No. Shearing 
strength 
(MPa)

Average 
value

Standard 
deviation

No. Shearing 
strength 
(MPa)

Average 
value

Standard 
deviation

DWZ 1 10.72 9.38 1.43 5 13.63 13.13 0.50

2 9.92 6 12.51

3 7.37 7 12.97

4 9.51 8 13.42

Fig. 2  The scanning electron microscopy from the fracture area of pure DWZ epoxy resin at 293, 77 K from 
left to right
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involving radiation. In Fig. 3, xoy is natural coordinate system, when the directions of nat-
ural coordinate axes (x and y) are identical with the directions of the principal axes (1 and 
2) of the glass fiber reinforced epoxy resin composites, the modulus of elasticity parallel 
to the direction of fiber glass and vertical to the direction of fiber glass can be calculated 
based on the rule of mixture of composite, as shown in formulas (1) and (2) respectively.

In formulas (1) and (2): E1—the modulus of elasticity of composite parallel to the 
direction of glass fiber; E2—the modulus of elasticity of composite vertical to the direc-
tion of glass fiber; Ef—the modulus of elasticity of glass fiber; Em—the modulus of elas-
ticity of epoxy resin; Vf—the volume percent of glass fiber in composite.

Obviously, E1 and E2 were mainly determined by Ef, Em and Vf. Actually, glass fibers in 
composite are wound at an angle of θ to the vertical axis, the off-axis model of glass fiber 
reinforced epoxy resin composites is as shown in Fig. 3, Ex and Ey can be calculated with 
formulas (3) and (4) respectively. Obviously, Ex and Ey can be changed by adjusting the 
angle of θ when Ef, Em and Vf are known.

In formulas (3) and (4): µ12—the Poisson’s ratio of composite in 1–2 plane; G12—the 
shear modulus of elasticity of composite in 1–2 plane

(1)E1 = Ef Vf + Em(1− Vf )

(2)
1

E2
=

Vf

Ef
+

1− Vf

Em

Table 3  Chemical composition of E glass fiber

E type glass fiber SiO2 Al2O3 CaO Mg0 B2O3 K2O + Na2O

Content (%) 52–55 13–25 15–17 3–5 7–9 <0.8

Table 4  Chemical composition of R glass fiber

R type glass fiber SiO2 Al2O3 CaO Mg0 BaO

Content (%) 50–55 20–25 10–15 10–15 1–5

Table 5  The specifications of glass fiber

Specification Virgin fiber 
tensile 
strength 
(MPa)

Modulus 
of elasticity 
(GPa)

Density (g/
cm3)

Elongation 
(%)

Impregnated 
strand ten-
sile strength 
(MPa)

Soften-
ing point 
temperature 
(°C)

E-Glass 3140 73 2.54 4.8 1860 850

R-Glass 3000–3400 80–83 2.65 – – 895
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In term of mechanical properties, the modulus of elasticity of R glass fiber is higher 
than E glass fiber, which means R glass fiber reinforced DWZ epoxy resin composites 
is more sensitive to stress concentration than E glass fiber reinforced DWZ epoxy resin 
composites.

Glass fiber reinforced epoxy resin composites

In superconducting Tokamak, glass fiber reinforced epoxy resin composites can be used 
to develop isolators, which were used to convey coolant and insulate the cooling pipes in 
superconducting magnets system. However, manufacturing process has great effect on 
the properties of glass fiber reinforced epoxy resin composites. To reveal the influence 
of different winding process parameters on the density, void ratio and thermal shrinkage 
rate of glass fiber reinforced epoxy resin composites, five insulation tube specimens were 
manufactured with R glass fiber reinforced DWZ epoxy resin composites involving dif-
ferent winding process parameters, such as glass fiber pattern, glass fiber geometry, glass 
fiber angle, curing temperature and curing time.

Glass fiber filament and glass fiber tape with different geometry and different fiber 
angle were used to wind the insulation tube specimens. The glass fiber tape was woven 
by using glass fiber filament. The insulation tube specimens are as shown in Fig. 4, the 
winding process parameters are as shown in Table 6.

(3)

1

Ex
=

1

E1
cos

4 θ +

(

1

G12

−
2µ12

E1

)

sin
2 θ cos2 θ

+
1

E2
sin

4 θ

(4)

1

Ey
=

1

E1
sin

4 θ +

(

1

G12

−
2µ12

E1

)

sin
2 θ cos2 θ

+
1

E2
cos

4 θ

x

y 1
2

o

¦ È

Fig. 3  Off-axis model of glass fiber reinforced epoxy resin composites
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Tests
Density test principia and methods

On the structure, the glass fiber reinforced epoxy resin composite consists of DWZ 
epoxy resin system and R glass fiber, according to GB/T 1463-2005, the density of R glass 
fiber reinforced DWZ epoxy resin composite can be tested by using buoyancy method. 
Formula (5) was used to calculate the density ρc of specimens. Mass of specimens was 
measured in air, and the volume of specimens was converted by buoyancy and the den-
sity of water. To obtain the accurate value of buoyancy, the specimen was dipped into the 
water and suspended from the upper rim of a cup.

In formula (5), M1: mass of specimens in air; V: volume of specimens; M2: mass of 
specimens in water; ρw: density of water.

The mass measurement for density test is as shown in Fig. 5.

Glass fiber content

According to GB/T 2577-2005, resin content of R glass fiber reinforced DWZ epoxy 
resin composite was tested.

(a)	 Resin mass and volume content percent can be calculated by using formulas (6) and 
(7):

(5)ρc =
M1

V
=

M1

M1 −M2

ρw

Fig. 4  Insulation tube specimens

Table 6  Winding process parameters of insulation tube specimens

Insulation type Glass fiber Geometry (mm) Fiber angle (°) Curing temperature (°C) Curing time (h)

L1 Filament01 500 tex 30–45 100 2

L2 Filament02 250 tex 20–30 100 2

L3 Tape w = 20, d = 0.1 30–45 100 2

L4 Filament01 500 tex 30–40 100 2

L5 Filament02 250 tex 30–40 100 2
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In formulas (6) and (7), Mr: resin mass content, %; M11: mass of pot; M22: mass of pot 
and specimens before roasting; M3: mass of pot and remaining fiber after roasting; Vr: 
resin volume content, %; ρc: density of R glass fiber reinforced DWZ epoxy resin com-
posite specimens; ρr: density of resin adhesive.

(b)	 Glass fiber mass and volume content

In formulas (8) and (9), M4: mass of remaining glass fiber after roasting; Mg: glass fiber 
mass content, %; Vg: glass fiber volume content, %; ρc: density of R glass fiber reinforced 
DWZ epoxy resin composite specimens; ρg: density of glass fiber.

(c)	 Void volume content

Void volume content percent can be calculated by using formula (10):

In formulas (10), Vf: void volume content, %.

Thermal shrinkage rate test

Thermal shrinkage rate was measured in the axial, round, and radial directions. The 
measurements were made using a ‘Resistance Piece Dilatometer’. Resistance Piece 

(6)Mr =
M22 −M3

M22 −M11

× 100

(7)Vr =
Mr × ρc

ρa
× 100

(8)Mg =
M4

M22 −M11

× 100

(9)Vg =
Mg × ρc

ρg
× 100

(10)Vf = (1− Vr − Vg )× 100

Fig. 5  Mass measurement for density test
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Dilatometer transmitted the shrinkage of the specimens at low temperature to a linear 
variable differential transformer (LVDT) operating at ambient temperature, the principia 
of thermal shrinkage rate test is as shown in formulas (11),

In formulas (11), �l/l: strains of strain gauge; Ks: sensitivity coefficient of strain gauge; 
�R/R: resistance variation of strain gauge.

Figure 6 illustrates the principia of thermal shrinkage rate test. The three strain pieces 
were assembled on the specimens in radial direction, axial direction and hoop direction 
respectively. The specimens was allowed to warm-up over a period of 24  h while the 
temperature and LVDT voltage were recorded.

Results
Density measurement

The densities of specimens are as shown in Table  7. For the composite, the density is 
influenced by the type of glass fiber, geometry of glass fiber, fiber angle and the contents 
of resin, glass fiber and void. The results indicate the densities of the five specimens is 
less than 2.000 g/cm3. The density of specimen wound by glass fiber tape is lower, which 
corresponds to higher resin content.

(11)
�l

l
= Ks

�R

R

Fig. 6  Principia of thermal shrinkage rate test

Table 7  Testing results of composite density (unit: g)

Density of resin is 1.22 g/cm3

Density of filament01 and tape is 2.54 g/cm3

Density of filament02 is 2.65 g/cm3

No. M1 (in air) M2 (in water) ΔM = M1 − M2 ρc (g/cm3)

1 10.520 5.010 5.510 1.909

2 7.263 3.565 3.698 1.964

3 14.208 5.771 8.437 1.684

4 10.218 4.753 5.465 1.870

5 10.627 5.267 5.360 1.983
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Glass fiber and resin content measurements

As shown in Table 8, for the specimen wounded by using glass fiber tape, the volume 
content of void is higher than other specimens wounded by using glass fiber filament. 
However, void can lead to micro-crack during cool down, higher volume content of void 
corresponds to lower cryogenic mechanical properties of composite. To reduce the void 
and obtain high cryogenic mechanical properties of composite, the insulation tube of 
isolators for superconducting Tokamak should be wounded by glass fiber filament.

Thermal shrinkage rate measurement

The testing results of thermal shrinkage rate are as shown in Table 9. To develop isola-
tors for superconducting Tokamak, the thermal shrinkage rate of composite and stain-
less steel should be basically identical.

However, stainless steel is isotropic but composite is anisotropic, which leads to differ-
ent thermal shrinkage rate in different directions. The thermal shrinkage rate of stain-
less steel from room temperature to 4.2 K is about 0.3 %. Table 9 indicates the thermal 
shrinkage rates of composites in axial, round and radial directions are different, the 
results of No. 5 will be used to simulate the mechanical properties of isolators for super-
conducting Tokamak. To reduce thermal stress comes from thermal shrinkage rates, 
much attention should be paid on the structural design of composites.

Conclusion and discussion
In this paper, design and tests of the R glass fiber reinforced DWZ epoxy resin compos-
ites for superconducting Tokamak were performed. The conclusion and discussion are 
as follows:

Table 8  Content measurement of composite by roasting method

No. Fiber content Resin content Void

Mass% Vol% Mass% Vol% Vol%

1 73.184 55.12 26.816 43.31 1.57

2 72.023 53.34 27.977 45.35 1.31

3 58.587 38.83 41.413 58.21 2.96

4 70.121 51.75 29.879 46.36 1.89

5 75.139 56.51 24.861 41.17 2.32

Table 9  Thermal shrinkage rate of insulation tube (units: %)

No. α at 77 K α at 4.2 K

Axial Round Radial Axial Round Radial

1 0.3750 0.2035 0.3698 0.4473 0.2662 0.4205

2 0.2316 0.0985 0.3565 0.3325 0.1073 0.3951

3 0.2643 0.2831 0.5472 0.3902 0.3955 0.6502

4 0.3464 0.1643 0.3801 0.4124 0.2322 0.4132

5 0.3203 0.1093 0.3569 0.3372 0.1650 0.3895
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1.	 In the DWZ cryogenic epoxy resin system, the epoxy resin is continuous phase and 
curing agent is dispersed phase, the two-phase structure under cryogenic temper-
ature can resist crack propagation effectively. To develop cryogenic temperature 
resistant isolators for superconducting Tokamak, the cured DWZ cryogenic epoxy 
resin system is an available option.

2.	 The density of the insulation tube wound by using glass fiber tape is lower than that 
using glass fiber filament winding, which corresponds to the resin content of insula-
tion tube wound by using glass fiber tape is higher. However, higher resin content 
will lead to high void and bad properties. Therefore, to obtain higher properties of 
composite made from R glass fiber and DWZ cryogenic epoxy resin system, it is nec-
essary to wind the insulation tube of isolators for superconducting Tokamak by using 
glass fiber filament and the appropriate winding angle.

3.	 The mass contents of fiber of the insulation tube wounded by glass fiber filament and 
glass fiber tape are 70–75 % and almost 59 % respectively. The volume contents of 
fiber of the insulation tube wounded by glass fiber filament and glass fiber tape are 
almost 55 % and almost 39 %. Obviously, the mass content and volume content of 
fiber of the insulation tube wounded by glass fiber tape are lower.

4.	 For filament winding, the fiber angle and fiber content strongly influence the thermal 
shrinkage. The thermal shrinkage rate of insulation tube wounded by glass fiber fila-
ment in radial direction is lower than that using glass fiber tape.

5.	 Additional areas, including mechanical properties at cryogenic temperature, thermal 
conductivity, dielectric property and anti-radiation properties of the cryogenic tem-
perature resistant glass fiber reinforced epoxy resin composites for superconducting 
Tokamak (Huang et al. 2014; Kumosa et al. 2005a, b; Baldan et al. 2000; Hikita et al. 
2011), need to be investigated further.
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