
Recognition of cooking activities through air 
quality sensor data for supporting food 
journaling
Federica Gerina, Silvia M. Massa, Francesca Moi, Diego Reforgiato Recupero and Daniele Riboni* 

Introduction
The 2018 Global Nutrition Report.1 of the World Health Organization (WHO) reveals 
that malnutrition affects, in different forms, every country of the world. Malnutrition 
determines more health issues than any other cause, and progress towards better nutri-
tion is still too slow. In particular, in developed countries, overweight and obesity in 
adults are a cause of several non-communicable diseases, including diabetes, heart dis-
ease, stroke, different types of cancer, musculoskeletal disorders, and respiratory symp-
toms.2 Micronutrient deficiencies are also cause of severe health issues, such as anaemia. 
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In the 2018 Report, the WHO envisions five critical steps to speed up progress toward 
better nutrition. Among them, the WHO states the need to prioritize gathering and 
analysis of diet data. Diet data analysis is of foremost importance to evaluate the healthi-
ness on an individual’s nutrition, and for setting up interventions when necessary. While 
several systems have been proposed in the literature to monitor food intake, which are 
reviewed in “Related work” section, at the time of this writing, a complete solution to 
acquire diet data for long-term data analysis is still missing. In particular, as we explain 
in the following, many existing solutions interfere with the normal activities of the user, 
and are unsuitable for elderly or frail people, while other ones (including those based on 
cameras) determine serious privacy issues.

A powerful tool for acquiring diet data is food journaling, which consists of filling a 
diary of eaten food and its quantity at each meal  [11]. Of course, manually keeping a 
food diary in the long term is tedious and impractical, since in many cases the diary 
annotation interferes with the current activity. In order to assist the individual in fill-
ing a food diary, different solutions have been proposed in the last years, which exploit 
mobile apps and smartphone sensors such as the camera or microphone [3, 9, 22, 38]. 
Mobile apps for food journaling may reduce the burden of data entry  [5]; however, as 
discussed in “Related work” section, they still require considerable user’s effort, and are 
often unsuitable for frail people, including the elderly.

In this paper, we propose to exploit artificial intelligence and innovative devices, such 
as indoor air quality monitors, to help addressing this challenge. Indeed, we believe 
that these technologies, possibly coupled with automatic dialog systems, may provide 
adequate solutions for unobtrusive and privacy-conscious context recognition, as well 
as user engagement for supporting diet data acquisition on the long term. In particular, 
in this paper we concentrate on the technical solutions and evaluation of the modules 
for recognizing cooking activities. Advanced solutions for conversational interfaces [7], 
human–computer interaction [27], usability [34], and diet analysis [17], including calorie 
count [29] and adaptive interfaces for supporting behavior change [25], will be addressed 
in future work.

Our system relies on data captured by a commercial air quality sensor to recognize 
food preparation using a deep learning approach. The air quality sensor that we adopt 
in this work can monitor several parameters, including temperature, humidity, car-
bon dioxide, volatile organic compounds, particulate matter, nitrogen dioxide, carbon 
monoxide, and ozone. It takes readings at each minute and sends them to the cloud. 
The system exploits open APIs to continuously query the measured data. Based on the 
continuous stream of sensor data, the system extracts features considering a temporal 
window of 30 min. Features are carefully engineered to capture the trends of food prepa-
ration, which include typical patters regarding changes in both gas levels and environ-
mental parameters, due to the activity in the kitchen and to the use of tools such as the 
oven or gas stove. Those features are used by a deep neural network to recognize the 
preparation of food in real time. Our network is composed of four fully connected layers, 
and adopts specific solutions to prevent over-fitting. The network has been trained using 
a large dataset of cooking activities acquired by several participants in real-world homes 
under different conditions for more than 8 months in total. Compared to other cooking 
recognition systems based on cameras or other kinds of sensors, our data acquisition 
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system is unobtrusive and privacy-conscious. In fact, we do not rely on cameras, because 
several people may perceive them as very intrusive in terms of privacy. Moreover, we 
rely on a single plug-and-play sensor that does not require any kind of manual calibra-
tion or setup. In order to demonstrate the operation of our system, we developed an 
initial prototype in which the cooking recognition system activates a social robot to 
interactively acquire food information from the user; however, our system could be cou-
pled with other interactive systems, such as digital personal assistants or dialog systems.

Currently, our system is addressed to frail people that live alone and take most meals 
at home, since this is a typical situation for many elderly people. However, to support 
other categories of users, our system may be extended with mobile solutions to fill the 
food diary when the user takes food outside the home. Being based on air quality moni-
tors, our current system is well suited to recognize the preparation of warm meals. In 
order to recognize the preparation of cold meals, our system can be seamlessly extended 
with other sensors attached to kitchen appliances such as the fridge or to kitchen furni-
ture. Those additional sensors would also be useful for improving the recognition rates 
of warm meal preparation. The support of multi-inhabitant scenarios will also be the 
subject of future investigation. Our work lies within the PhilHumans project,3 a H2020 
Innovative Training Network which is centered on the employment of artificial intel-
ligence technologies to establish user interactions with their personal health devices in 
the most effective way.

More in detail, the contributions of this paper are the following:

•	 We present a novel technique for detecting food preparation activities in the home 
exploiting air quality sensor data and deep learning. In terms of unobtrusiveness and 
privacy-consciousness, our technique has clear advantages with respect to solutions 
based on wearable sensors or cameras.

•	 We introduce a novel system for food journaling addressed to frail people living 
alone. With respect to existing solutions, our system may engage the user based on 
automatic recognition of cooking activities and interactive food journaling acquisi-
tion.

•	 We release in a public repository the annotated sensor data that we collected, as well 
as the deep neural network we deployed for the activity recognition task.

•	 We have implemented a first prototype of part of the system using commercial sen-
sors and a social robot.

•	 Within the food journaling area, we discuss the challenges we had to face and that we 
addressed using innovative technologies, and many others that we still need to face.

The rest of this paper is organized as follows. “Related work” section discusses back-
ground work related to the monitoring of nutrition behavior, including sensor-based 
recognition of cooking activities, and natural language processing methods for food 
journaling data acquisition. How the air quality sensor data have been acquired and 
how features have been engineered on top of them to be fed to a deep neural network 
is covered within “Acquisition and processing of air quality sensor data” section. The 

3  http://philh​umans​.eu/.

http://philhumans.eu/
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experimental campaign we have carried out, along with the results we have obtained, are 
presented in “Experimental evaluation” section. “Use case on a robotic platform” section 
illustrates the prototype we have developed for the proposed use case. Finally, “Conclu-
sion and future work” section concludes the paper with final remarks and reports the 
future directions where we are headed.

Related work
According to the World Health Organization, unhealthy behaviors regarding nutrition 
and physical activity are a global risk for health. In particular, a healthy diet is of para-
mount importance for avoiding all forms of malnutrition, and it is a key factor for pro-
tecting against noncommunicable diseases such as diabetes, heart disease, stroke and 
cancer.4 While those health issues are prominent in adult and elderly people, healthy 
nutritional practices should be followed during the whole course of life, starting from 
infancy. Unfortunately, despite all the effort put in the last decades by health education 
for improving dietary habits, good dietary practices are still neglected by relevant parts 
of the population. Hence, there is a growing need for novel technologies that can assist 
the individual in following good nutrition practices [4].

Of course, the healthiness of an individual’s nutrition must be monitored in the 
medium and long term. Hence, a powerful tool for monitoring the nutrition behavior 
is a food diary; i.e., a daily list of food taken by the individual, together with portion 
information. Accurate food journaling can support both self-management of nutrition 
routines [20], and assessment by practitioners [11]. In particular, for diabetes patients, 
it is important to analyse the daily food intake and compare it with symptom progres-
sion  [21]. A four-center randomized trial about weight loss maintenance shows that 
patients compiling a food diary lost twice as much weight than patients that kept no 
journaling  [15]. Moreover, in the short term, food journaling may increase real-time 
awareness and mindfulness, avoiding the consumption of unhealthy food [33].

Traditional methods for keeping food diaries rely on interviews and questionnaires to 
assess the eating routines of patients  [23]. More recently, several food diary apps have 
been proposed to support the individual in self managing his/her food diary be means 
of mobile devices  [5]. Usually, those apps let the user manually fill in the kind of food 
and the portion information; the app queries a database and returns the calories count. 
Food information and calories counts are stored locally or on the cloud for long term 
monitoring [9]. Different solutions have been proposed to alleviate the burden of manu-
ally entering food and portion information in those apps. A popular direction consists 
in the use of food pictures and computer vision tools for semi-automatic food journal-
ing. In particular, Zhu et al. propose the use of computer vision tools and pictures taken 
before and after food consumption to accurately recognize the kind of food and estimate 
the eaten quantity  [38]. Sen et  al.  [31] propose a smartwatch-based system to detect 
eating gestures, and recognize food through pictures and computer vision software. A 
text-based conversational agent is proposed in [6] to improve nutritional lifestyle. Other 
solutions rely on automatic classification of chewing sound  [3], recognition of eating 

4  https​://www.who.int/news-room/fact-sheet​s/detai​l/healt​hy-diet.

https://www.who.int/news-room/fact-sheets/detail/healthy-diet
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moments trough analysis of heart rate and activity patterns [26], or scanning of grocery 
receipts [22]. Other systems, including the one proposed by Chi et al. [8], provide accu-
rate calories counts using a combination of cameras, connected kitchen scales, and food 
databases. While these and similar systems reduce the burden of manual entry, they still 
require considerable user’s effort.

Unfortunately, keeping a constant journal of meals is considered tedious and time-
consuming by many individuals, and food diaries are rarely taken accurately in the long 
term  [10]. Moreover, duration of food journaling practice is only a marginal determi-
nant of nutrition healthiness  [2], while other factors including the user’s engagement 
play a key role. For this reason, conversational interfaces, possibly coupled with social 
robots when appropriate, may provide an effective solution to engage the user in keeping 
a food journal on the long term. An advanced conversation between the conversational 
agent and the user would require the employment of complex Natural Language Pro-
cessing (NLP) techniques. In the literature, several novel works have been proposed that 
employ cutting-edge approaches to address that challenge. For example, authors in [24] 
centered on the use case of people teaching a robot about objects and tasks in its envi-
ronment via unconstrained natural language. They designed statistical machine learn-
ing approaches to allow robots to gain knowledge about the world from interactions 
with users, while simultaneously acquiring semantic representations of language about 
objects and tasks. Moreover, authors in [14] present an adaptive and interactive dialogue 
system to exchange a chat with a user using personal information stored in his/her user 
profile. NLP is used to extract user’s basic information, hobbies and interests for build-
ing a rich user profile. The user profile is continuously updated whenever new informa-
tion is extracted in subsequent dialogues. Furthermore, NLP technologies have been 
recently employed for the design of virtual assistants, whose adoption has enabled sev-
eral changes in today’s life. Google Assistant,5 Apple’s Siri,6 Microsoft’s Cortana,7 Ama-
zon’s Alexa,8 Wit.ai9 and Snips.ai,10 an open source and privacy oriented solution, are all 
well-known examples of digital voice assistants available on the market today. Such tech-
nologies can be used to access apps, services, and software, reading out the daily news, 
setting timers, or tapping into music playlists, and control IoT products and sensors.

Another line of research consists in monitoring the activities of cooking and eating 
using machine learning methods and data acquired from cameras or sensors. Rohrbach 
et al. applied two different approaches to the recognition of cooking activities from data 
acquired by fixed cameras  [28]. Their experimental results showed that the approach 
using holistic video features outperforms one based on articulated pose tracks, even 
though the latter is more effective in the recognition of fine-grained actions. Other 
works rely on head-mounted cameras for egocentric vision. In particular, Kazakos et al. 
propose the use of temporal binding methods to fuse audio and video signals from 

5  https​://assis​tant.googl​e.com/.
6  https​://www.apple​.com/siri/.
7  https​://www.micro​soft.com/en-in/windo​ws/corta​na.
8  https​://devel​oper.amazo​n.com/alexa​.
9  https​://wit.ai/.
10  https​://snips​.ai/.

https://assistant.google.com/
https://www.apple.com/siri/
https://www.microsoft.com/en-in/windows/cortana
https://developer.amazon.com/alexa
https://wit.ai/
https://snips.ai/
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egocentric cameras for recognition of different kitchen activities, including cooking [16]. 
However, the use of video and audio recording poses obvious issues in terms of privacy. 
In general, systems based on sensors are considered less invasive in terms of perceived 
privacy. Hence, other techniques rely on body-worn or environmental sensors for activ-
ity recognition. In the context of the SPHERE project [39], Yordanova et al. propose the 
use of computational state space models (i.e., probabilistic models combining symbolic 
representation with probabilistic reasoning) for recognizing cooking activities based 
on data acquired from different sensors in a smart kitchen  [36, 37]. In particular, the 
authors rely on temperature, humidity, light/noise/dust levels, individual’s motion, and 
usage of certain objects, water, and electricity. With their method, the authors achieve 
good recognition rates. However, installation and maintenance of many heterogeneous 
sensors may incur relevant costs. In this paper, we take the same approach, but we pur-
sue the use of a single sensing device, which can be installed from scratch in a home with 
essentially no effort. Of course, the accuracy of our system could be increased by consid-
ering additional sensors.

Acquisition and processing of air quality sensor data
In this section, we explain how we acquire and process air quality sensor data in order to 
recognize the preparation of food. The diagram in Fig. 1 shows our framework for data 
acquisition and processing. An indoor air quality monitor deployed in the kitchen is in 
charge of providing a stream of real-time sensor data to a data cleaning module. That 
module performs data preprocessing to eliminate possible errors in sensor readings. 
Then, the data is passed to a feature extraction module, that builds feature vectors 
based on statistics computed on the current and past data. The feature vector is passed 
to the online recognition module, which uses an Artificial Neural Networks classi-
fier to detect whether the user at home is cooking or not. The Neural Network is trained 
in advance using a labeled training set of sensor data acquired during cooking and non-
cooking activities. Finally, the prediction (either cooking or not cooking) is communicated 

Fig. 1  Air quality sensor data acquisition and processing
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to a robot, who is in charge of interacting with the user in order to interactively collect 
his/her food diary.

Sensor data acquisition

As shown in our experiments, reported in “Experimental evaluation” section, the act of 
preparing food determines relevant changes in the air quality of the cooking area. In par-
ticular, the use of a gas cooker determines an immediate increase of the carbon dioxide 
( CO2 ) level in the kitchen. The preparation of certain kinds of food generates fumes con-
taining different levels of volatile organic compounds (VOCs) [32]; the increase of VOC 
levels is particularly evident when certain foods are prepared, such as meat and fish. 
Similarly, cooking certain kinds of food determines the emission of particulate matter 
(PM); i.e., microscopic matter suspended in the air. The concentration and size of partic-
ulate matter is determined both by the cooking style (roasting, frying...) and by the used 
ingredients  [1]. Natural gas stoves also emit other gases, such as NO2 , in the kitchen. 
Moreover, when cooking takes place, the environmental parameters of the kitchen are 
affected both in terms of temperature and humidity values.

Nowadays, indoor air quality monitors are becoming popular, due to their low cost 
and increased attention of people to the healthiness of indoor air. Our intuition is that 
it is possible to exploit off-the-shelf indoor air quality sensors in order to recognize 
food preparation activities by applying machine learning techniques to the sensor data 
stream. The advantage of this solution with respect to other ones based on cameras or 
environmental sensors is that the indoor air quality sensor is unobtrusive and requires 
negligible installation effort. Moreover, it is obviously more privacy-conscious than solu-
tions based on microphones and cameras.

At the time of writing, different indoor air quality monitors are available on the mar-
ket. These devices mainly differ from one another with respect to the kind of monitored 
parameters, detection frequency, form factor, network interfaces, presence of open APIs, 
and cost. For recognizing food preparation activities, we target a device having the fol-
lowing characteristics:

•	 it is able to monitor at least the following parameters: temperature, humidity, carbon 
dioxide, volatile organic compounds, particulate matter;

•	 it provides a detection frequency of at least one sensor reading per minute;
•	 for ease of installation, it provides a wireless network interface and electrical connec-

tion to avoid battery exhaustion;
•	 it provides open APIs for acquiring the sensor data in real time.

Among several indoor air quality meters currently available on the market, we chose the 
uHoo© device,11 which provides all the desired characteristics mentioned above. Fig-
ure 2 shows a uHoo device used in our experimental setup. In addition to the mentioned 
parameters, the uHoo device also measures nitrogen dioxide, carbon monoxide, ozone, 
and air pressure. It provides sensor readings at 1 min frequency, and the data can be 
downloaded either in batch from a smartphone app, or in real time thanks to open APIs.

11  https​://uhooa​ir.com/.

https://uhooair.com/
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Data cleaning

In general, sensor data are affected by a relevant level of noise. Hence, before being 
used, the raw sensor readings must be preprocessed to reduce the noise, which could 
negatively affect the accuracy of inferred data. However, several air quality monitors, 
including the ones we use in this work, perform an internal preprocessing of the raw 
data before sending them to the user or application. Preprocessing usually consists in 
smoothing the values of consecutive readings, in order to correct values affected by high 
level of noise. Since smoothing is already performed internally by the air quality moni-
tor, in this work we perform a limited data cleaning, which consists of disregarding those 
portions of consecutive data where more than 50% of values are missing due to network 
errors or power failures.

Feature engineering

In order to reliably recognize food preparation activities, it is necessary to provide the 
machine learning algorithm with features useful to discriminate between cooking and 
non-cooking activities. For this reason, we have carefully analyzed the trend of air qual-
ity data when cooking was performed or not.

Figure  3 shows a screenshot of our air quality Web dashboard. The plot depicts the 
trend of carbon dioxide hourly average during a day. In that day, breakfast and lunch 
were prepared at around 7:30 a.m. and at around 1:30 p.m., respectively. From the plot, 
it is easy to observe that the absolute value of carbon dioxide is not sufficient to reliably 
distinguish cooking from non-cooking activities. Indeed, during all that day, the value of 
CO2 was relatively stable, with a value slightly above 1000 ppm. The value of CO2 started 
to increase in the morning at 7:00, when people went to the kitchen and initiated pre-
paring breakfast. The increase of carbon dioxide levels was due both to the breathing 
of people in the kitchen and usage of a natural gas stove. The CO2 value reached a local 
maximum at 9–10 a.m., and kept stable until 12:30 p.m., when a user opened the win-
dow to ventilate the kitchen. Soon after, a person started the preparation of lunch, and 
this activity determined an increase of carbon dioxide, whose value reached 1000 ppm 
and remained stable for the rest of the day.

Fig. 2  An air quality monitor used in our experimental setup
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From the analysis of Fig. 3, it emerges that, in order to distinguish cooking from non-
cooking activities, it is important to analyse the trend of CO2 levels, not only its absolute 
value. A similar point holds for the other parameters, such as the temperature, whose 
plot in the same day is reported in Fig. 4. For this reason, we engineered features taking 
into account not only the absolute values or averages, but also the difference between 
the current value and the past values. In particular, we build features considering the dif-
ferences between the most recent value and the one in the previous 5, 10, 15, 20, and 25 
min. We also use statistical features considering the average, minimum, and maximum 
value in the last 5 min, as well as the standard deviation of those values. Using these 
features, which are built using only the current values and past values, it is possible to 
recognize the current activity online; hence, we name this feature engineering modality 
online feature extraction.

However, especially to reliably determine the end of a cooking activity, it would be 
useful to observe the sensor data even after the end of the cooking activity. Indeed, the 
end of a cooking activity is often characterized by a drop of certain parameters, such as 
temperature, CO2 , and particulate matter; hence, the difference between those values 
during and after the cooking activity might generate characteristic spikes that are easy to 
recognize. Obviously, the use of features computed considering succeeding values deter-
mines a delay in the recognition process. Hence, for those applications having real-time 
requirements, such as the one addressed in this work, we only use features considering 

Fig. 3  Hourly trend of carbon dioxide in the kitchen in a day. Each point represents the average carbon 
dioxide value in the kitchen during a given hour. The points can take on different colors: green represents 
comfortable values for human life; red represents uncomfortable values; yellow represents intermediate 
values

Fig. 4  Hourly trend of temperature in the kitchen in a day. Each point represents the average temperature 
value in the kitchen during a given hour. Green points represent comfortable values for human life
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current and past values. For all the other applications, we also build features consider-
ing succeeding values in a temporal sliding window of 25 min. For instance, in order to 
build the feature vector referring to the activity executed at 12:00, we need to wait until 
12:25, since the feature vector is built based on data acquired from 11:35 to 12:25. We 
name this feature engineering modality delayed feature extraction. In our experiments, 
reported in “Experimental evaluation” section, we evaluate both modalities.

It is worth to note that a single parameter is not sufficient to reliably recognize cook-
ing activities. In general, increasing levels of carbon dioxide indicates the preparation of 
food using a gas stove; however, there may be some false positive when several people 
are in the kitchen, especially if the window is closed and the kitchen is small or poorly 
ventilated. Relying on CO2 only, false negatives may happen when a meal is prepared 
without using a gas stove. For instance, in the day concerning Figs. 3 and 4, a dinner was 
prepared at around 9 p.m. using an electric oven. We can observe that the increase of 
CO2 in that period of time was very limited, and due only to the sporadic presence of one 
person in the kitchen. The usage of the oven was clearly captured by the increase of the 
temperature. However, temperature alone is not a reliable parameter for food prepara-
tion, since it is strongly influenced by climatic factors and other external conditions. For 
this reason, we build our feature vectors considering six sensor data parameters: tem-
perature, humidity, carbon dioxide, volatile organic compounds, particulate matter, and 
nitrogen dioxide. We disregarded carbon monoxide, ozone, and air pressure, because we 
experimentally found that they were not reliable indicators of food cooking.

Finally, the time of the day is another important indicator of food preparation, since 
cooking is normally carried out at specific times. We compute the current time of the 
day as the number of minutes that passed from midnight.

A deep neural network for food preparation

We have built a deep neural network for the classification task. The type of deep neural 
network chosen is a Multilayer Perceptron (MLP). Figure  5 shows its architecture. In 
particular, our MLP is composed by four layers: one input layer, two hidden layers, and 

Fig. 5  Architecture of the proposed deep neural network



Page 11 of 26Gerina et al. Hum. Cent. Comput. Inf. Sci.           (2020) 10:27 	

one output layer. The layers are fully connected (dense). The units per layer have been 
selected considering the number of features. Let nF be the number of features in input. 
The input layer has nF/2 number of units, the first hidden layer has exactly nF number 
of units, the second hidden layer has 2nF number of units. The output layer has only one 
unit, since we are performing a binary classification. We have used the Leaky Rectified 
Linear Units function (LeakyReLU) as activation function, with negative slope coeffi-
cient set at 0.2. Instead, for the output layer, we chose as activation the Sigmoid function, 
since we need a binary output value.

To prevent over-fitting we have added Dropout layers after every LeakyReLU layer. 
The fraction of the input units to drop has been set at 0.5. To speed up learning and to 
increase the stability of the neural network, we have also added Batch Normalization lay-
ers: one before the input layer and the other before every LeakyReLU layer. Batch Nor-
malization layers have allowed us using a low learning rate (set at 0.0001) with Adam 
chosen as optimizer. As loss function, we used the binary cross-entropy function.

The deep neural network we have employed in this paper has been developed in 
Python programming language using the Keras framework12 and Scikit-Learn library.13 
The used environment has been Google Colaboratory.14

The collected sensor data, the related annotations provided by humans, and the code 
related to the deep neural network we have developed can be freely downloaded from a 
GitHub repository.15

Experimental evaluation
In this section, we report the results of experiments carried out with an extensive set of 
real-world data.

Dataset

The dataset is composed of 350,551 data readings taken at each minute during more 
than 8 months in total from volunteers living in 8 different homes. The participants self-
annotated the start and end time of cooking activities on a printed form, also specifying 
the kind of food that they cooked. At the end of data acquisition, the annotations were 
digitized by researchers using a custom program. The researchers actively interacted 
with the participants to clarify the meaning of those annotations that were ambiguous 
or unclear. The dataset was acquired in real-world environments and in naturalistic con-
ditions; we did not rely on multiple annotators and we could not evaluate inter-rater 
reliability. As a consequence, even though the participants took annotation with care, 
the self-annotations inevitably may contain missing or wrong labels [35]. Data have been 
collected in homes having different characteristics, and in different periods of the year, 
to guarantee diversity and to ensure that the data represented real situations and con-
ditions. In particular, six homes were situated in a city area by the sea with a Mediter-
ranean climate, one in a big continental city, and one home was situated in a mountain 

12  https​://keras​.io/.
13  https​://sciki​t-learn​.org/stabl​e/.
14  https​://colab​.resea​rch.googl​e.com.
15  https​://githu​b.com/FG251​1/MLP_ForFo​odPre​parat​ion.

https://keras.io/
https://scikit-learn.org/stable/
https://colab.research.google.com
https://github.com/FG2511/MLP_ForFoodPreparation
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area with alpine climate. Climate influences temperature and humidity, and the area (city 
vs. countryside) may influence air pollutants, particulate matter, and volatile organic 
compounds. In five homes, data was affected by the presence of people in the kitchen 
after the completion of the cooking activity, while in the other homes the meals were 
consumed in a different room. The season influences the frequency of other activities, 
such as opening the window or turning on a heating system, that may affect ambient and 
air parameters. The participants’ age ranged from 23 to 71 years, with 10 females and 8 
males. The volunteers were recruited among the families and mates of the authors, in 
order to include different kind of inhabitants. Specifically, homes included six different 
typologies of inhabitants: middle-aged single inhabitants, couples, families with children, 
groups of roommate students, a senior living alone, and a senior living with a middle-
aged person. The participants did not receive any compensation for taking part to the 
study. All voluntaries were informed about the procedure used for data acquisition, the 
kind of data that would be acquired, the frequency of acquisition, and the kind of sensi-
tive information that could be extracted from the acquired data. We explained that the 
data could be released in anonymous form to third parties for research purposes. In par-
ticular, we explained that we would not release any micro-data to third parties. Instead, 
we would release only aggregated macro-data; i.e., statistical feature vectors to be used 
for classification. Released data would not include neither explicit identifiers, nor quasi-
identifier information. We also explained the potential impact of the research for sup-
porting several kinds of medical conditions. The voluntaries gave written informed 
consent to their participation to the experiments. Each data record contains: 

	 1.	 date,
	 2.	 time,
	 3.	 temperature (in °C),
	 4.	 relative humidity (in percentage %),
	 5.	 PM2.5 (Fine Particulate Matter in µg/m3),
	 6.	 TVOC (Total Volatile Organic Compound in ppb),
	 7.	 CO2 (Carbon Dioxide in ppm),
	 8.	 CO (Carbon Monoxide in ppm),
	 9.	 air pressure (in hPa),
	10.	 O3 (Ozone in ppb),
	11.	 NO2 (Nitrogen Dioxide in ppb),
	12.	 current activity,
	13.	 type of cooked food (e.g., rice, salad).

The current activity attribute can take two values: 1 if the user is cooking a meal, 
0 otherwise. The number of data records with activity set to 1 is 16,323, while the 
remaining 334,228 are set to 0, meaning that “cooking” and “not cooking” classes are 
strongly unbalanced. As an example, Table  1 indicates a few records of the dataset 
with the information above.

The data are subject to many variables: the kind of person who cooked most in the 
house (3 men and 5 women, ages ranging from 20 to 72), the sensor distance from 
domestic appliances used for cooking (ranging from 5 cm to 1.5 m), the presence of 
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air conditioning, pellet stove or windows in the kitchen, and the house structure (sep-
arate kitchen from the dining room or open-space). The data were acquired in differ-
ent seasons; this feature strongly affects some parameters such as temperature and 
humidity.

Eight volunteers were given one air quality monitor to place in their homes, and for 
1 month each they collected sensor data by writing down specific information each 
time they cooked: date, start and end time of cooking, cooked foods, domestic appli-
ances used for cooking, and presence of an open window. The composition of home 
inhabitants was disparate, and included couples, students sharing a house, elderly liv-
ing alone, and families with children.

Experimental setup

In order to optimize the deep neural network, it has been necessary to perform pre-
liminary experiments to fine-tune the model parameters: activation function, opti-
mizer, learning rate, batch size, dropout rate value. The optimized module that we 
devised is the one described in “A deep neural network for food preparation” section. 
As the classes in the dataset are strongly unbalanced (as explained in “Dataset” sec-
tion), the class weights have been set up before the model generation.

Hence, we carried out several experiments, using two different types of validation. 

1.	 Initially, the model has been evaluated using a one-shot split of the dataset. The 
model took 80% of the dataset as training set, the following 10% as validation set, 
and the remaining 10% for testing. The number of epochs has been decided using the 
Early Stopping function, which stops the evaluation when the loss function starts to 
increase. The patience parameter (i.e., the number of epochs with no improvement 
after which training stops) has been set to 2.

2.	 With the second type of validation, the model has been tested using a tenfold cross-
validation. Specifically, we have used the Scikit-Learn KFold function to split the 
dataset. The split has been done maintaining the temporal order of the dataset by set-
ting the shuffle parameter to False. This peculiarity is important, since shuffling the 
instances can introduce bias. Indeed, two instances that are contiguous in the dataset 
(i.e., two set of data measured at 1-min distance) are very similar: if an instance goes 
to the training set and the following goes to the test set, we have a bias.

We evaluate our model using two modalities. The first modality is named “minute-by 
minute”, and considers each prediction, referring to a 1-min data, in isolation. The 

Table 1  Few examples of dataset records

Each record is annotated with the current activity (1 if the user is cooking a meal, 0 otherwise), and the list of cooked food

Timestamp Temp. Hum. PM2.5 TVOC CO2 CO Pres. O3 NO2

2018-11-24 13:13 27.7 60.14 5.54 66.0 442.0 0.0 1012.91 9.15 28.60

2018-11-24 13:14 27.7 60.21 4.56 67.0 461.0 0.0 1012.92 9.14 28.76

2018-11-24 13:15 27.7 59.84 8.37 67.0 465.0 0.0 1012.89 9.35 32.29

2018-11-24 13:16 27.6 58.96 6.19 67.0 467.0 0.0 1012.91 9.57 36.25
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second modality is named “cooking instance” recognition, and refers to the recogni-
tion of whole instances of cooking, where a cooking instance is a continuous interval 
of time during which the cooking activity took place.

For minute-by-minute modality, a correct recognition of cooking at minute m is 
counted as a true positive (TP). A false positive (FP) happens when the network predicts 
cooking at m, but cooking was not taking place at that minute. A false negative (FN) is 
counted if cooking was occurring at m, but the reasoner wrongly predicts “not cooking” 
for that minute. Finally, a true negative happens when the reasoner correctly predicts 
that cooking is not taking place at m.

For cooking instance modality, we consider each segment of contiguous minute-by-
minute predictions of “cooking” starting at minute m and ending at minute n as the 
prediction of a single instance of cooking. Then, we count a TP if an actual instance of 
cooking has an intersection with a predicted cooking instance. If it has no intersection, 
then we count it as a FN. A FP occurs when (i) an actual instance of “not cooking” con-
tains a predicted cooking instance, or (ii) a predicted instance of “cooking” contains an 
actual instance of “not cooking”. A TN occurs when a predicted instance of “not cook-
ing” does not contain an actual “cooking” instance.

The metrics used to evaluate the model are: accuracy, precision, recall, and F1 score:

•	 accuracy is the percentage of correct predictions of the classifier and is defined as 
TP + TN

TP + TN + FP + FN
;

•	 specificity = 
TN

TN + FP
;

•	 precision = 
TP

TP + FP
;

•	 recall = 
TP

TP + FN
;

•	 F1 score is the harmonic mean of precision and recall and is defined as 
2 · TP

2 · TP + FP + FN
.

The results obtained have been improved with a post-processing step. The post-process-
ing has been developed using a simple sliding windows algorithm. We have used More 
Itertools16 library to implement sliding windows. The length of the windows has been 
set to 35 min. In each window, we look at the class of the central element (e.g., class 1), 
then we count the elements belonging to the same class. If they are less than a certain 
threshold (set at the half of the window plus one), the central element is set to the other 
class (e.g., class 0). In the other case, the class of the central element remains the same. 
The purpose of this step has been to remove small clusters of outliers and to merge close 
clusters of the same class.

Results

In the following, we present the experimental results. In all experiments, we applied 
tenfold cross-validation. Since air quality data values change relatively slowly 
with time, we have built the folds sequentially, in order to avoid the risk of having 

16  https​://more-itert​ools.readt​hedoc​s.io/en/lates​t/.

https://more-itertools.readthedocs.io/en/latest/
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consecutive data instances (which may be very similar among them, if not even iden-
tical) appearing in the training and test set, which could bias our results.

At first, we evaluated the performance of classification using different state-of-the-
art machine learning algorithms. In these experiments, we used the Weka toolkit [13] 
for machine learning. Results obtained with minute-by-minute modality are shown in 
Table 2. Results show that the classification problem we are addressing is particularly 
challenging. Overall, among the evaluated classifiers, the one achieving highest accu-
racy was Random forest (95.95% accuracy). However, it is well known that, especially 
when classes are unbalanced, accuracy alone is not an adequate metric to evaluate the 
effectiveness of classification. Indeed, that classifier obtains good precision (70.57%), 
but low recall (22.62%), meaning that the predictions of “cooking” were quite relia-
ble, but most cooking instances were actually not recognized. The classifier obtaining 
the highest F1 score (35.63%) was Bayes networks, that (contrary to Random forest) 
exhibited good recall (69.88%), but low precision (23.91%). The Naive Bayes and 
Logistic regression classifiers obtained lower recognition rates than the former algo-
rithms. The kNN classifier achieved a very good balance between precision (28.15%) 
and recall (28.85%); however, its overall recognition performance was low ( F1 score = 
28.5%). The Support Vector Machines classifier obtained one the highest scores for 
recall (64.65%), but the lowest score for precision (20.71%), reaching an F1 score of 
31.37%.

Then, we performed classification using our deep learning model. Table  3 sum-
marizes the results of online recognition obtained with minute-by-minute modality. 
Before post processing, despite the overall accuracy obtained being 87.95% , the over-
all F1 score was slightly higher than 36% . Hence, the overall accuracy was comparable 
to the one obtained by the Bayesian network classifier, which was the one achieving 
the highest F1 score in our pool of classifiers. However, our neural network obtained 
higher recall (73.85% vs.. 69.88%) and essentially the same precision (24.09% vs. 
23.91%). Moreover, the size of the dataset was relatively small for training a deep neu-
ral network. We expect that the results of our deep neural network may significantly 
increase using additional training data. For these reasons, we decided to use the deep 

Table 2  Results with minute by minute modality, online recognition

Classifiers: Random forest (denoted as R.F., max depth = 10, iterations = 10), Bayes networks (B.N., using K2 hill climbing 
search algorithm), Naive Bayes (N.B.), k nearest neighbor (kNN, using k = 1 ), Logistic regression (L.R.), Support Vector 
Machines (SVM, using polynomial kernel and class balancing)

Numbers in italic indicate the largest value obtained in the experiment for each considered metric

R.F. B.N. N.B. L.R. kNN SVM

TN 332,208 297,465 308,529 332,056 321,735 293,351

FP 1539 36,282 25,218 1691 12,012 40,396

TP 3691 11,403 7519 2665 4707 10,549

FN 12,626 4914 8798 13,652 11,610 5768

Accuracy (%) 95.95 88.23 90.28 95.62 93.25 86.81

Specificity (%) 99.54 89.13 92.44 99.49 96.40 87.90

Recall (%) 22.62 69.88 46.08 16.33 28.85 64.65

Precision (%) 70.57 23.91 22.97 61.18 28.15 20.71

F1-score (%) 34.26 35.63 30.66 25.78 28.50 31.37
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neural network in the rest of the experiments. The relatively low recognition rates that 
we achieved may be probably due to the fact that the dataset is strongly imbalanced, 
since time of cooking covers less than 5% of the dataset. For this reason, it was hard 
for the neural network to identify the few “cooking” activities within the vast major-
ity of “not cooking” instances. Moreover, the dataset was acquired in several differ-
ent real-world conditions. In particular, our neural network achieved good recall, but 
low precision. Results were slightly improved by post-processing, reaching an F1 score 
close to 40% . By inspecting the results, we observed that post-processing improved 
the precision by around 3% without negatively impacting recall. We repeated the 
same experiments with delayed recognition. We recall from “Feature engineering” 
section that in this modality the recognition of the current activity is delayed by 25 
min in order to consider the succeeding trend of air quality values. With minute-by-
minute recognition, we observed that delayed recognition achieved essentially the 
same accuracy of online recognition, as shown in Table  4. We performed a statisti-
cal study in order to understand whether the difference in the results obtained with 
online vs. offline recognition was statistically significant. For this reason, we applied 

Table 3  Deep neural network

Results with minute by minute modality, online recognition

Numbers in italic indicate the largest value obtained in the experiment for each considered metric

Original predictions After post-
processing

TN 296,219 301,258

FP 37,978 32,939

TP 12,055 11,985

FN 4269 4339

Accuracy (%) 87.95 89.36

Specificity (%) 88.64 90.14

Recall (%) 73.85 73.42

Precision (%) 24.09 26.68

F1 score (%) 36.33 39.14

Table 4  Deep neural network

Results with minute by minute modality, delayed recognition

Numbers in italic indicate the largest value obtained in the experiment for each considered metric

Original predictions After post-
processing

TN 29,3027 297,008

FP 41,140 37,159

TP 12,687 12,461

FN 3637 3863

Accuracy (%) 87.22 88.30

Specificity (%) 87.69 88.88

Recall (%) 77.72 76.34

Precision (%) 23.57 25.11

F1 score (%) 36.17 37.79
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the well-known measures of � coefficient and χ2 test  [12] to the output of the clas-
sifiers using the two recognition methods. We recall that the � value of two binary 
variables having identical distribution tends to 1, while the p value of χ2 test tends to 
0. In our case, we obtained a � value of 0.90, and the p value of the χ2 test of 2.2e−16. 
Hence, we can conclude that the two techniques produced results that are statistically 
very similar for minute-by-minute classification.

However, for our application, it is important to identify whole instances of cook-
ing activities, not the single minutes during which the activity takes place. In cooking 
instance modality, our online recognition method achieved better results than in min-
ute-by-minute modality. Results can be found in Table 5. In particular, before post-
processing, the technique achieved an F1 score slightly lower than 46% . This modality 
significantly increased both precision (from 24.09 to 32.21% ) and recall (from 73.85 
to 78.77% ). Results were further improved by post processing, reaching an overall F1 
score close to 60% . In particular, post-processing provided more balance between 
precision and recall values. Note that, after post-processing, the total number of pre-
dicted instances was strongly reduced, and this fact had obviously an impact on the 
overall numbers of TN, FP, TP, and FN. The reduction of the total number of pre-
dicted instances was due to the fact that our post-processing algorithm merged mul-
tiple predicted cooking instances that were temporally close. The reader is referred 
to   “Experimental setup” section for the definition of cooking instance modality. In 
cooking instance modality, accuracy improved using delayed recognition (Table  6), 
achieving an F1 score larger than 62%.

Discussion

Overall, despite we carefully designed the deep neural network, the achieved results 
are not fully satisfactory. This fact may be explained in several ways.

•	 First of all, while the dataset includes both hot and cold meals, our system is 
suited to recognize only the former. Indeed, it fails to recognize the majority of 
cold meals. This is an intrinsic limitation of any recognition system based on air 
quality data. In order to recognize cold meals, different kinds of sensors should be 
added to the system.

Table 5  Deep neural network

Results with cooking instance modality, online recognition

Numbers in italic indicate the largest value obtained in the experiment for each considered metric

Original predictions After post-
processing

TN 4506 727

FP 1109 482

TP 527 491

FN 142 178

Accuracy (%) 80.09 64.86

Specificity (%) 80.25 60.13

Recall (%) 78.77 73.39

Precision (%) 32.21 50.46

F1 score (%) 45.73 59.81
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•	 Secondly, the dataset was acquired in disparate real-world conditions. Homes 
included single inhabitants, couples, families with children, and groups of room-
mate students. Of course, the age and number of inhabitants has an impact on the 
kind and quantity of cooked food, and consequently on the change in air quality 
conditions determined by cooking. The topology of the home also has an impact 
on air quality data. Indeed, if inhabitants consume the meal within the kitchen, 
their presence determines an increase of temperature and CO2 levels even after 
cooking has ended. If the inhabitants consume the meal in a different room, the 
CO2 and temperature levels in the kitchen decrease as soon as cooking is finished. 
In our dataset we had both cases, depending on the home. This aspect could be 
taken into account by selecting only the subset of the training data acquired in 
conditions that resemble those of the target environment.

•	 Thirdly, being manually annotated, the dataset labels have an inevitable level of noise, 
which may include wrong start and end time of cooking execution, or wrong labels.

Nonetheless, considering that each activity recognition system has a considerable 
error rate, our system based on air quality data can be coupled with other activity 
recognition tools in the home to increase the overall activity recognition rate. For 
instance, the accuracy of the system may be increased by coupling our air-qual-
ity based system with other sensors attached to kitchen furniture and instruments. 
Moreover, as explained in “Use case on a robotic platform” section, the user’s feed-
back resulting from the interaction with the robot is used to periodically re-train the 
neural network using additional training data. Hence, we expect the accuracy of the 
system to increase with time thanks to human–robot interaction. Even though we did 
not evaluate this aspect in our experiments, we also believe that the number of false 
positives may be significantly reduced thanks to the usage of computer vision APIs of 
the robot, as described in “Architecture of the use case” section.

The average execution time of the neural network algorithm for recognizing an 
instance of data is 0.0317 ms on a cloud computing infrastructure. Hence, our system 
is feasible for real-time applications as in the proposed use case.

Table 6  Deep neural network

Results with cooking instance modality, delayed recognition

Numbers in italic indicate the largest value obtained in the experiment for each considered metric

Original predictions After post-
processing

TN 3988 698

FP 957 454

TP 549 505

FN 120 164

Accuracy (%) 80.82 66.06

Specificity (%) 80.65 60.59

Recall (%) 82.06 75.49

Precision (%) 36.45 52.66

F1 score (%) 50.48 62.04
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Use case on a robotic platform
In this section we are going to describe the use case we have set within the social 
robotics domain. A humanoid robot has been employed to interact with the user 
when the system recognizes that something is being cooked. In such a case, the robot 
asks the user what he/she is cooking. More in detail, “Zora, the used humanoid robot” 
section will include details of the robotic platform we have adopted whereas “Archi-
tecture of the use case” section will include the architecture of the use case we have 
designed.

Zora, the used humanoid robot

The Zora robot17 uses the same robotic infrastructure of Nao, an autonomous, program-
mable humanoid robot developed by Aldebaran Robotics, a French robotics company 
headquartered in Paris, which was acquired by SoftBank Group in 2015 and re-branded 
as SoftBank Robotics. With respect to Nao, Zora adds an extremely simple and intuitive 
user interface that allows any user to play loaded behaviours (apps, dances and games 
targeting care, kids, STEM18 market), to give action commands to the robot to change 
posture and move each part of her body, to make her talk in eight possible languages, 
and to use the Composer to create simple robot behaviors, composing a sequence of 
actions in a visual environment where no programming knowledge is needed.

Like Nao, Zora is also completely programmable through the Choregraphe suite,19 
which allows users to:

•	 create and combine different robot behaviours using a visual approach making use of 
the Python programming language;

•	 develop animations by leveraging an intuitive and dedicated user interface;
•	 test the robot behaviours and animations on either the simulated robot or the real 

one;
•	 develop complex behaviours and human–robot interactions by leveraging calls to 

REST APIs of external services on the Internet.

In order to capture the voice of the user when he/she speaks, the robot is equipped 
with four microphones, two of them in the front of the head and two at the back. The 
robot can therefore record the human voice, which is contextually analyzed and trans-
formed into text by a speech recognition module powered by Nuance.20 However, we 
are currently relying on cloud computing systems for speech recognition in order to 
improve the accuracy of the speech to text process. In fact, this allows us pre-processing 
the sound recorded by Zora and removing noise (e.g background noise, fan noise, etc.), 
which may compromise the conversion of human voice into written text. As such, the 
resulting audio file is sent to IBM Watson Speech to Text21 to perform speech recogni-
tion. Figure 6 shows an image of Zora.

17  https​://www.youtu​be.com/watch​?v=lO52s​LF-u_4&t=1s.
18  Science, technology, engineering, and mathematics.

21  https​://www.ibm.com/watso​n/servi​ces/speec​h-to-text/.

19  http://doc.aldeb​aran.com/1-14/softw​are/chore​graph​e/index​.html.
20  https​://www.nuanc​e.com.

https://www.youtube.com/watch?v=lO52sLF-u_4&t=1s
https://www.ibm.com/watson/services/speech-to-text/
http://doc.aldebaran.com/1-14/software/choregraphe/index.html
https://www.nuance.com
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Architecture of the use case

Figure  7 shows the architecture of the proposed use case. A Deep Learning module 
contains the annotated data and the trained deep learning model. That module exposes 
REST APIs to classify as cooking or non cooking a new collected record of sensor data. 
One more software agent, periodically, collects sensor data and calls the REST APIs 
of the Deep Learning module. If the new read data is classified as cooking then this is 
communicated to the robot via socket communication. Before starting the interaction 
with the user, the robot checks if someone is actually in the kitchen. For such a purpose, 
it takes a picture of the environment, which is sent to an object detection module to 
identify potential persons. However, for the sake of privacy, the object detection task 

Fig. 6  An image of Zora, the employed humanoid robotic platform

Fig. 7  Overall architecture of our use case prototype implementation. Note that point (4) is optional: the user 
may enable or not the camera-based object detection of the robot. If (4) is disabled, action goes directly from 
point (3) to point (5)
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is optional, and the user may decide whether to activate it or not. More specifically, we 
have employed the TensorFlow Object Detection API,22 which provides an open source 
framework built on top of TensorFlow that makes it easy to construct, train and deploy 
object detection models. TensorFlow Object Detection API can be used with different 
pre-trained models. More in detail, we have chosen a Single Shot MultiBox Detector 
(SSD) model with Mobilenet (ssd_mobilenet_v1_coco) which had been trained using the 
Microsoft COCO dataset,23 consisting of 2.5M labeled instances in 328000 images, con-
taining 91 object types. The ssd_mobilenet_v1_coco is reported to have mean average 
precision (mAP) of 21 on the COCO dataset. For further details on the SSD and the 
evaluation carried out on the COCO dataset please check the work of authors in [19]. 
The back-end of the object detection module has been embedded into a server-side 
application which exposes REST APIs that, given an input image, return the bounding 
box of each recognized object in the image along with a category and a confidence value. 
We considered valid only the objects that were recognized with a confidence value equal 
or higher than 60%. The back-end is hosted within the Deep Learning Module.

When a cooking instance is recognized, the robot starts the interaction with the user. 
If camera-based recognition is enabled, the robot takes six pictures in the kitchen, each 
60 degrees distant from the other. If the robot identifies one or more persons (class 
person of the COCO dataset) in the images, it asks what food the user is preparing. If 
camera-based recognition is disabled, the robot makes its question in any case. Once 
the user replies, the robot performs speech to text processing and sends the extracted 
food as well as the sensors data to the Deep Learning module which extends its training 
data with the new annotation and, periodically, retrains the overall model. Note that, 
in the current implementation of our system, the speech interaction to acquire food 
journaling data is over-simplistic, being based on a simple question-answer paradigm. 
Since most food journaling applications require detailed information about the kind and 
quantity of food, we will investigate a more sophisticated conversational agent for food 
journaling in future work. Voice-based identification methods will also be used to rec-
ognize the inhabitant, in case of multi-resident homes. If the classifier forecasts a cook-
ing activity using the current air quality data and the user is not actually cooking (i.e. 
the user replies nothing to the robot question above) the classification is wrong and the 
new record is sent to the Deep Learning Module together with the not cooking label. If 
the object detection module does not identify any person in the kitchen, it overrides the 
classification of the Deep Learning Module thus reducing the false positives and improv-
ing the overall classification. Moreover, the new pair (sensor data, not cooking) is sent as 
further training element. Periodically and when enough new annotated data have been 
collected, the Deep Learning Module trains again the model.

We would like to point out that the robot has not been employed for the collection 
of the annotated data during the 8 months from the annotators. During that period, 
only our air quality sensors were employed and their measurements were saved for 
the whole period. After the creation of our gold standard and the training of our 
model, we set up the whole architecture shown in Fig. 7 for a preliminary test on real 

23  http://cocod​atase​t.org.

22  https​://bit.ly/2lPqH​Jk.

http://cocodataset.org
https://bit.ly/2lPqHJk
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settings. Advanced methods to improve our use case, including techniques for opti-
mized path planning of the mobile robot [30], will be investigated in future work.

Preliminary results on human–robot interaction mechanism

After having collected all the information related to the air quality sensors, in one of 
the houses of the annotators we performed a preliminary technical validation of the 
human–robot interaction mechanism. In order to interact with the user, the robot 
employs a state of the art object detection classifier, text-to-speech and speech-to-text 
technologies, which are widely evaluated in the literature. We have already mentioned 
the used speech-to-text technologies. As far as the object detection is concerned, we 
have used the classifier based on the work of authors in  [18]. The object detection 
software (that was enabled in our use case) and the classification software (to iden-
tify a cooking instance out of the air sensor data) were run in a pc we brought in 
the house to perform the test together with the robot and the air sensors. The whole 
human–robot interaction architecture has been preliminarily tested for short time 
(one full day), and the only errors we noticed occurred because of the wrong pre-
diction of the activity recognition module. As mentioned earlier in the paper, the 
human–robot interaction has been kept simple. To easily recognize the food spo-
ken by the user, we first collected a list of food items online that were enriched by 
each of the annotators. Basically, we asked each of them to write the list of food items 
they have cooked or might cook in the future. After we removed the duplicates, we 
obtained a list of 86 food items that were organized in a two-levels hierarchical struc-
ture. The first layer contained general terms, whereas the second levels contained 
items that were associated to one food item of the first level. For example, egg is a gen-
eral item, while omelette is a specific item related to egg. Therefore, when the machine 
learning module predicted a cooking activity (and the robot identified a person in 
the kitchen), the robot asked the user what he/she was cooking. Out of the natural 
language expressions spoken by the user, after the robot performed speech-to-text, 
it was just a matter of recognizing terms we had in the vocabulary without perform-
ing any comprehension of the semantics involved in the natural language text. This 
process did not lead to any errors and all the spoken items have been correctly identi-
fied within the defined vocabulary. There was one researcher present in the morning 
during the first cooking activity and in the evening during the last cooking activity 
that monitored the human robot interaction after having trained the English speak-
ing person living in the house and informed her on the behaviour of the robot. Some 
facts, comments and impressions that turned out from our preliminary experiment 
were the following:

•	 the object detection module correctly identified all the times when someone was in 
the kitchen;

•	 one out of five cooking activities was not recognized as a cooking activity by the clas-
sifier;

•	 two times the robot thought that there was a cooking activity (two false positives 
occurred of the Deep Learning module): that was fixed as soon as the user replied 
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nothing to the robot question What are you cooking? and the correct pair (sensor 
data, no cooking activity) was sent to the Deep Learning module;

•	 we have developed everything (vocabulary, human robot interaction, etc.) in English 
and the user involved within our experiment was an English speaker;

•	 out of five cooking activities, there were not cases when the user mentioned a food 
not present within the dictionary we had prepared;

•	 the entries we filled in our food diary for the short experiment are depicted in 
Table 7;

•	 we asked what the impressions of the user interacting with the robot were and she 
was very curious and excited to talk it. She did not think the robot was intrusive and 
liked the simple human robot interaction we designed. She would even have liked if 
the robot could have entertained her with songs, music, radio, or simple interaction 
or question-answering capabilities provided, for example, by voice assistant tools 
today.

Conclusion and future work
In this paper, we have laid the foundation of a novel method to support food journaling, 
addressed to frail people living alone. Our system relies on advanced air quality sensors 
for cooking recognition. We have shown the process of collecting and analysing air qual-
ity sensor data to detect when the user is cooking in order to trigger the interaction with 
a digital agent to acquire food data. We have developed a deep neural network trained 
on a large dataset acquired during 8 months in disparate conditions by different people. 
An experimental evaluation has been carried out to assess the accuracy of the model on 
the given classification problem and the feasibility of the method for real-time applica-
tions. We have also developed an initial prototype considering a use case where a social 
robot interacts with the neural network and with the user. Our preliminary prototype is 
the first in its kind and shows several challenges we had to face and many more that we 
still need to address. However, we believe that the technologies to address these chal-
lenges are out there and our work provides a significant step in this direction.

Several challenges to be addressed in future work remain open. First of all, we will 
investigate methods to increase the accuracy of our cooking recognition system. An 
obvious direction is to couple the air quality sensor with other sensors to recognize 
the preparation of cold meals. As explained in “Feature engineering” section, the tem-
perature alone is not sufficient to reliably recognize cooking activities, because indoor 

Table 7  Five entries of  the  food diary filled during  1 day through  the  human robot 
interaction use case

Time Food

8:11 Coffee

13:18 Pasta and potatoes

17:09 Chocolate

20:23 Broccoli and steak

22:34 Tea
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temperature is influenced by external temperature. A similar point holds for humidity 
and other factors. In order to mitigate the influence of external conditions, we could 
include additional data taken from online weather services. Since both the topology of 
the home and the characteristics of inhabitants (including their number and age distri-
bution) affect the air quality conditions at cooking time, we will investigate techniques to 
couple our data-driven method with a knowledge-based one, to fine-tune recognition to 
home’s and inhabitants’ characteristics. Other domain knowledge, such as the expected 
duration of cooking activities, may be used to improve the recognition rates of our cook-
ing recognition system, and this is a research direction we will pursue. Future work also 
includes the definition of an effective and engaging conversational interface for inter-
actively filling the food diary, and voice-based identification methods to recognize the 
current inhabitant in case of multi-resident homes. For such a purpose, one direction we 
are heading is to employ Google Assistant technology for the human–robot interaction 
exploiting the APIs and open source tools (e.g. DialogFlow) that Google makes avail-
able to the community. We would like to extend the vocabulary we have defined accord-
ing to Semantic Web best practices in order to have a more comprehensive ontology 
involving all the food items that might be cooked according to any international recipes. 
Finally, we plan to execute extensive tests and a much more comprehensive evaluation 
of the human robot interaction approach based on our preliminary use case prototype 
implementation.
Acknowledgements
The authors would like to thank the anonymous reviewers for their insightful comments and suggestions.

Authors’ contributions
All authors gave equal contribution. All authors read and approved the final manuscript.

Funding
This work was supported by the Open Access Publishing Fund of the University of Cagliari, with the funding of the 
Regione Autonoma della Sardegna - L.R. n. 7/2007.

Availability of data and materials
Data and source code used in our experiments are available online (https​://githu​b.com/FG251​1/MLP_ForFo​odPre​parat​
ion).

Competing interests
The authors declare that they have no competing interests.

Received: 19 July 2019   Accepted: 25 May 2020

References
	1.	 Abdullahi L, Delgado-Saborit JM, Harrison R (2013) Emissions and indoor concentrations of particulate matter and 

its specific chemical components from cooking: a review. Atmos Environ 71:260–294. https​://doi.org/10.1016/j.
atmos​env.2013.01.061

	2.	 Achananuparp P, Lim E, Abhishek V (2018) Does journaling encourage healthier choices? Analyzing healthy eating 
behaviors of food journalers. In: Kostkova P. Grasso F, Castillo C, Mejova Y, Bosman A, Edelstein M (eds) Proceedings 
of the 2018 international conference on digital health, ACM, pp 35–44

	3.	 Amft O, Stäger M, Lukowicz P, Tröster G (2005) Analysis of chewing sounds for dietary monitoring. In: UbiComp 
2005: ubiquitous computing, 7th international conference, Lecture Notes in Computer Science, vol 3660, Springer, 
Berlin, pp 56–72

	4.	 Bouwman L, Hiddink GJ, Koelen MA, Korthals M, van’t Veer P, van Woerkum C, Personalized nutrition communication 
through ict application (2005) Personalized nutrition communication through ict application: how to overcome the 
gap between potential effectiveness and reality. Eur J Clin Nutr 59:108–116

	5.	 Brunoand V, Resende S, Juan C (2017) A survey on automated food monitoring and dietary management systems. J 
Health Med Inform 8(3):1–15

	6.	 Casas J, Mugellini E, Khaled OA (2018) Food diary coaching chatbot. In: Proceedings of the 2018 ACM international 
joint conference and 2018 international symposium on pervasive and ubiquitous computing and wearable com-
puters, ACM, pp 1676–1680

https://github.com/FG2511/MLP_ForFoodPreparation
https://github.com/FG2511/MLP_ForFoodPreparation
https://doi.org/10.1016/j.atmosenv.2013.01.061
https://doi.org/10.1016/j.atmosenv.2013.01.061


Page 25 of 26Gerina et al. Hum. Cent. Comput. Inf. Sci.           (2020) 10:27 	

	7.	 Celino I, Calegari GR (2020) Submitting surveys via a conversational interface: an evaluation of user acceptance and 
approach effectiveness. Int J Hum Comput Stud 139:1–16

	8.	 Chi P, Chen J, Chu H, Lo J (2008) Enabling calorie-aware cooking in a smart kitchen. In: PERSUASIVE, Lecture Notes in 
Computer Science, vol 5033, Springer, Berlin, pp 116–127

	9.	 Cordeiro F, Bales E, Cherry E, Fogarty J (2015) Rethinking the mobile food journal: Exploring opportunities for light-
weight photo-based capture. In: Proceedings of the 33rd annual ACM conference on human factors in computing 
systems (CHI), ACM, pp 3207–3216

	10.	 Cordeiro F, Epstein DA, Thomaz E, Bales E, Jagannathan AK, Abowd GD, Fogarty J (2015) Barriers and negative 
nudges: Exploring challenges in food journaling. In: Proceedings of the 33rd annual ACM conference on human 
factors in computing systems (CHI 2015), ACM, pp 1159–1162

	11.	 DiFilippo KN, Huang WH, Andrade JE, Chapman-Novakofski KM (2015) The use of mobile apps to improve nutrition 
outcomes: a systematic literature review. J Telemed Telecare 21(5):243–253

	12.	 Guilford JP (1941) The phi coefficient and chi square as indices of item validity. Psychometrika 6(1):11–19
	13.	 Hall MA, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. 

SIGKDD Explor 11(1):10–18
	14.	 Hameed I (2016) Using natural language processing (nlp) for designing socially intelligent robots. In: Conference: 

2016 joint IEEE international conference on development and learning and epigenetic robotics (ICDL-EpiRob), pp 
268–269. https​://doi.org/10.1109/DEVLR​N.2016.78468​30

	15.	 Hollis JF, Gullion CM, Stevens VJ, Brantley PJ, Appel LJ, Ard JD, Champagne CM, Dalcin A, Erlinger TP, Funk K, Laferriere 
D, Lin PH, Loria CM, Samuel-Hodge C, Vollmer WM, Svetkey LP (2008) Weight loss during the intensive intervention 
phase of the weight-loss maintenance trial. Am J Prev Med 35:118–126

	16.	 Kazakos E, Nagrani A, Zisserman A, Damen D (2019) Epic-fusion: Audio-visual temporal binding for egocentric 
action recognition. In: 2019 IEEE/CVF international conference on computer vision, IEEE, New York, pp 5491–5500. 
https​://doi.org/10.1109/ICCV.2019.00559​.

	17.	 Krebs-Smith SM, Pannucci TE, Subar AF, Kirkpatrick SI, Lerman JL, Tooze JA, Wilson MM, Reedy J (2018) Update of the 
healthy eating index: Hei-2015. J Acad Nutr Diet 118(9):1591–1602

	18.	 Liu S, Qi L, Qin H, Shi J, Jia J (2018) Path aggregation network for instance segmentation. In: 2018 IEEE/CVF confer-
ence on computer vision and pattern recognition, pp 8759–8768

	19.	 Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) Ssd: single shot multibox detector. In: Pro-
ceedings of the European conference on computer vision (ECCV) (2016). arXiv​:1512.02325​

	20.	 Lukoff K, Li T, Zhuang Y, Lim BY (2018) Tablechat: mobile food journaling to facilitate family support for healthy eat-
ing. Proc ACM Hum Comput Interact 2:114:1–114:28

	21.	 Mamykina L, Mynatt ED, Kaufman DR (2006) Investigating health management practices of individuals with diabe-
tes. In: Proceedings of the 2006 conference on human factors in computing systems (CHI), ACM, pp 927–936

	22.	 Mankoff J, Hsieh G, Hung HC, Lee S, Nitao E (2002) Using low-cost sensing to support nutritional awareness. In: 
UbiComp 2002: ubiquitous computing, 4th international conference, Lecture Notes in Computer Science, vol 2498, 
Springer, Berlin, pp 371–376

	23.	 Marr JW (1971) Individual dietary surveys: purposes and methods. World Rev Nutr Diet 13:105–164
	24.	 Matuszek C (2018) Grounded language learning: where robotics and nlp meet. Proc IJCAI 2018:5687–5691. https​://

doi.org/10.24963​/ijcai​.2018/810
	25.	 Michie S, West R, Sheals K, Godinho CA (2018) Evaluating the effectiveness of behavior change techniques in health-

related behavior: a scoping review of methods used. Transl Behav Med 8(2):212–224
	26.	 Oh H, Nguyen J, Soundararajan S, Jain R (2018) Multimodal food journaling. In: Boll S, Jain R, O’Connor NE, McDaniel 

TL, Meyer J (eds) Proceedings of the 3rd international workshop on multimedia for personal health and health care, 
ACM, pp 39–47

	27.	 Riboni D (2019) Opportunistic pervasive computing: adaptive context recognition and interfaces. CCF Trans Perva-
sive Comput Interact 1(2):125–139

	28.	 Rohrbach M, Amin S, Andriluka M, Schiele B (2012) A database for fine grained activity detection of cooking activi-
ties. In: IEEE conference on computer vision and pattern recognition, IEEE Computer Society, pp 1194–1201

	29.	 Romano KA, Becker MAS, Colgary CD, Magnuson A (2018) Helpful or harmful? the comparative value of self-weigh-
ing and calorie counting versus intuitive eating on the eating disorder symptomology of college students. Eating 
Weight Disord Stud Anorexia Bulimia Obes 23(6):841–848

	30.	 Saeed RA, Recupero DR, Remagnino P (2020) A boundary node method for path planning of mobile robots. Robot 
Auton Syst 123:103320

	31.	 Sen S, Subbaraju V, Misra A, Balan RK, Lee Y (2018) Annapurna: building a real-world smartwatch-based automated 
food journal. In: 19th IEEE international symposium on “A World of Wireless, Mobile and Multimedia Networks”, IEEE 
Computer Society, pp 1–6

	32.	 Wang G, Cheng S, Lang JL, Wen W, Wang X, Yao S (2016) Characterization of volatile organic compounds from differ-
ent cooking emissions. Atmos Environ 145 https​://doi.org/10.1016/j.atmos​env.2016.09.037

	33.	 Wilde MH, Garvin S (2007) A concept analysis of self-monitoring. J Adv Nurs 58:339–350
	34.	 Wildenbos GA, Peute LWP, Jaspers MWM (2018) Aging barriers influencing mobile health usability for older adults: a 

literature based framework (MOLD-US). Int J Med Inform 114:66–75
	35.	 Woznowski P, Tonkin E, Laskowski P, Twomey N, Yordanova K, Burrows A (2017) Talk, text or tag? The development of 

a self-annotation app for activity recognition in smart environments. In: IEEE international conference on pervasive 
computing and communications workshops, IEEE, New York, pp 123–128

	36.	 Yordanova K, Lüdtke S, Whitehouse S, Krüger F, Paiement A, Mirmehdi M, Craddock I, Kirste T (2019) Analysing cook-
ing behaviour in home settings: towards health monitoring. Sensors 19(3):646

	37.	 Yordanova K, Whitehouse S, Paiement A, Mirmehdi M, Kirste T, Craddock I (2017) What’s cooking and why? 
behaviour recognition during unscripted cooking tasks for health monitoring. In: IEEE international conference on 
pervasive computing and communications workshops, IEEE, New York, pp 18–21

https://doi.org/10.1109/DEVLRN.2016.7846830
https://doi.org/10.1109/ICCV.2019.00559
http://arxiv.org/abs/1512.02325
https://doi.org/10.24963/ijcai.2018/810
https://doi.org/10.24963/ijcai.2018/810
https://doi.org/10.1016/j.atmosenv.2016.09.037


Page 26 of 26Gerina et al. Hum. Cent. Comput. Inf. Sci.           (2020) 10:27 

	38.	 Zhu F, Bosch M, Woo I, Kim S, Boushey CJ, Ebert DS, Delp EJ (2010) The use of mobile devices in aiding dietary 
assessment and evaluation. J Sel Topics Signal Process 4(4):756–766

	39.	 Zhu N, Diethe T, Camplani M, Tao L, Burrows A, Twomey N, Kaleshi D, Mirmehdi M, Flach PA, Craddock I (2015) Bridg-
ing e-health and the internet of things: the SPHERE project. IEEE Intell Syst 30(4):39–46

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Recognition of cooking activities through air quality sensor data for supporting food journaling
	Abstract 
	Introduction
	Related work
	Acquisition and processing of air quality sensor data
	Sensor data acquisition
	Data cleaning
	Feature engineering
	A deep neural network for food preparation

	Experimental evaluation
	Dataset
	Experimental setup
	Results
	Discussion

	Use case on a robotic platform
	Zora, the used humanoid robot
	Architecture of the use case
	Preliminary results on human–robot interaction mechanism

	Conclusion and future work
	Acknowledgements
	References




