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Abstract

In a cloud computing environment there are two types of cost associated with the auto-scaling systems: resource
cost and Service Level Agreement (SLA) violation cost. The goal of an auto-scaling system is to find a balance
between these costs and minimize the total auto-scaling cost. However, the existing auto-scaling systems neglect
the cloud client’s cost preferences in minimizing the total auto-scaling cost. This paper presents a cost-driven
decision maker which considers the cloud client’s cost preferences and uses the genetic algorithm to configure a
rule-based system to minimize the total auto-scaling cost. The proposed cost-driven decision maker together with a
prediction suite makes a predictive auto-scaling system which is up to 25% more accurate than the Amazon auto-
scaling system. The proposed auto-scaling system is scoped to the business tier of the cloud services. Furthermore,
a simulation package is built to simulate the effect of VM boot-up time, Smart Kill, and configuration parameters on
the cost factors of a rule-based decision maker.

Keywords: Self-adaptive auto-scaling systems, Cloud resource provisioning, Genetic algorithm, Cloud cost-driven
decision maker, Virtual machine (VM), Service level agreement (SLA)

Introduction
The elastic nature of cloud computing enables cloud
clients to benefit from the cloud’s pay-as-you-go pricing
model, which reduces cloud clients’ capital expenses and
their overall operational costs. However, maintaining
Service Level Agreements (SLAs) with the end users
obliges the cloud service provider to provide a certain
level of Quality-of-Service (QoS) and the cloud service
provider gets penalized if the cloud service fails to meet
the desired SLAs.
Deciding the optimal amount of resources in a cloud

computing environment is a double-edged sword which
may lead to either under-provisioning or over-provisioning
conditions. Under-provisioning condition is a result of
saturation of the resources and may cause SLA violation. In
contrast, over-provisioning condition occurs when the
provisioned resources are wasted which results in excessive
energy consumption and high operational cost [1].
Auto-scaling systems are developed to automatically

balance a cost/performance trade-off and prevent the
under-provisioning and over-provisioning conditions.
Figure 1 illustrates the typical stakeholders and their

relationships in an Infrastructure-as-a-Service (IaaS)
environment.
The three stakeholders in the IaaS environment are [2]:

� Cloud infrastructure provider: refers to the IaaS
provider who offers logically unlimited virtual
resources in the form of virtual machines (VMs),
virtual networks, etc.

� Cloud client: is the customer of the IaaS provider
who uses the infrastructure for hosting the cloud
service. The cloud client also is known as the cloud
service provider.

� End user: is the user that accesses the cloud service
and generates the workload that drives the cloud
service’s behavior.

There are two types of SLAs in a cloud computing en-
vironment: SLAs between the end user and the cloud
client, and SLAs between the cloud client and the cloud
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infrastructure provider. This paper investigates the cost/
performance trade-off from the cloud clients’ perspec-
tive. From the cloud client’s point-of-view the auto-scal-
ing goal is to reduce resource cost (i.e., the cost of the
leased resources from the IaaS provider) and the SLA
violation cost (i.e., the cost that is associated with the
SLA breaches), at the same time.
According to [3], rule-based systems are the most

popular auto-scaling system in the commercial cloud
computing environments. The rule-based systems reac-
tively provision resources for the cloud service based on
a set of scaling rules. However, the rule-based systems
suffer from two main shortcomings [3]: a) their reactive
nature, and b) the difficulty of selecting a correct set of
configuration parameters. This paper investigates the
impacts of these shortcomings on the accuracy of the
rule-based systems and proposes an auto-scaling system
to overcome the issues.
The reactive nature of the rule-based systems allows

them to scaled-in or scaled-out a cloud service as soon
as the performance of the cloud service reaches a prede-
fined threshold. However, it takes between 5 and 15 min
to boot-up a new VM and scaled-out the cloud service
[4–6]. During the VM boot-up time the cloud service
will be in the under-provisioning condition which may
cause SLA violations. Therefore, the main shortcoming
of the reactive auto-scaling systems (including the
rule-based systems) is neglecting the VM boot-up time.
The proposed auto-scaling system forecasts the future
workload of the cloud service and generates the scaling
requests ahead of time. This way, a new VM will be
ready before the workload surge arrives to the cloud
service.
The second shortcoming of using the rule-based systems

is the configuration difficulty. A rule-based auto-scaling sys-
tem has a set of configuration parameters which impacts its

accuracy. Therefore, selecting the correct values for the
configuration parameters is crucial in achieving an accurate
auto-scaling system. In addition, the configuration values
affect the auto-scaling system’s decisions on how to balance
the resource cost and the SLA violation cost. Since different
cloud clients have different cost preferences, the auto-scal-
ing system should be able to find a balance between the re-
source cost and the SLA violation cost based on the cloud
clients’ preferences. The proposed auto-scaling system uses
genetic algorithm principle to automatically identify an
optimum configuration of the rule-based systems. The
focus of this paper is on the configuration issue. The pro-
posed genetic algorithm considers the cloud client’s cost
preferences to find the optimum configuration set. Figure 2
shows the architecture of the proposed auto-scaling system
and it consists of a “self-adaptive prediction suite” and a
“cost driven decision maker”.
In our previous work [6] we proposed a self-adaptive

prediction suite which automatically chooses the most
suitable prediction algorithm based on the incoming
workload pattern to forecast the future workload of the
cloud service. In this paper we propose a cost-driven
decision maker that minimizes the auto-scaling cost
according to the cloud client’s cost preferences. The re-
search question here is: “How to configure a rule-based
decision maker to minimize the total auto-scaling cost
based on the cloud clients’ cost preferences?”
The main contributions of this paper are:

� A novel cost driven decision maker to reduce the
total auto-scaling cost based on the cloud client’s
preferences.

� An evaluation of our predictive auto-scaling system
[6] against the Amazon auto-scaling system.

� An investigation of the impact of the VM boot-up time
on the accuracy of the rule-based auto-scaling systems.

Fig. 1 Architecture of IaaS environment
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� An investigation of the impact of the configuration
parameters on the accuracy of the rule-based auto-
scaling systems.

The remainder of this paper is organized as follows:
section 2.0 discusses the background, the related
work, auto-scaling accuracy and cost driven decision
maker. In section 3.0, experiments are presented that
show the impact of VM boot-up time, configuration
parameters, and smart kill on auto-scaling accuracy
and cost. This is followed with the proposed optimum
configuration for auto-scaling problem using genetic
algorithm. The evaluation of the cost driven decision
maker and the predictive auto-scaling system is pre-
sented in section 5.0. The conclusion and possible
future directions for the research are discussed in
section 6.0.

Background and related work
In this section we present an overview of the existing
auto-scaling systems, and describe the rule-based
auto-scaling technique and introduce its configuration
parameters. In addition, we summarize our previous
work [6] on self-adaptive prediction auto-scaling suite.
This summary is necessary for understanding the
present research work in this paper. The authors in [3]
group the existing auto-scaling approaches into five
categories: rule based technique, reinforcement learning,
queuing theory, control theory, and time-series analysis.
Among these categories, the time-series analysis focuses
on the prediction side of the resource provisioning task
and is not a “decision making” technique per se. In
contrast, the rule-based technique is a pure decision
making mechanism while the rest of the auto-scaling
categories plays the predicator and the decision
maker roles at the same time. The rule based tech-
nique is the only approach which is widely used in
the commercial auto-scaling systems [7–9].

Existing auto-scaling systems
Auto-scaling systems can be grouped into reactive and
predictive categories. Reactive systems scale-in or -out a
cloud service based on the current performance of the
cloud service. Reactive systems use either rule-based or
schedule-based techniques to carry out the auto-scaling
task. Rule-based systems use a set of scaling rules to
scale-in or -out a cloud service when its performance
reaches a predefined threshold. Schedule-based mechan-
ism allows cloud clients to add or remove VMs at a
given time and are suitable when the changes in the
workload are known ahead of time [10]. However, not
all of the cloud services have time-based workload pat-
terns, and it is not straightforward for the cloud clients
to correctly determine all the related scaling indicators
or the thresholds based on the performance goals [10].
Predictive auto-scaling systems forecast the cloud

service’s future workload and adjust the compute and
the storage capacity in advance to meet the future needs.
Predictive auto-scaling systems can be grouped into four
categories [3]: reinforcement learning, queuing theory,
control theory, and time-series analysis. Among these
categories, the time-series analysis focuses on the pre-
diction side of the resource provisioning task and is not
a “decision making” technique per se. Therefore, a
time-series analysis technique should be bundled with a
decision maker to create a predictive auto-scaling
system. Queuing theory models each VM as a queue of
requests and calculates the performance metrics’ values.
The calculated values are used to generate a scale action.
Reinforcement learning algorithms handle the auto-scal-
ing task without any à priori knowledge or system
model. However, the time for the reinforcement learning
methods to converge to an optimal policy can be unfeas-
ibly long. Control theory creates a reactive or a predict-
ive controller to automatically adjusting the required
resources to the cloud service’s demand. Readers are en-
couraged to see [3] for more details about the different
decision making approaches.

Fig. 2 Predictive Auto-scaling system architecture
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The proposed auto-scaling system (see Fig. 2) avails
the predictive approach to carry out the auto-scaling
task. Since time-series analysis is the most dominant
prediction technique in the cloud auto-scaling do-
main [3], the prediction suite uses the time-series
analysis technique to forecast the future workload of
the cloud service. Moreover, our prediction suite ap-
plies decision fusion technique [11] to increase the
prediction accuracy (see [6] for more details on the
prediction suite). The cost driven decision maker uses
the rule-based technique to generate the scaling deci-
sions. Although the rule-based technique is easy to
use, it is not a trivial task to configure the rule-based
systems. The proposed cost-driven decision maker
uses the genetic algorithm principle to overcome this
problem.

Self-adaptive prediction suite
This subsection summarizes our previous work in [6]
which serves as a foundation for the research work in
this paper. Researchers have already used prediction
methods to alleviate the reactive nature of the
rule-based systems. However, the existing predictive
auto-scaling systems use only one prediction method
to forecast the future performance condition of the
cloud service. Therefore, to increase the prediction
accuracy, our predictive auto-scaling system identifies
the pattern of the incoming workload and chooses
the prediction algorithm based on the detected pat-
tern. Therefore, the self-adaptive suite automatically
chooses:

� The Multi-layer Perception (MLP) prediction model
to forecast the workload in the environments with
the unpredictable workload pattern

� The Multi-Layer Perception with Weight Decay
(MLPWD) prediction model to forecast the work-
load in the environments with the periodic workload
pattern

� The Support Vector Machine (SVM) prediction
model to forecast the workload in the environments
with the growing workload pattern

Readers are encouraged to read the paper in [6] for more
details about the reasons to choose the aforementioned
prediction models and their corresponding environments.
The objective of a classical self-adaptive system is to

make the system self-managed as a result of objects
change or environmental influence on the inputs. A re-
quirement in this context is that the system must be able
to keep knowledge about its past, present, and future
goals. In our case, self-adaptive prediction suite archi-
tecture is designed by adapting the classical autonomic
system architecture to the cloud auto-scaling system
(see Fig. 3). The cloud auto-scaling architecture consists
of a cloud workload context element; a cloud auto-scal-
ing system which includes the meta-autonomic elements
(the workload pattern and the cloud auto-scaling); and a
cloud computing scaling decisions element. In addition,
an element for the autonomic manager, knowledge, and
goals is added to the architecture. The cloud workload
usage represents the real world usage context while the
cloud computing scaling decisions represents the comput-
ing environment context. It is important to note that

Fig. 3 Projection of the cloud auto-scaling autonomic element
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an autonomic system always operates and executes
within a context. The context in general is defined by
the environment as well as the runtime behavior of
the system. The purpose of the autonomic manager is
to apply the domain specific knowledge which is
linked to the cloud workload pattern and apply the
appropriate predictor algorithm (see Fig. 3) to predict
the future workload. The cloud autonomic manager is
constructed around the analyze/decide/act control
loop.
The prediction suite identifies the pattern of the

incoming workload and chooses the most accurate pre-
diction algorithm based on the workload pattern. The
cloud auto scaling autonomic elements (i.e., the work-
load patterns and the predictor component) are designed
such that the architecture can be implemented using the
strategy software design pattern (see Fig. 4). The strategy
software design pattern consists of a strategy and a con-
text. In the cloud auto-scaling domain, the predictor is
the strategy and the workload pattern is the context. In
general the strategy and the context interact to imple-
ment the chosen algorithm. A context passes all of the
data (i.e., the workload pattern) that is required by the
algorithm to the strategy.

Rule-based systems
In the rule-based auto-scaling, the number of the leased
VMs varies according to a set of scaling rules. A scaling
rule has two parts: the condition and the action to be
executed when the condition is met. The condition part
of a scaling rule uses one or more performance indica-
tor(s), such as the average response time or the average
workload. A typical rule-based system has six configur-
ation parameters: the upper threshold (thrU), the lower
threshold (thrL), the upper scaling duration (durU), the

lower scaling duration (durL), the upper cool-down
duration (inU), and the lower cool-down duration (inL).
A performance indicator has an upper (i.e., thrU) and a
lower (i.e., thrL) thresholds. If the scaling condition is
met for a given duration (i.e., durU or durL) then the
corresponding action will be triggered. After executing a
scale action, the decision maker stops itself for a cool-
down period which is defined by inU or inL.
Some research works have proposed additional param-

eters to improve the auto-scaling accuracy. For instance,
the proposed method in [12] uses two upper and two
lower thresholds to determine the trend of the perform-
ance indicator. Considering the trend of the perform-
ance indicator helps to predict the future performance
of the cloud service and generate the scale actions ahead
of time. Although the proposed method in [12] gene-
rates the scale actions ahead of time, it does not have a
better accuracy compared to the traditional rule-based
systems [3]. This paper uses a typical rule-based system
to scale-in (or -out) the cloud service.

Specification of the auto-scaling accuracy
The auto-scaling accuracy is closely related to the cost
incurred by the cloud clients. The more accurate the
auto-scaling system, the lower the cost incurred by the
cloud clients. Therefore, cost is the main metric that
measures the accuracy of the auto-scaling systems. From
the cloud client’s perspective, there are two types of
costs associated with the auto-scaling systems: resource
cost (CR) and SLA violation cost (CSLA).
Resource cost refers to the cost of the leased VMs and

can be measured by the number of the leased VMs and
their hourly rental rate. This paper assumes that the IaaS
provider supplies only one type of VM with a fixed
hourly rate. Then, the resource cost can be measured by:

Fig. 4 The design of the autonomic elements using strategy design pattern
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CR ¼
XT

t¼0
nt � cvm ð1Þ

where T is the total hours that the auto-scaling system is
running, cvm is the hourly rate of leasing a VM, and nt is
the number of the leased VMs between hour t and t + 1.
SLA violation cost is the cost associated with the SLA

breaches. A SLA breach (i.e., SLA violation) refers to
any act or behavior that does not comply with the SLAs
document. In this paper, response time is considered to
be the main Quality-of-Service factor and any request
with a response time more than the maximum response
time (which is defined in the SLAs document) is recog-
nized as a SLA violation. Therefore, total number of
SLA violations vt at time t is defined as:

vt ¼
XN

req¼1
vt;req

vt;req ¼ 1 if rreq−R
� �

> 0
0 otherwise

� ð2Þ

where req represents an incoming request, N is the total
number of requests at time t, rreq is the response time of
the request req, and R is the maximum response time
defined in the SLAs document.
Measuring SLA violation cost depends on different

factors, such as the downtime duration of the cloud
service, the number of affected end users, and even the
sociological aspects of the end users’ behaviors. In this
paper a constant penalty cb is assigned to each SLA vio-
lation. The value of cb is defined by the cloud client who
provides the cloud service. The SLA violation cost is:

CSLA ¼
XT

t¼o
vt � cb ð3Þ

A highly accurate auto-scaling system prevents SLA vio-
lations as well as reduces the resource cost. However, it is
not possible to minimize the number of the SLA violations
and the resource cost at the same time. Adding more
infrastructural resources reduces the number of the SLA
violations, but results in an excessive resource cost. On
the other hand, releasing the infrastructural resources
saves the resource cost, but increases the number of the
SLA violations. Therefore, the auto-scaling system’s job is
to find the balance between the SLA violations and the re-
source cost (i.e., the cost/performance trade-off). The
optimum solution to this trade-off varies for the different
cloud clients. The smaller businesses that do not have
many end users, such as startup companies, usually prefer
to reduce the resource cost, while the bigger businesses
that have many end users, such as eBay or Netflix, prefer
to minimize the SLA violations. Therefore, the cloud
client’s cost preference is one of the factors that should be
considered by the auto-scaling system to solve the cost/
performance trade-off.

Specification of the cost-driven decision maker
Recall that a performance indicator has an upper (i.e.,
thrU) and a lower (i.e., thrL) threshold. If the scaling con-
dition is met for a given duration (i.e., durU or durL) then
the corresponding action will be triggered. After executing
a scale action, the decision maker stops itself for a small
cool-down period which is defined by inU or inL. In order
to have an accurate rule-based system it is crucial to con-
figure the system such that the resource cost and SLA vio-
lation cost are minimized. However, the resource cost and
the SLA violation cost cannot be minimized at the same
time and the balance point between them depends on the
cloud client’s cost preference (see Section 2.4.).
The objective here is to find the best value for each of the

configuration parameters such that the configured
rule-based decision maker minimizes the final auto-scaling
cost. Since the domain of valid values for each of the pa-
rameters is known, the universal set of possible solutions
can be created where each solution is a valid combination
of the parameters. Then to find the optimal solution, the
search space (i.e., the universal set of the solutions) is tra-
versed and the solution with the least auto-scaling cost is
found. To measure the auto-scaling cost of a given solution,
a decision maker is configured with the parameters of that
solution, and an auto-scaling simulation is run for a prede-
fined duration to calculate the total auto-scaling cost of the
decision maker. In this paper an in-house simulation
package [13] is implemented and used to carry out the
simulations. Based on the simulation result, measuring the
auto-scaling cost of a given solution averagely takes five
minutes. Therefore, for a search space with 100 possible so-
lutions, it takes 500 min (more than eight hours) to traverse
the search space and find the optimum solution.
For example, assume that in an auto-scaling environ-

ment the CPU utilization is considered as the perform-
ance indicator. Since the CPU utilization value is always
between 0 and 100, the upper threshold can take 100
different values. In addition, the lower threshold can
take any value greater than zero and less than the upper
threshold. Moreover, suppose that the inU, inL, durU,
and durL take any values between 0 and 5 min. In this
environment, the universal set includes 6,413,904 valid
solutions. Given that measuring the total cost of a solu-
tion takes 5 min, traversing the whole search space takes
32,069,520 min (i.e., more than 61 years), which is in-
feasible to perform. Therefore, this paper proposes a
genetic algorithm model to find an optimal solution
within the search space in a shorter time.

Impact of VM-boot-up time, SMARTKILL and
configuration parameters on AUTOSCALING
accuracy and costs
In this section we present the result of three experiments
on the impact of VM boot-up time on auto-scaling
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accuracy, and the impact of the smart kill technique on
auto-scaling cost factors and the impact of configuration
parameters on auto-scaling accuracy. The results of im-
pact of configuration parameters show how difficult it is
for a cloud client to handle the configuration parameters.
In addition, the smart kill results show how important the
smart kill is in decreasing resource cost or reducing SLA
violations.

VM boot-up time Vis-à-Vis the auto-scaling accuracy
An in-house simulation package [13] is developed and
used to carry out simulation on the effect of VM
boot-up time on the cost factors of a rule-based decision
maker.
In the simulation, three instances of the cloud work-

load patterns are sent to a multi-layer cloud service
which is deployed to an IaaS infrastructure. In each of
the monitoring intervals, the decision maker compares
the incoming workload with the capacity of the cloud
service. The capacity of the cloud service refers to the
number of the requests that cloud service can accom-
modate per second. If the incoming workload exceeds
the cloud service’s capacity (i.e., the upper threshold)
then the auto-scaling system scales up the infrastructure.
If the cloud service’s upper threshold is not reached, the
auto-scaling system verifies whether the cloud service is
still able to accommodate the incoming workload after
releasing one of the provisioned VMs (i.e., the lower
threshold). If so, then the auto-scaling system scales
down the cloud service. Table 1 shows the configuration
parameters that are used in the simulation.
According to Table 1 the cloud service has two tiers.

The VM boot-up time for both of the tiers is the same
(i.e., 10 min). The VM boot-up time in the commercial
cloud computing environment is reported to be between
5 and 15 min [14–17]. In addition, the service demand
of the business tier and the database tier are identical.
Since the goal of this experiment is to measure the
impact of the VM boot-up time on the cost factors, the
service demand and the database access rate do not
affect the result. The service demand and the database

access rate values are decided based on the values that
are used in similar experiments in [18].
The experiment compares the number of the SLA vio-

lations and the resource cost of three IaaS environment:
“IaaS A” with a VM boot-up time = 10 min, “IaaS B”
with a VM boot-up time = 5 min, and “IaaS C” with a
VM boot-up time = 0 min. The experiment has two iter-
ations. In the first iteration the cloud service is simpli-
fied and it is assumed that the cloud service consists of
just a business tier and there is no database tier. In the
second iteration, a more common scenario is investi-
gated in which, the cloud service consists of a business
tier as well as a database tier. Tables 2 and 3 present a
comparison of the SLA violation count and the resource
cost of the IaaS A, IaaS B, and the IaaS C for the first
and the second iterations, respectively. In the experi-
ment, it is assumed that cvm = 1 $/hr (i.e., the leasing rate
of a VM is $1 per hour).
According to the results, by reducing the VM boot-up

time from 10 min to five minutes, and to zero minute,
the cost factor (i.e., the resource cost and the SLA viola-
tion count) decreases. Comparing the cost factors of the
IaaS A with the IaaS C shows that decreasing the VM
boot-up time from 10 min to 0 min causes:

� A significant decrease in the SLA violations
� Iteration 1: the SLA violations for the periodic,

growing, and unpredictable workloads are reduced
by 92.7%, 97.9%, and 87.8%, respectively.

� Iteration 2: the SLA violations for the periodic,
growing, and unpredictable workloads are reduced
by 86.8%, 87.5%, and 86.9%, respectively.

� A decrease in the resource cost
� Iteration 1: the resource cost of the periodic,

growing, and unpredictable workloads are reduced
by 19.3%, 19%, and 17%, respectively.

� Iteration 2: the resource cost of the periodic,
growing, and unpredictable workloads are reduced
by 18.6%, 15.6%, and 17.3%, respectively.

Since the VM boot-up time is a characteristic of the IaaS
environment, in the real world, the VM boot-up time can-
not be reduced to zero. Therefore, researchers have used
the predictive auto-scaling approach to imitate reducing
the VM boot-up time. For instance, assume the VM

Table 1 Simulation parameters and values

Parameter Name Value

Number of the cloud service tiers 2

Business tier’s service demand 0.076 s

Business tier’s access rate 1

Business tier’s VM boot-up time 10 min

Database tier’s service demand 0.076 s

Database tier’s access rate 0.7

Database tier’s VM boot-up time 10 min

The monitoring interval 5 min

Table 2 The cost factor values for the different VM boot-up
times (iteration 1 – no database tier)

Workload
Type

Resource cost SLA violation count

IaaS A IaaS B IaaS C IaaS A IaaS B IaaS C

Periodic $192 $172 $155 83 14 6

Growing $147 $138 $119 47 8 1

Unpredictable $182 $173 $151 90 23 11
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boot-up time in a given IaaS environment is 10 min. In
that environment, a prediction algorithm can be used to
forecast the workload of the cloud service 10 min ahead
of time. This allows the decision maker to generate the
scaling decisions based on the prediction results. There-
fore, to scale up the infrastructure, a scaling action gets
generated 10 min ahead of time, and as a result, the new
VM will be ready in time. This is practically equivalent to
reducing the VM boot-up time to zero minute. It should
be noted that the prediction cost in the auto-scaling sys-
tems is negligible.

The smart kill effect on the auto-scaling cost factors
The smart kill technique suggests not killing the VMs
before they are used for a full hour. The reason is that
the IaaS providers round up the partially used hours to
the full hours and charge the cloud clients for a full hour
VM usage, even if the VM is being used for less than an
hour. Therefore, we conducted an experiment to com-
pare the number of SLA violations and resource cost of
two rule-based systems: System A which uses the smart
kill, and System B which does not use the smart kill. The
configuration parameters of the rule-based decision
maker are presented in Table 4. Furthermore, in this
simulation the target cloud service has two tiers and the
VM boot-up time is assumed to be zero minutes. Table 5
shows the results while Table 4 shows the parameters
that was used in the experiment.
According to the results, using the smart kill:

� Slightly decrease the resource cost: periodic
workload 2.2%, growing workload 0.5%, and
unpredictable workload 1.5%

� Reduces the SLA violations: periodic workload
64.3%, growing workload 77.8%, and unpredictable
workload 64.3%

The reason why the smart kill decreases the SLA viola-
tions is that the smart kill postpones the scale in actions
to the end of the VM’s billing hour [19, 20]. This in-
creases the capacity of the cloud service and prevents
some of the SLA violations that occur due to the unex-
pected workload surge [21]. In addition, the smart kill
reduces the resource cost, because according to the
Amazon AWS pricing model [22], if the cloud clients
stop and start the exact same instance 5 times in an
hour, they get billed for 5 h. The approaches that do not
use the smart kill stop and start the VMs more fre-
quently use averagely more VMs during each hour
period, which increases the resource cost. As a result of
this outcome, smart kill is used in our decision maker
algorithm.

Impact of the configuration parameters on the auto-
scaling accuracy
This section investigates the impact of the configu-
ration parameters of a rule-based system on the cost
factors. The purpose of these experiments is to demon-
strate the need for the use of genetic algorithm (or any
other algorithm) not just to reduce the space search
time but also to find optimum configuration for the dif-
ferent parameters. Note that our rule-based decision
makers have six configuration parameters: thrU, thrL,
durU, durL, inU, and inL.

The upper threshold (thrU)
The first iteration analyses the influence of the thrU on the
SLA violations and the resource cost. The values of the
other configuration parameters (except the thrU) are held
constant during the simulation to isolate the relationship
between the thrU and the cost factors. In this experiment a
multi-tier cloud service is simulated. According to Table 1,
the business and the database tiers have the same service
demand which is 0.076 s. This value is decided according
to the service demand that is used in [14]. Based on the
QNM (Queuing Network Model) theory [19, 23–26], each
of these tiers can handle up to 1

0:076 ≈ 13 requests per se-
cond. Therefore, to fully utilize each of the VMs capacities,

Table 3 The cost factor values for the different VM boot-up
times (iteration 2 – with database tier)

Workload
type

Resource cost SLA violation count

IaaS A IaaS B IaaS C IaaS A IaaS B IaaS C

Periodic $333 $301 $271 106 28 14

Growing $243 $219 $205 72 18 9

Unpredictable $318 $288 $263 107 39 14

Table 4 The parameters of the rule-based decision maker

Parameter Name Value

thrU ceiling capacity

thrL floor capacity

durU 0 min

durL 0 min

inU 0 min

inL 0 min

Table 5 The impact of the smart kill on the cost factors

Workload
type

Operational cost SLA violation count

Smart kill No smart kill Smart kill No smart kill

Periodic $265 $271 5 14

Growing $204 $205 2 9

Unpredictable $259 $263 5 14
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the thrU should be set to 13 requests per second. This way,
the cloud service can accommodate up to 13 × n requests
per second, where n is the number of the leased VMs. To
test the relationship between the thrU and the cost factors,
the thrU value is decreased slowly and the number of the
SLA violations and the resource cost are measured.
According to the results (see Table 6), decreasing the

upper threshold increases the resource cost, while it re-
duces the number of the SLA violations. Since the upper
threshold indicates the capacity of the leased VMs,
decreasing the upper threshold prevents the VMs from
becoming fully utilized by increasing the spare capacity
of each of the VMs. Increasing the spare capacity of the
VMs necessitates renting more resources thus increasing
the resource cost. However, because the leased VMs are
not fully utilized, they are able to accommodate the un-
foreseen workload surges; therefore, the number of the
SLA violations reduces.

The lower threshold (thrL)
The second iteration of the experiment investigates the
impact of the thrL on the SLA violations and the re-
source cost. The floor capacity (see eq. 9 in section 4.5)
represents the lower threshold. The decision maker
scales down the cloud service whenever the incoming
workload becomes less than the floor capacity. The floor
capacity calculates the maximum capacity of the cloud
service after releasing one of the leased VMs, and indi-
cates the earliest time the decision maker can release one
of the VMs without increasing the risk of under-provision-
ing. Table 7 indicates that, although increasing the lower
threshold increases the SLA violations, it does not signifi-
cantly reduce the resource cost. Table 8 represents the re-
sult of decreasing the thrL. Based on eq. 9 (section 4.5),
decreasing the lower threshold postpones the scale in ac-
tion and thus increases the resource cost. On the other
hand, decreasing the thrL (see Table 8) reduces the SLA
violations (except for the unpredictable workload) be-
cause the decision maker releases a VM only if the
remaining VMs have more than enough capacity to

handle the incoming workload. However, in the envi-
ronments with the unpredictable workload the num-
ber of the incoming requests may change dramatically
between the monitoring intervals.
Theoretically, increasing the floor capacity accelerates

the scaled-in action and reduces the resource cost. On
the other hand, increasing the lower threshold (i.e., the
floor capacity) can increase the risk of the SLA viola-
tions, because it makes the decision maker to release
one VM before the remaining VMs’ capacities are
enough to handle the incoming workload. The results
(Table 7) indicate that, although increasing the lower
threshold (thrL) increases the SLA violations, but, this
does not significantly reduce the resource cost (CR).
Also, decreasing thrL (Table 8) decreases SLA violations
but does not significantly impact cost (CR).

The duration parameters (durU and durL)
In the third iteration of the experiment, the influence of
the durL and the durU parameters on the resource cost
and the SLA violations are measured. The results for
durU and durL are shown in Tables 9 and 10 respect-
ively. Similar to reducing the thrL, increasing the durU
postpones the scaled-out action which reduces the re-
source cost and has a significant negative influence on
the SLA violations. In addition, increasing the durL post-
pones the scaled-in action, thus increasing the resource
cost and reducing the SLA violations. However, the
number of the SLA violations does not significantly de-
crease by increasing the durL. Therefore, one can sug-
gest the use of a smaller durL value to reduce the overall
auto-scaling cost.

The freezing durations (inU and inL)
The last iteration of the experiment studies the impacts
of the inU and the inL parameters on the cost factors
(cf. Tables 11 and 12). In theory, increasing the inU
postpones the scaled-out actions which should increase
the SLA violations and reduce the resource cost.

Table 6 Impact of decreasing thrU on the cost factors

thrU Periodic Growing Unpredictable

CR ($) SLA violations CR ($) SLA violations CR ($) SLA violations

13 265 5 204 2 259 5

12.5 270 4 210 2 263 5

12 284 4 214 1 271 3

11.5 287 5 221 1 277 2

11 295 1 229 0 282 2

10.5 304 0 234 0 294 1

10 311 0 242 0 310 0
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Similarly, increasing the inL postpones the scaled-in
actions which should reduce the SLA violations and
increase the resource cost. However, according to the
experimental results, the parameters inU and inL do not
significantly impact the cost factors. This is because the
auto-scaling model uses the smart kill technique which
postpones the scaled-in action. Therefore, since the
scaled-in actions are already frozen by the smart kill
technique, increasing the durL does not change the cost
factors much.

Summary
The results in this section suggest that all of the config-
uration parameters can influence the SLA violations and
the resource cost of the rule-based decision maker.
However, some of the parameters, such as the thrU and
the durU, have more influence on the cost factors.
The experimental results show that to decrease the re-

source cost, cloud clients should:

� Increase the upper threshold (thrU)
� Increase the lower threshold (thrL)
� Increase the upper scaling duration (durU)
� Decrease the lower scaling duration (durL)
� Increase the upper freezing duration (inU)
� Decrease the lower freezing duration (inL)

On the other hand, to reduce the SLA violations, cloud
clients should:

� Decrease the upper threshold (thrU)
� Decrease the lower threshold (thrL)
� Decrease the upper scaling duration (durU)
� Increase the lower scaling duration (durL)
� Decrease the upper freezing duration (inU)
� Increase the lower freezing duration (inL)

In conclusion, the question here is “By how much
should the cloud client decreases or increases a config-
uration parameter?” This question can only be answered
if we can find optimum configuration for the different
configuration parameters – hence the use of genetic
algorithm.

Finding an optimum configuration for
AUTOSCALING problem
The genetic algorithm (GA) applies the evolution
principle to provide a robust search technique that finds
a high-quality solution in a large search space in polyno-
mial time. A genetic algorithm combines the exploit-
ation of the best solutions from the past searches with
the exploration of the new regions of the solution space
[27]. Any solution in the search space is represented by
a chromosome.

Table 7 Impact of increasing thrL on the cost factors

thrL Periodic Growing Unpredictable

CR ($) SLA violations CR ($) SLA violations CR ($) SLA violations

13 265 5 204 2 259 5

13.5 264 24 202 28 257 17

14 260 50 201 31 253 35

14.5 260 61 201 35 252 49

15 259 71 199 41 250 63

15.5 255 89 199 57 248 70

16 253 95 198 61 248 77

Table 8 Impact of decreasing thrL on the cost factors

thrL Periodic Growing Unpredictable

CR ($) SLA violations CR ($) SLA violations CR ($) SLA violations

13 265 5 204 2 259 5

12.5 266 4 207 1 262 4

12 266 4 207 1 261 3

11.5 267 4 209 1 266 4

11 269 3 213 1 271 3

10.5 270 3 215 1 276 2

10 270 3 216 1 280 3
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Essentially, in this research work, there is a need to
balance the “resource cost” and the “SLA violation”
vis-à-vis the six rule-based configuration parameters: the
upper threshold (thrU), the lower threshold (thrL),
the upper scaling duration (durU), the lower scaling
duration (durL), the upper cool-down duration (inU),
and the lower cool-down duration (inL). These para-
meters lend themselves to evolutionary behavior (see
sections 2.3, 2.4, and 2.5) which can be adequately
captured by genetic algorithms (GAs).
A genetic algorithm maintains a population of the

chromosomes that evolves over the generations (i.e. iter-
ations). The quality of a chromosome in the population
is determined by a fitness function. The fitness value
indicates how good a chromosome is compared to the
other chromosomes in the population [27]. A typical
genetic algorithm has the following steps:

1. Create an initial population consisting of randomly
generated solutions.

2. Generate a new offspring by applying the genetic
operators which are: selection, crossover and
mutation, one after the other.

3. Calculate the fitness value of the chromosomes.
4. Repeat steps 2 and 3 until the algorithm converges

to an optimal solution.

In order to use the genetic algorithm principle to solve
the auto-scaling problem, the representation of the

chromosomes in the population, the fitness function,
and the genetic operators should be determined.

Chromosome representation
In the rule-based systems, a feasible solution is required
to meet the following conditions:

� The upper threshold (thrU) should be less than
or equal to the upper limit of the performance
indicator. For instance, if CPU utilization is the
performance indicator, the upper threshold cannot
be greater than 100%.

� The lower threshold (thrL) should be greater than
or equal to the lower limit of the performance
indicator. For instance, if CPU utilization is the
performance indicator, the lower threshold cannot
be less than 0%.

� The freezing periods should be greater than or equal
to zero (i.e., inU ≥ 0, inL ≥ 0).

� The duration parameters should be greater than or
equal to zero (i.e., durU ≥ 0, durL ≥ 0).

� The upper threshold should be greater than the
lower threshold (i.e., thrU > thrL).

A chromosome in the population is a feasible set of
the configuration parameters, and has the following
format:

< thrU ; thrL; durU ; durL; inU ; inL > ð4Þ

Table 9 Impact of increasing durU on the cost factors

durU Periodic Growing Unpredictable

CR ($) SLA violations CR ($) SLA violations CR ($) SLA violations

0 265 5 204 2 259 5

1 255 62 199 48 241 71

2 248 106 196 86 233 112

3 247 134 187 123 229 137

4 236 177 183 148 220 173

5 234 197 180 161 220 174

Table 10 Impact of increasing the durL on the cost factors

durL Periodic Growing Unpredictable

CR ($) SLA violations CR ($) SLA violations CR ($) SLA violations

0 265 5 204 2 259 5

1 271 5 208 2 263 5

2 280 3 211 2 268 3

3 284 3 214 1 271 2

4 291 3 217 1 276 2

5 294 3 219 1 280 0
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Each of the configuration parameters is referred to as
a “gene”. In the auto-scaling problem, a gene represents
a value of one of the configuration parameters of the
rule-based decision maker.

Fitness function
A fitness function is used to measure the quality of the
chromosomes in the population based on a given
optimization objective. Since the goal of the decision
maker is to reduce the total cost, the fitness function
measures the total auto-scaling cost of the chromo-
somes. The total cost of a chromosome Ctotal (eq. 5) is
the summation of its SLA violations cost CSLA and its
resource cost CR:

Ctotal ¼ CR þ CSLA ¼
XT

t¼o

XN

req¼1
cb � vt;req
� �

þ
XT

t¼0
nt � cvm ð5Þ

The values of the constant parameters (i.e., cb and cvm)
are determined by the cloud clients. This way, the cloud
clients can change the fitness function base on their cost
preferences.

Genetic operators
The genetic operators manipulate the chromosomes in
the current population and generate a new population of
chromosomes. A genetic algorithm has three operators:

� Selection operator equates to the survival of the
fittest and gives preference to better chromosomes
to pass on their genes to the next generation. In the
auto-scaling problem, the selection operation finds
the sets of the configuration parameters (i.e., the
chromosomes) with the least cost in passing their
parameter values (i.e., the genes) to the next gene-
ration. In this paper, a combination of the elitism
[28] and the roulette wheel [28] selection methods is
used. This combination guarantees to keep the chro-
mosomes with the highest fitness values in the next
generation.

� Crossover operator represents the mating between
chromosomes. In the auto-scaling problem, a cross-
over operation represents how the selected sets of
the configuration parameters are combined to create
a new set of the configuration parameters. The type
and implementation of the crossover and the
mutation operators depend on the encoding of the
individuals. In our case, the value encoding is used.
The crossover types for the value encoding are:
Single-point crossover; Two-point crossover; Uniform
crossover; and Arithmetic crossover. In the auto-scaling
problem, there are some limitations on the values of the
genes. For instance, the lower threshold (thrL) should
always be less than the upper threshold (thrU). Since
the gene values depend on each other, using the single-
point or the two-point crossover methods can produce
an invalid offspring. Therefore, the uniform crossover
method [28] is used in this paper to create a new
generation.

� Mutation operator introduces the random
modifications in the genes of the chromosomes. The
purpose of the mutation operator is to maintain the
diversity in the population and avoid a premature
convergence. For the value encoding, the mutation
operator is implemented by adding a small number
to the randomly selected genes. In the auto-scaling
problem domain one of the genes (i.e., a configu-
ration parameter) is randomly picked and its value is
altered.

Finding the optimal values for the genetic algorithm
The accuracy of the rule-based algorithm is defined by
the auto-scaling cost which is related to the set of the
configuration parameters that is found by the genetic
algorithm.
In this experiment, to calculate the fitness value of an

individual (each individual represents a valid combi-
nation of the rule-based configuration parameters), the
genetic algorithm uses the individual’s genes values to
configure a rule-based decision maker and measures the
total auto-scaling cost that the rule-based decision
maker incurs to the cloud clients. The genetic algorithm

Table 11 Impact of increasing inU on the cost factors

inU Periodic Growing Unpredictable

CR ($) SLA violations CR ($) SLA violations CR ($) SLA violations

0 265 5 204 2 259 5

1 259 5 204 4 259 5

2 259 5 203 11 259 5

3 259 7 201 22 259 7

4 259 7 197 45 259 7

5 257 15 197 47 257 19

Table 12 Impact of increasing inL on the cost factors

inL Periodic Growing Unpredictable

CR ($) SLA violations CR ($) SLA violations CR ($) SLA violations

0 265 5 204 2 259 5

1 265 5 206 2 259 5

2 265 4 208 2 259 4

3 265 4 210 2 259 4

4 265 4 213 2 259 4

5 270 4 213 2 260 4
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has four configuration parameters: population size, stop
condition, crossover rate, and mutation rate.

Population size
The population size indicates the number of solutions
that are examined in each of the iterations of the genetic
algorithm. The population should be big enough to
cover the diversity of the search space. On the other
hand, the larger population sizes increase the duration
of the experiment. In the first iteration of the experi-
ment, the relationship between the population size and
the accuracy of the genetic algorithm is investigated.
The fitness value and the duration of the experiment for
the different population sizes are shown in Table 13.
Since the initial population in the first iteration of the
genetic algorithm is randomly generated (see step 3,
Algorithm 1 in section 4.5), the experiment is repeated
five times and the results are averaged to increase the

precision of the experiment. Figure 5 shows the fitness
value to the population size, and the duration to the
population size relationships.
According to the results, increasing the population

size increases the experiment duration and improves
the fitness value. However, increasing the population
size to more than 35 individuals does not have a
significant impact on the fitness value. Therefore, the
optimal population size for the genetic algorithm (i.e.
Algorithm 1) in the cloud auto-scaling domain is 35
individuals.

Stop condition
There are three termination conditions that are used in
the genetic algorithms: (1) when an upper limit on the
number of the generations is reached, or (2) when an
upper limit on the number of the evaluations of the fit-
ness function is reached, or (3) when the chance of
achieving a significant change in the next generations is
excessively low [29]. In this paper the upper limit on the
number of generations is used as the stop condition.
The reason is that this approach is easy to use and is
popular in similar domains [29]. To find the optimal
number of the generations, an experiment is carried out
to investigate the relationship between the number of
generations and the fitness value of the genetic
algorithm. Table 14 and Fig. 6 show the results.
Increasing the number of the generations increases the

experiment duration and improves the fitness value (i.e.,
decreases the total cost). However, the fitness value does
not significantly improve after 7 generations (see Fig. 6.).
Therefore, the optimal number of the generations for
the genetic algorithm in the cloud auto-scaling domain
is 7 generations.

Crossover rate
The crossover rate or the crossover probability indi-
cates a ratio of how many couples will be selected to
generate a new offspring. An ideal genetic algorithm
accomplishes a proper balance between the explor-
ation and the exploitation of the search space [28]. The

Table 13 Impact of population size on the genetic algorithm
accuracy
Configuration Result

Population
size

No. of
generations

Crossover
rate

Mutation
rate

Fitness Duration

10 6 0.95 0.015 176 657,037

15 6 0.95 0.015 170 858,748

20 6 0.95 0.015 167 1,182,530

25 6 0.95 0.015 166 1,488,723

30 6 0.95 0.015 164 1,881,464

35 6 0.95 0.015 158 2,103,345

40 6 0.95 0.015 158 2,324,168

45 6 0.95 0.015 157 2,787,369

50 6 0.95 0.015 158 3,022,506

55 6 0.95 0.015 156 3,297,244

60 6 0.95 0.015 158 3,678,164

65 6 0.95 0.015 158 4,159,851

70 6 0.95 0.015 157 4,378,326

75 6 0.95 0.015 157 4,724,120

80 6 0.95 0.015 157 5,057,848

Fig. 5 The population size effect on the experiment duration and the fitness value
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exploration means searching the search space as much as
possible, while the exploitation means concentrating on the
global optimum point. In the genetic algorithm, the cross-
over operator is used to lead the population to converge to
the good solutions (i.e., the exploitation). Furthermore, the
mutation operators are mostly used to provide the
exploration.
The higher crossover rates help to concentrate more

on the good solutions in the population. However, if the
good solutions are not close to the global optimum
solution (i.e., the good solutions are close to a local
optimum), then the genetic algorithm cannot find the
global optimum solution. This experiment explores the
relationship between the crossover rate and the fitness
value of the genetic algorithm.
According to the results, increasing the crossover

rate increases the experiment duration (see Table 15

and Fig. 7). This is because increasing the crossover
rate increases the number of new offspring in each
generation, and it takes more time to calculate the
fitness of the new offspring. On the other hand, in-
creasing the crossover rate improves the fitness value
(i.e., reduces the auto-scaling cost), because the higher
crossover rates increase the exploitation which causes the
genetic algorithm to converge to the optimum solution.
According to the results, the crossover rate of 0.95 is
used in the genetic algorithm to create the cost driven
decision maker.

Mutation rate
As mentioned in Section 4.3, the mutation operator
relates to the exploration function of the genetic
algorithm. While the crossover operator tries to
converge to a specific point in the search space, the
mutation operator avoids the convergence and
explores more areas. This helps to prevent from
converging around a local optimum point and helps
to discover the global optimum solution. However, a
high mutation rate increases the probability of search-
ing more areas in the search space and prevents the
population to converge to any optimum solution. In
other words, a high mutation rate reduces the search
ability of the genetic algorithm to a simple random
walk while a small mutation rate fails to a local
optimum [28]. In this experiment we investigate the
impact of the mutation rate on the accuracy of the
genetic algorithm. Table 16 shows the impact of the
mutation rate on the evolution of the results in differ-
ent generations. In the experiment, the population
size is 35 individuals, and the crossover rate is 0.95.
According to the results, increasing the mutation rate in-

creases the exploration power of the genetic algorithm.
However, as shown in Table 16, by increasing the mutation
rate, the fitness value does not evolve much in the different
generations. This is because the higher mutation rates pre-
vent the algorithm from converging to a optimum point.

Table 14 The impact of the number of the generations on the
genetic algorithm accuracy
Configuration Result

Population
size

No. of
generations

Crossover
rate

Mutation
rate

Fitness Duration

35 3 0.95 0.015 172 1,161,147

35 4 0.95 0.015 165 1,315,245

35 5 0.95 0.015 160 1,934,609

35 6 0.95 0.015 158 2,109,607

35 7 0.95 0.015 156 2,461,951

35 8 0.95 0.015 156 3,197,381

35 9 0.95 0.015 156 3,305,716

35 10 0.95 0.015 155 3,501,466

35 11 0.95 0.015 157 3,889,925

35 12 0.95 0.015 156 4,180,724

35 13 0.95 0.015 155 4,606,840

35 14 0.95 0.015 155 5,354,189

35 15 0.95 0.015 156 5,780,868

35 16 0.95 0.015 155 5,996,488

35 17 0.95 0.015 155 6,143,828

Fig. 6 The number of generation’s effect on the fitness value and the experiment duration
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Therefore, mutation rate = 0.02 is used in the genetic
algorithm to create the cost driven decision maker.

The proposed decision maker algorithm
This section presents two algorithms. Algorithm 1
uses the genetic algorithm principle to configure the
rule-based decision maker. Algorithm 2 shows how
the configured decision maker generates the auto-
scaling actions.
To fully implement Algorithm 1, we need appropriate

values for the parameters: population size, a crossover
rate, a mutation rate, and a stop condition. These param-
eters are problem specific, and there is no best global
value for these parameters. In section 4.4, we conducted
experiments to find values for these parameters and
based on the results of the experiments the following
values are used to implement the genetic algorithm (i.e.
Algorithm 1).

� Population size: 35 chromosomes
� Crossover rate: 0.95 of the population size

� Mutation rate: 0.02 of the population size
� Stop condition: stop the algorithm after seven

generations

The decision maker algorithm (Algorithm 2) uses the
ceiling capacity and the floor capacity concepts. The
ceiling capacity (Capceiling) refers to the maximum num-
ber of requests that can be handled by the cloud service,
and is calculated as:

Capceiling ¼ n� CapUvm ð6Þ

Where, n is the number of the provisioned VMs
and CapUvm is the upper threshold of the number of
the requests that can be handled by each of the VMs
per second. According to the QNM (Queuing Network
Model) theory, utilization of a VM is calculated as
[18, 23, 24, 26]:

Table 15 The impact of the crossover rate on the genetic
algorithm accuracy
Configuration Result

Population
size

No. of
generations

Crossover
rate

Mutation
rate

Fitness Duration

35 7 0.50 0.015 176 1,763,287

35 7 0.55 0.015 173 1,816,652

35 7 0.60 0.015 170 2,021,755

35 7 0.65 0.015 165 2,164,869

35 7 0.70 0.015 161 2,267,017

35 7 0.75 0.015 160 2,398,733

35 7 0.80 0.015 158 2,567,368

35 7 0.85 0.015 157 2,628,260

35 7 0.90 0.015 155 2,840,778

35 7 0.95 0.015 155 3,070,889

Fig. 7 The crossover rate’s effect on the fitness value and the experiment duration
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UVM λð Þ ¼ λ� DVM ð7Þ
Where, λ is the incoming workload and DVM is the

service demand of the requests on the VM. Given that
DVM is static during the experiments (i.e., the service de-
mand of the requests does not change), the maximum
number of the requests that can be handled by a VM
(i.e. CapUvm) is then defined as:

λmax ¼ CapUvm ¼ UVMMAX

DVM
¼ thrU

DVM ð8Þ

The floor capacity (Capfloor) represents the minimum
capacity of the cloud service defined as:

Capfloor ¼ n� CapLvm ð9Þ

Where, CapLvm is the lower threshold of the number
of the requests that can be handled by a VM per second,
and is calculated as:

λmin ¼ CapLvm ¼ UVMMIN

DVM
¼ thrL

DVM ð10Þ

The workload should always be bounded by the ceiling
and the floor capacities. If the workload exceeds the
ceiling capacity (i.e., under-provisioning condition), then
a SLA violation occurs. In addition, if the workload is
less than the floor capacity (i.e., over-provisioning condi-
tion) then, an excessive amount of VMs is being used.
In addition, according to step 4 of the decision maker

algorithm (i.e. Algorithm 2), the decision maker scales in
the cloud service only if the smart kill condition is valid.
The smart kill reduces the total number of the SLA
violations as well as the resource cost [19].

Complexities of Algorithms 1 and 2
The complexity of GAs has probabilistic convergence
time [30, 31]. However, in our case, we have experi-
mentally (see section 4) the population size (i.e. the
number of chromosomes) to be 35; the cross over
rate is 0.95 of the population; the mutation rate is

0.02 of the population; and the stop condition is set
to seven generations. As a result our GA is simple
and from experimental results (see section 5) it
converges quickly. Therefore, if the number of chromo-
somes does not have to change every time the instance
size increases [30, 31], then the GA complexity is less than
exponential time. So, in our case, the instance size is a
constant and the selection is done randomly within the
same population size and therefore, the best convergence
time is linear. From the forgoing, the complexities of
Algorithms 1 and 2 in the best case scenario is linear i.e.
O(N) and in the worst case scenario is logarithmic i.e. O
(log (N) ) where N is the population size (i.e. number of
chromosomes). Please note that GAs complexity analysis
is beyond the scope of this work and readers interested in
the theoretical analysis can check reference [31] for
detailed study of the subject matter.

Evaluation of the COST-driven decision maker and
the auto-scaling system
Evaluation of the cost-driven decision maker
The proposed genetic algorithm is experimentally
evaluated to see if the algorithm can identify an opti-
mal configuration using different workload patterns
and different client’s cost preferences. Tables 17, 18,
and 19 show the cost driven genetic algorithm’s re-
sults in the environments with the periodic, growing,
and unpredictable workload patterns respectively. In
the tables CR and CSLA represent the resource and
the SLA violation costs, respectively and the optional
configuration mapped to <thrU, thrL, durU, durL, inU,
and inL > as defined in eq. 4.

Table 16 The impact of the mutation rate on the genetic
algorithm accuracy

Mutation rate 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

Generation

1 175 172 173 169 171 173 171 169 158 158

2 169 165 173 162 171 173 171 169 157 158

3 169 159 156 162 171 171 171 169 157 158

4 158 159 156 162 170 171 171 168 157 158

5 158 159 156 161 168 168 169 168 157 158

6 158 159 154 161 167 168 169 168 157 158

7 158 159 154 161 167 168 168 166 157 158

Table 17 The genetic algorithm behavior in an environment
with the periodic workload
Iteration
no.

CR CSLA No. of rented
VMs

No. of SLA
breaches

Optimal
Configuration

1 1 1 157 4 < 92, 68, 0, 3, 1, 0>

2 1 5 157 4 < 92, 68, 0, 3, 1, 0>

3 1 10 171 2 < 90, 65, 0, 4, 1, 0>

4 1 15 189 1 < 82, 59, 0, 4, 0, 1>

5 1 20 192 0 < 80, 55, 0, 4, 0, 1>

6 1 25 192 0 < 80, 55, 0, 4, 0, 4>

7 1 30 192 0 < 80, 55, 0, 4, 0, 4>

8 5 1 131 59 < 96, 49, 4, 0, 3, 0>

9 10 1 126 84 < 97, 56, 4, 0, 3, 0>

10 15 1 124 129 < 97, 88, 4, 0, 3, 0>

11 20 1 119 143 < 97, 88, 4, 0, 3, 0>

12 25 1 119 156 < 97, 88, 4, 0, 5, 0>

13 30 1 119 156 < 97, 88, 4, 0, 5, 0>
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As shown in the results, the proposed algorithm finds
an optimum solution in accordance with the CSLA

CR
coeffi-

cient. When CSLA
CR

increases, the cloud client prefers to

reduce the SLA violation cost (CSLA) because the SLA
cost becomes more expensive (see iterations 1 to 7 in
Tables 17, 18, and 19). In this case, the algorithm
decreases the upper and the lower thresholds which in-
creases the spare capacity of the provisioned VMs (i.e.
more VMs are added). This helps the cloud service to
tolerate the unforeseen workload surges. Reducing the
upper and the lower thresholds causes less SLA viola-
tions but increases the resource cost.
On the other hand, decreasing CSLA

CR
coefficient that is, the

cloud client prefers to decrease the resource costs (see itera-
tions 8 to 13 in Tables 17, 18, and 19) because the resource

cost CR is more expensive. This leads to configurations with
higher thresholds, which accelerate the scaling actions and
decreases the resource cost. Increasing the upper threshold
causes the cloud service to fully use the provisioned VMs’
capacities which makes the cloud service to become prone
to more SLA violations.
The experimental results confirm that the proposed

cost driven decision maker is able to find the configur-
ation parameters that reduce the total cost based on the
cloud clients’ preferences.

Evaluation of the combined decision maker and the
predictive auto-scaling system
In this section we put the two components (i.e., the
self-adaptive predictor and the cost driven decision
maker) together and evaluate the resulting predictive
auto-scaling system against the Amazon auto-scaling
system, a well-known and popular auto-scaling system
in the commercial cloud environments [2]. The
Amazon auto-scaling system’s behavior is simulated
and its auto-scaling cost is compared with the cost of
our predictive auto-scaling system.
The Amazon auto-scaling policy uses the “scaling

based on the metrics” technique to generate the scaling
actions [21, 22] in which the cloud client defines the
scaling policies. The Amazon policy scaling has similar
parameters as our decision maker, i.e., thrU, thrL, durU,
durL, inU, and inL (see eq. 4). In addition, Amazon lets
clients decide the amount of resources that should be
added to or removed from the underlying IaaS. Both
Amazon auto-scaling system and our decision maker use
the rule-based mechanism. Therefore, the same param-
eter values are used to configure both auto-scaling sys-
tems. Readers are encouraged to see [22] for more
details about the Amazon scaling policies.

Table 18 The genetic algorithm behavior in an environment
with the growing workload
Iteration
no.

CR CSLA No. of rented
VMs

No. of SLA
breaches

Optimal
Configuration

1 1 1 127 1 < 95, 53, 0, 3, 0, 0>

2 1 5 127 1 < 95, 53, 0, 3, 0, 0>

3 1 10 153 0 < 80, 29, 0, 4, 0, 4>

4 1 15 153 0 < 80, 29, 0, 4, 0, 4>

5 1 20 153 0 < 80, 29, 0, 4, 0, 4>

6 1 25 153 0 < 80, 29, 0, 4, 0, 4>

7 1 30 153 0 < 80, 29, 0, 4, 0, 4>

8 5 1 96 80 < 96, 70, 4, 0, 3, 2>

9 10 1 96 80 < 96, 70, 4, 0, 3, 2>

10 15 1 96 80 < 96, 70, 4, 0, 3, 2>

11 20 1 90 91 < 97, 65, 4, 0, 4, 0>

12 25 1 88 94 < 99, 69, 4, 0, 4, 0>

13 30 1 88 94 < 99, 69, 4, 0, 4, 0>

Table 19 The genetic algorithm behavior in an environment with the unpredictable workload

Iteration no. CR CSLA No. of rented VMs No. of SLA breaches Optimal Configuration

1 1 1 155 2 < 96, 66, 0, 2, 2, 4>

2 1 5 155 2 < 96, 66, 0, 2, 2, 4>

3 1 10 153 1 < 96, 57, 0, 2, 0, 4>

4 1 15 158 0 < 92, 47, 0, 3, 0, 4>

5 1 20 158 0 < 92, 47, 0, 3, 0, 4>

6 1 25 158 0 < 92, 47, 0, 3, 0, 4>

7 1 30 158 0 < 92, 47, 0, 4, 0, 4>

8 5 1 121 106 < 97, 73, 4, 0, 4, 1>

9 10 1 112 128 < 97, 79, 4, 0, 4, 1>

10 15 1 105 188 < 97, 90, 4, 0, 3, 1>

11 20 1 96 201 < 99, 90, 4, 0, 3, 1>

12 25 1 96 201 < 99, 90, 4, 0, 3, 1>

13 30 1 96 201 < 99, 90, 4, 0, 3, 1>
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In the simulation, three (periodic, growing, and unpre-
dictable) different workload trace files are used to repre-
sent the three dominant workload patterns in the IaaS
environment. According to the results in our previous
work [14], 60% of the workload trace files are used to
train the predictor component.
The same training trace files are used to identify an

optimal set of the configuration parameters by the
cost-driven genetic algorithm. Figures 8, 9, and 10 show
the comparison results.
According to Fig. 8, the proposed auto-scaling system

incurs less resource cost compared to the Amazon
auto-scaling system. This means that the proposed sys-
tem can forecast the future workload and generate more
accurate decisions to reduce the resource cost.
In addition, the number of the SLA violations is com-

pared in Fig. 9. Unlike the Amazon auto-scaling system,
the proposed system in this paper uses the prediction
methods to generate the scaling actions. This helps the
proposed system to request the VMs ahead of time and
prevents the under-provisioning condition. Therefore,
the proposed system has less SLA violations compared
to the Amazon auto-scaling system. Since the total cost
is a metric used to evaluate the accuracy of the
auto-scaling systems (see Section 2.4), it can be con-
cluded that the proposed auto-scaling system is more ac-
curate than the Amazon auto-scaling system. The total

costs of the proposed auto-scaling system and the
Amazon auto-scaling system are shown in Fig. 10 and
the results show that the auto-scaling system reduces
the total cost by:

12% in the case of periodic workload pattern,
25% for the growing workload pattern and,
10.6% with the unpredictable workload pattern.

Conclusions, open challenge, and future work
Deciding the optimal amount of resources in an IaaS
cloud environment is very difficult and can be a
double-edged sword either leading to over-provision-
ing or under-provisioning. Under provisioning can
lead to SLA violation while over provisioning can
cause wastage and excessive energy consumption.
Auto-scaling systems are built to balance the
cost-performance trade-off of over- or under-provi-
sioning. Furthermore, neglecting the VM boot-up
time and the difficulty associated with configuration
parameters are the two main shortcomings of the
rule-based auto-scaling systems. This paper investi-
gates the impact of the VM boot-up time and the
configuration parameters on the accuracy and cost
of the rule-based auto-scaling systems, and proposes
a predictive auto-scaling system that consists of a
self-adaptive prediction suite [6] and a cost driven

Fig. 8 Resource cost comparison
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decision maker. Our previous work [6] presents a
self-adaptive prediction suite on which the prediction
task of the proposed auto-scaling system is based.
The proposed auto-scaling system bundles the pre-
diction suite with a cost-driven decision maker to
scale the business tier of the cloud services. In this
paper we present the cost-driven decision maker
component that uses a genetic algorithm to select
optimum configuration parameters in a large search space
for the auto-scaling system. According to the evaluation
results, the proposed auto-scaling system can reduce the
total auto-scaling cost by up to 25% compared with the
Amazon auto-scaling system.
A threat to validity in this research work is that the

proposed cost driven decision maker uses a genetic
algorithm to find the optimal configuration of the
rule-based decision makers. Changing the decision
maker mechanism such as changing its parameter set or
its scaling logic may change the genetic algorithm
results.

Some consideration for future work includes the fol-
lowing. The proposed auto-scaling system uses the pre-
dictive approach to generate the scaling actions ahead of
time to prevent the under-provisioning and the
over-provisioning conditions. Another approach may be
to replace the VMs with the container-based virtualiza-
tion (such as Docker containers [32]). Using the
containers instead of the VMs may reduce the proba-
bility of the SLA violations. Therefore, investigating the
impact of the container-based virtualization on the ac-
curacy of the auto-scaling systems can be considered as
a future work.
Another future work is to be able to stream the work-

load data. Streaming data analysis in real-time mode is
very important to obtain useful knowledge from the data
and to see what is happening now. This will allow the
user of the decision maker model to react quickly to the
predictions as well as the optimal configurations.
In addition, the proposed system is limited to the busi-

ness tier auto-scaling. Extending the auto-scaling system

Fig. 9 SLA violation count comparison
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to manage the database tier can be investigated in the
future studies [33]. The logic of the database tier and the
business tier auto-scaling are similar. However, unlike
the business tier, the database tier includes a set of data-
files which can greatly affect the auto-scaling strategy.
Finally, the proposed system assumes there is only one

VM type in the IaaS environment. In future studies, the
proposed genetic algorithm can be improved to config-
ure the decision makers with several VM types. Consid-
ering heterogeneous VM types converts the auto-scaling
problem to become a scheduling problem, which can
also] be solved using genetic algorithms.
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