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1 Introduction
Fixed point theory plays a vital role in applications of many branches of mathematics.
Finding fixed points of generalized contraction mappings has become the focus of fruitful
research activity in fixed point theory. Recently, many investigators have published vari-
ous papers on fixed point theory and applications in different ways. One of the recently
popular topics in fixed point theory is addressing the existence of fixed points of contrac-
tion mappings in bipolar metric spaces, which can be considered as generalizations of the
Banach contraction principle. In 2016, Mutlu and Gürdal [1] have introduced the concepts
of bipolar metric space and they investigated certain basic fixed point and coupled fixed
point theorems for covariant and contravariant maps under contractive conditions; see
[1, 2].

Caristi’s fixed point theorem [3] is a renowned extension of the Banach contraction prin-
ciple [4]. The proof of Caristi’s results has been generalized and extended in many direc-
tions [5–10].

The aim of this paper is to prove the common fixed point results in bipolar metric spaces
by using a Caristi type cyclic contraction. Also, we give examples and applications to ho-
motopy theory and integral equations.

2 Methods/experimental
Definition 2.1 ([1]) Let A and B be a two non-empty sets. Suppose that d : A×B → [0,∞)
is a mapping satisfying the following properties:

(B1) d(a, b) = 0 if and only if a = b for all (a, b) ∈ A × B,
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(B2) d(a, b) = d(b, a), for all a, b ∈ A ∩ B,
(B3) d(a1, b2) ≤ d(a1, b1) + d(a2, b1) + d(a2, b2), for all a1, a2 ∈ A, b1, b2 ∈ B.

Then the mapping d is called a bipolar metric on the pair (A, B) and the triple (A, B, d) is
called a bipolar-metric space.

Definition 2.2 ([1]) Assume (A1, B1) and (A2, B2) to be two pairs of sets.
The function F : A1 ∪ B1 → A2 ∪ B2 is said to be a covariant map if F(A1) ⊆ A2 and

F(B1) ⊆ B2 and we denote this as F : (A1, B1) ⇒ (A2, B2).
The mapping F : A1 ∪ B1 → A2 ∪ B2 is said to be a contravariant map, if F(A1) ⊆ B2 and

F(B1) ⊆ A2 and we denote this as F : (A1, B1) � (A2, B2).
In particular, if d1 and d2 are bipolar metrics in (A1, B1) and (A2, B2), respectively.

Then sometimes we use the notations F : (A1, B1, d1) ⇒ (A2, B2, d2) and F : (A1, B1, d1) �
(A2, B2, d2).

Definition 2.3 ([1]) Let (A, B, d) be a bipolar metric space. A point v ∈ A ∪ B is said to be
a left point if v ∈ A, a right point if v ∈ B and a central point if both hold.

Similarly, a sequence {an} on the set A and a sequence {bn} on the set B are called a left
and right sequence, respectively.

In a bipolar metric space, a sequence is the simple term for a left or right sequence.
A sequence {vn} is convergent to a point v if and only if {vn} is a left sequence, v is

a right point and limn→∞ d(vn, v) = 0; or {vn} is a right sequence, v is a left point and
limn→∞ d(v, vn) = 0.

A bisequence ({an}, {bn}) on (A, B, d) is a sequence on the set A × B. If the sequences
{an} and {bn} are convergent, then the bisequence ({an}, {bn}) is said to be convergent.
({an}, {bn}) is a Cauchy sequence, if limn,m→∞ d(an, bm) = 0.

A bipolar metric space is called complete, if every Cauchy bisequence is convergent,
hence biconvergent.

Definition 2.4 ([1]) Let (A1, B1, d1) and (A2, B2, d2) be two bipolar metric spaces.
(i) The mapping F : (A1, B1, d1) ⇒ (A2, B2, d2) is said to be left-continuous at a point

a0 ∈ A1 if for every ε > 0, there is a δ > 0 such that d1(a0, b) < δ implies that
d2(F(a0), F(b)) < ε for all b ∈ B1.

(ii) The mapping F : (A1, B1, d1) ⇒ (A2, B2, d2) is said to be right-continuous at a point
b0 ∈ B1 if for every ε > 0, there is a δ > 0 such that d1(a, b0) < δ implies that
d2(F(a), F(b0)) < ε for all a ∈ A1.

(iii) The mapping F is said to be continuous, if it is left-continuous at each point a ∈ A1

and right-continuous at each point b ∈ B1.
(iv) A contravariant mapping F : (A1, B1, d1) � (A2, B2, d2) is continuous if and only if it

is continuous as a covariant map F : (A1, B1, d1) ⇒ (A2, B2, d2).
It follows from Definition 2.3 that a covariant (or a contravariant) mapping F : (A1,
B1, d1) ⇒ (A2, B2, d2) is continuous if and only if {un} → v in (A1, B1, d1) implies {F(un)} →
F(v) in (A2, B2, d2).

3 Results and discussions
In this section, we will prove some common fixed point theorems for three covariant map-
pings with some new Caristi type contractive conditions in bipolar metric spaces.



Kishore et al. Fixed Point Theory and Applications  (2018) 2018:21 Page 3 of 13

Definition 3.1 Let (A, B, d) be a bipolar metric space and F , f : (A, B) ⇒ (A, B) be covari-
ant mappings. A pair {F , f } is said to be compatible if and only if limn→∞ d(Ffan, fFbn) =
limn→∞ d(fFan, Ffbn) = 0, whenever ({an}, {bn}) is a sequence in (A, B) such that
limn→∞ Fan = limn→∞ Fbn = limn→∞ fan = limn→∞ fbn = κ for some κ ∈ A ∩ B.

Theorem 3.2 Let (A, B, d) be a complete bipolar metric space. Suppose F , f , g : (A, B) ⇒
(A, B) is a covariant mappings satisfying:

(3.2.1) d(Fa, Fb) ≤ ψ(α(fa))α(fa) – α(Fa) + ψ(β(gb))β(gb) – β(Fb) for all a ∈ A and
b ∈ B, where α,β : A ∪ B → [0,∞) are lower semi-continuous functions and
ψ : (–∞,∞) → (0, 1) be a continuous function.

(3.2.2) F(A ∪ B) ⊆ g(A ∪ B) and F(A ∪ B) ⊆ f (A ∪ B).
(3.2.3) Either (F , f ) or (F , g) are compatible.
(3.2.4) Either f or g is continuous.

Then the mappings F , f , g : A ∪ B → A ∪ B have a unique common fixed point.

Proof Let a0 ∈ A and b0 ∈ B and from (3.2.2) we construct the bisequence ({a2n}, {b2n}),
({ω2n}, {ξ2n}) in (A, B) as

Fa2n = ga2n+1 = ω2n, Fa2n+1 = fa2n+2 = ω2n+1,

Fb2n = gb2n+1 = ξ2n, Fb2n+1 = fb2n+2 = ξ2n+1,

for n = 0, 1, 2, . . . .
By using the condition (3.2.1), we have

0 ≤ d(ω2n, ξ2n+1) = d(Fa2n, Fb2n+1)

≤ ψ
(
α(fa2n)

)
α(fa2n) – α(Fa2n)

+ ψ
(
β(gb2n+1)

)
β(gb2n+1) – β(Fb2n+1)

≤ ψ
(
α(ω2n–1)

)
α(ω2n–1) – α(ω2n)

+ ψ
(
β(ξ2n)

)
β(ξ2n) – β(ξ2n+1)

< α(ω2n–1) – α(ω2n) + β(ξ2n) – β(ξ2n+1). (1)

It follows that

α(ω2n) + β(ξ2n+1) < α(ω2n–1) + β(ξ2n) (2)

and

d(ω2n, ξ2n) = d(Fa2n, Fb2n)

≤ ψ
(
α(ω2n–1)

)
α(ω2n–1) – α(ω2n)

+ ψ
(
β(ξ2n–1)

)
β(ξ2n–1) – β(ξ2n)

< α(ω2n–1) – α(ω2n) + β(ξ2n–1) – β(ξ2n). (3)
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Similarly, it follows that

α(ω2n) + β(ξ2n) < α(ω2n–1) + β(ξ2n–1). (4)

Thus, from (2) and (4) one shows that the bisequences ({α(ω2n)}, {β(ξ2n)}) are non-
increasing bisequences of non-negative real numbers. So they must converge to λ1, λ2

for λ1,λ2 ≥ 0.
Suppose λ1 > 0 or λ2 > 0. Letting n → ∞ in Eqs. (2) and (4), we get a contradiction.
Therefore,

lim
n→∞α(ω2n) = lim

n→∞β(ξ2n) = 0. (5)

Now, from (1), we have

2m∑

2n=1

d(ω2n, ξ2n+1) = d(ω1, ξ2) + d(ω2, ξ3) + · · · + d(ω2m, ξ2m+1)

< α(ω0) – α(ω1) + β(ξ1) – β(ξ2) + α(ω1) – α(ω2) + β(ξ2) – β(ξ3)

+ · · · + α(ω2m–1) – α(ω2m) + β(ξ2m) – β(ξ2m+1)

< α(ω0) + β(ξ1).

This shows
∑2m

2n=1 d(ω2n, ξ2n+1) is a biconvergent series.
Similarly, we prove

∑2m
2n=1 d(ω2n, ξ2n) is a biconvergent series. Hence it is convergent.

We use the property (B3), for each n, m ∈ N with n < m and we use (1), (3). Then we have

d(ω2n, ξ2m) ≤ d(ω2n, ξ2n+1) + d(ω2n+1, ξ2n+1) + · · ·
+ d(ω2m–1, ξ2m–1) + d(ω2m–1, ξ2m)

< α(ω2n–1) – α(ω2n) + β(ξ2n) – β(ξ2n+1)

+ α(ω2n) – α(ω2n+1) + β(ξ2n) – β(ξ2n+1) + · · ·
+ α(ω2m–2) – α(ω2m–1) + β(ξ2m–2) – β(ξ2m1)

+ α(ω2m–2) – α(ω2m–1) + β(ξ2m–1) – β(ξ2m)

→ 0 as n, m → ∞.

Similarly, we can prove d(ω2m, ξ2n) → 0 as n, m → ∞.
This shows (ω2n, ξ2m) is a Cauchy bisequence in (A, B).
Since (A, B, d) is complete, (ω2n, ξ2m) converges and thus it biconverges to a point κ ∈

A ∩ B such that

lim
n→∞ω2n+1 = κ = lim

n→∞ ξ2n+1. (6)

That is,

lim
n→∞ ga2n+1 = lim

n→∞ Fa2n = lim
n→∞ gb2n+1 = lim

n→∞ Fb2n = κ ,
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lim
n→∞ fa2n+2 = lim

n→∞ Fa2n+1 = lim
n→∞ fb2n+2 = lim

n→∞ Fb2n+1 = κ .

Since f is continuous, we have

lim
n→∞ f 2a2n+2 = f κ , lim

n→∞ fFa2n+1 = f κ and

lim
n→∞ f 2b2n+2 = f κ , lim

n→∞ fFb2n+1 = f κ .

Since α, β are lower semi-continuous functions,

lim
n→∞α(ω2n) = α(κ), lim

n→∞β(ξ2n) = β(κ).

From (5), we get α(κ) = β(κ) = 0.
Since the pair {F , f } is compatible, we have

lim
n→∞ d(Ffa2n+2, fFb2n+1) = lim

n→∞ d(fFa2n+1, Ffb2n+2) = 0.

Therefore

lim
n→∞ fFb2n+1 = lim

n→∞ Ffa2n+2 = f κ , lim
n→∞ Ffb2n+2 = lim

n→∞ fFa2n+1 = f κ .

Taking a = fa2n+2 and b = b2n+1 in (3.2.1), we get

d(Ffa2n+2, Fb2n+1) ≤ ψ
(
α
(
f 2a2n+2

))
α
(
f 2a2n+2

)
– α(Ffa2n+2)

+ ψ
(
β(gb2n+1)

)
β(gb2n+1) – β(Fb2n+1)

≤ ψ
(
α
(
f 2a2n+2

))
α
(
f 2a2n+2

)
– α(Ffa2n+2)

+ ψ
(
β(ξ2n)

)
β(ξ2n) – β(ξ2n+1)

< α
(
f 2a2n+2

)
– α(Ffa2n+2) + β(ξ2n) – β(ξ2n+1).

Letting n → ∞, we see that d(f κ ,κ) < α(f κ) – α(f κ) + β(κ) – β(κ) = 0 implies d(f κ ,κ) = 0,
that is, f κ = κ .

Similarly, by the continuity of g , we can prove that gκ = κ .
By using the condition (3.2.1) and (B3), we obtain

d(Fκ ,κ) ≤ d(Fκ , ξ2n+1) + d(ω2n+1, ξ2n+1) + d(ω2n+1,κ)

≤ d(Fκ , Fb2n+1) + d(ω2n+1, ξ2n+1) + d(ω2n+1,κ)

≤ ψ
(
α(f κ)

)
α(f κ) – α(Fκ) + ψ

(
β(gb2n+1)

)
β(gb2n+1) – β(Fb2n+1)

+ d(ω2n+1, ξ2n+1) + d(ω2n+1,κ)

< α(f κ) – α(Fκ) + β(gb2n+1) – β(Fb2n+1)

+ d(ω2n+1, ξ2n+1) + d(ω2n+1,κ)

< α(κ) – α(Fκ) + β(ξ2n) – β(ξ2n+1)
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+ d(ω2n+1, ξ2n+1) + d(ω2n+1,κ)

→ 0 as n → ∞.

Thus Fκ = κ . Hence Fκ = f κ = gκ = κ .
Now we prove the uniqueness; we begin by taking ν to be another fixed point of covariant

maps F , f and g . Then Fν = f ν = gν = ν implies ν ∈ A ∩ B and we have

d(κ ,ν) = d(Fκ , Fν) ≤ ψ
(
α(f κ)

)
α(f κ) – α(Fκ) + ψ

(
β(gν)

)
β(gν) – β(Fν)

≤ ψ
(
α(κ)

)
α(κ) – α(κ) + ψ

(
β(ν)

)
β(ν) – β(ν)

< α(κ) – α(κ) + β(ν) – β(ν) = 0.

Thus κ = ν . Hence κ is unique common fixed point of covariant mappings F , f and g . �

Corollary 1 Let (A, B, d) be a complete bipolar metric space. Suppose F , f : (A, B) ⇒ (A, B)
is a covariant mappings satisfying:

(1.1) d(Fa, Fb) ≤ ψ(α(fa))α(fa) – α(Fa, ) + ψ(β(fb))β(fb) – β(Fb) for all a ∈ A and
b ∈ B, where α,β : A ∪ B → [0,∞) are lower semi-continuous functions and
ψ : (–∞,∞) → (0, 1) is a continuous function.

(1.2) F(A ∪ B) ⊆ f (A ∪ B).
(1.3) (F , f ) are compatible.
(1.4) f is continuous.

Then the mappings F , f : A ∪ B → A ∪ B have a unique common fixed point.

Proof Let us take g = IA∪B (identity mapping on A ∪ B), from Theorem 3.2 we see that F
and f have a unique common fixed point. �

Example 3.3 Let Um(R) and Lm(R) be the set of all m × m upper and lower triangular
matrices over R. Define d : Um(R) × Lm(R) → [0,∞) as

d(P, Q) =
m∑

i,j=1

|pij – qij|

for all P = (pij)m×m ∈ Um(R) and Q = (qij)m×m ∈ Lm(R). Then obviously (Um(R), Lm(R), d) is
a bipolar-metric space.

Define F , f , g : Um(R) ∪ Lm(R) → Um(R) ∪ Lm(R) as F(P) = 1
8 (pij)m×m, and we have f (P) =

1
2 (pij)m×m and g(P) = (pij)m×m for all P = (pij)m×m ∈ Um(R) ∪ Lm(R).

Let α,β : Um(R) ∪ Lm(R) → [0,∞) be a lower semi-continuous mappings defined as
α(P) =

∑m
i,j=1 |pij| and β(P) = 1

2
∑m

i,j=1 |pij| ∀P = (pij)m×m ∈ Um(R) ∪ Lm(R) and define

ψ : (–∞, +∞) → (0, 1) as ψ(t) =

⎧
⎨

⎩

2
3 if t > 0,

0 if t < 0.

Obviously,

F
(
Um(R) ∪ Lm(R)

)
= f

(
Um(R) ∪ Lm(R)

)
= g

(
Um(R) ∪ Lm(R)

)
= Om×m.
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Furthermore, we prove {F , f } is compatible. Let (Pn, Qn) be a bisequence in (A, B) such that,
for some κ ∈ A ∩ B, limn→∞ d(fPn,κ) = 0, limn→∞ d(κ , fQn) = 0 and limn→∞ d(FPn,κ) = 0,
limn→∞ d(κ , FQn) = 0. Since F and f are continuous, we have

lim
n→∞ d(fFPn, FfQn) = d

(
lim

n→∞ fFPn, lim
n→∞ FfQn

)
= d(f κ , Fκ)

= d
(

1
2

(κij)m×m,
1
8

(κij)m×m

)

=
m∑

i,j=1

∣∣
∣∣
1
2
κij –

1
8
κij

∣∣
∣∣ =

m∑

i,j=1

3
8
|κij|.

But
∑m

i,j=1
3
8 |κij| = 0 ⇔ κij = 0. Similarly, we show limn→∞ d(FfPn, fFQn) = 0. So the pair

{F , f } is compatible. Similarly, {F , g} is also compatible.
Now for each P, Q ∈ Um(R) ∪ Lm(R), we have

d(FP, FQ) = d
(

1
8

(pij)m×m,
1
8

(qij)m×m

)

=
m∑

i,j=1

∣∣∣
∣
1
8

pij –
1
8

qij

∣∣∣
∣

=
1
8

m∑

i,j=1

|pij – qij|

≤ 1
3

m∑

i,j=1

|pij| –
1
8

m∑

i,j=1

|pij| +
1
3

m∑

i,j=1

|qij| –
1

16

m∑

i,j=1

|qij|

≤ 2
3
α

(
1
2

(pij)m×m

)
– α

(
1
8

(pij)m×m

)

+
2
3
β
(
(qij)m×m

)
– β

(
1
8

(qij)m×m

)

= ψ
(
α(fP)

)
α(fP) – α(FP) + ψ

(
β(gQ)

)
β(gQ) – β(FQ).

Thus, F , f , g satisfy all the conditions of Theorem 3.2 and Om×m is a unique common fixed
point of F , f and g .

Theorem 3.4 Let (A, B, d) be a complete bipolar metric space. Suppose F , f , g : (A, B) ⇒
(A, B) are covariant mappings satisfying:

(3.4.1) d(Fa, Fb) ≤ α(ψ(fa, gb))ψ(fa, gb) – ψ(Fa, Fb) for all a ∈ A and b ∈ B, where
ψ : (A × B) ∪ (B × A) → [0,∞) is a lower semi-continuous function and α :
(–∞,∞) → (0, 1) is a continuous function

(3.4.2) F(A ∪ B) ⊆ g(A ∪ B) and F(A ∪ B) ⊆ f (A ∪ B).
(3.4.3) Either (F , f ) or (F , g) are compatible.
(3.4.4) Either f or g is continuous.

Then the mappings F , f , g : A ∪ B → A ∪ B have a unique common fixed point.

Corollary 2 Let (A, B, d) be a complete bipolar metric space. Suppose F , f : (A, B) ⇒ (A, B)
are covariant mappings satisfying:



Kishore et al. Fixed Point Theory and Applications  (2018) 2018:21 Page 8 of 13

(2.1) d(Fa, Fb) ≤ α(ψ(fa, fb))ψ(fa, fb) – ψ(Fa, Fb) for all a ∈ A and b ∈ B, where ψ : (A ×
B)∪ (B×A) → [0,∞) is a lower semi-continuous function and α : (–∞,∞) → (0, 1)
is a continuous function.

(2.2) F(A ∪ B) ⊆ f (A ∪ B).
(2.3) (F , f ) is compatible.
(2.4) f is continuous.

Then the mappings F , f : A ∪ B → A ∪ B have a unique common fixed point.

Corollary 3 Let (A, B, d) be a complete bipolar metric space. Suppose F : (A, B) ⇒ (A, B) is
a covariant mapping satisfying:

(3.1) d(Fa, Fb) ≤ α(ψ(a, b))ψ(a, b)–ψ(Fa, Fb) for all a ∈ A and b ∈ B, where ψ : (A×B)∪
(B × A) → [0,∞) is a lower semi-continuous function and α : (–∞,∞) → (0, 1) is a
continuous function. Then the mapping F : A ∪ B → A ∪ B has a unique fixed point.

3.1 Application to homotopy
In this section, we study the existence of a unique solution applied to homotopy theory.

Theorem 3.5 Let (A, B, d) be complete bipolar metric space, (U , V ) be an open subset of
(A, B) and (U , V ) be a closed subset of (A, B) such that (U , V ) ⊆ (U , V ). Suppose H : (U ∪
V ) × [0, 1] → A ∪ B is an operator with the following conditions satisfied:

(3.5.1) x �= H(x,κ) for each x ∈ ∂U ∪ ∂V and κ ∈ [0, 1] (here ∂U ∪ ∂V is boundary of
U ∪ V in A ∪ B)

(3.5.2) d(H(x,κ), H(y,κ)) ≤ α(ψ(x, y))ψ(x, y) – ψ(H(x,κ), H(y,κ)) for all x ∈ U , y ∈ V
and κ ∈ [0, 1], where ψ : (A × B) ∪ (B × A) → [0,∞) is a lower semi-continuous
function and α : (–∞, +∞) → (0, 1) is a continuous function.

(3.5.3) ∃M ≥ 0 � d(H(x,χ ), H(y, ζ )) ≤ M|χ – ζ | for every x ∈ U and y ∈ V and χ , ζ ∈
[0, 1].

Then H(·, 0) has a fixed point ⇐⇒ H(·, 1) has a fixed point.

Proof Consider the sets

X =
{
χ ∈ [0, 1] : x = H(x,χ ) for some x ∈ U

}
,

Y =
{
ζ ∈ [0, 1] : y = H(y, ζ ) for some y ∈ V

}
.

Since H(·, 0) has a fixed point in U ∪ V , we have 0 ∈ X ∩ Y . Thus, X ∩ Y is a non-empty
set.

We will show X ∩ Y is both closed and open in [0, 1] and so, by the connectedness X =
Y = [0, 1].

Let ({χn}∞n=1, {ζn}∞n=1) ⊆ (X, Y ) with (χn, ζn) → (χ , ζ ) ∈ [0, 1] as n → ∞.
We must show χ = ζ ∈ X ∩ Y .
Since (χn, ζn) ∈ (X, Y ) for n = 0, 1, 2, 3, . . . , there exists a bisequence (xn, yn) with xn+1 =

H(xn,χn), yn+1 = H(yn, ζn).
Consider

d(xn, yn+1) = d
(
H(xn–1,χn–1), H(yn, ζn)

)

≤ α
(
ψ(xn–1, yn)

)
ψ(xn–1, yn) – ψ

(
H(xn–1,χn–1), H(yn, ζn)

)
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< ψ(xn–1, yn) – ψ
(
H(xn–1,χn–1), H(yn, ζn)

)

= ψ(xn–1, yn) – ψ(xn, yn+1). (7)

It follows that

ψ(xn, yn+1) ≤ α
(
ψ(xn–1, yn)

)
ψ(xn–1, yn) < ψ(xn–1, yn). (8)

Also, we have

d(xn, yn) = d
(
H(xn–1,χn–1), H(yn–1, ζn–1)

)

≤ α
(
ψ(xn–1, yn–1)

)
ψ(xn–1, yn–1) – ψ

(
H(xn–1,χn–1), H(yn–1, ζn–1)

)

< ψ(xn–1, yn–1) – ψ
(
H(xn–1,χn–1), H(yn–1, ζn–1)

)

= ψ(xn–1, yn–1) – ψ(xn, yn); (9)

similarly, it follows

ψ(xn, yn) ≤ α
(
ψ(xn–1, yn–1)

)
ψ(xn–1, yn–1) < ψ(xn–1, yn–1). (10)

From (8) and (10) one shows the bisequence ({ψ(xn, yn)} is a non-increasing bisequence
of non-negative real numbers. So they must converge to λ1 ≥ 0.

Suppose λ1 > 0. Letting n → ∞ in Eqs. (8) and (10), we get a contradiction. Therefore,

lim
n→∞ψ(xn, yn) = 0. (11)

Now, from (7), we have

m∑

n=1

d(xn, yn+1) = d(x1, y2) + d(x2, y3) + · · · + d(xm, ym+1)

< ψ(x0, y1) – ψ(x1, y2) + ψ(x1, y2) – ψ(x2, y3)

+ · · · + ψ(xm–1, ym) – ψ(xm, ym+1)

< ψ(x0, y1).

This shows
∑m

n=1 d(xn, yn+1) is a biconvergent series.
Similarly, we can also prove

∑m
n=1 d(xn, yn) is a biconvergent series. Hence it is conver-

gent.
Now for each n, m ∈ N , n < m, using the property (B3) and from (7), (9), we have

d(xn, ym) ≤ d(xn, yn+1) + d(xn+1, yn+1) + · · ·
+ d(xm–1, ym–1) + d(xm–1, ym)

≤ d
(
H(xn–1,χn–1), H(yn, ζn)

)

+ d
(
H(xn,χn), H(yn, ζn)

)
+ · · ·

+ d
(
H(xm–2,χm–2), H(ym–2, ζm–2)

)
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+ d
(
H(xm–2,χm–2), H(ym–1, ζm–1)

)

< ψ(xn–1, yn) – ψ(xn, yn+1) + M|χn–1 – ζn–1| + M|χm–2 – ζm–2|
+ ψ(xm–2, ym–1) – ψ(xm–1, ym)

→ 0 as n, m → ∞.

Similarly, we can also show limn→∞ d(xm, yn) = 0.
Therefore, (xn, yn) is a Cauchy bisequence in (U , V ). By completeness, there exist ξ ∈ U

and λ ∈ V with

lim
n→∞ xn = λ, lim

n→∞ yn = ξ . (12)

Now consider

d
(
H(ξ ,χ ),λ

) ≤ d
(
H(ξ ,χ ), yn+1

)
+ d(xn+1, yn+1) + d(xn+1,λ)

≤ d
(
H(ξ ,χ ), H(yn, ζn)

)
+ d

(
H(xn,χn), H(yn, ζn)

)
+ d(xn+1,λ)

≤ α
(
ψ(ξ , yn)

)
ψ(ξ , yn) – ψ

(
H(ξ ,χ ), H(yn, ζn)

)

+ M|χn – ζn| + d(xn+1,λ)

< ψ(ξ , yn) – ψ
(
H(ξ ,χ ), H(yn, ζn)

)

+ M|χn – ζn| + d(xn+1,λ)

< ψ(ξ , yn) – ψ(ξ , yn+1)

+ M|χn – ζn| + d(xn+1,λ)

→ 0 as n → ∞.

It follows that H(ξ ,χ ) = λ. Similarly, we get H(λ, ζ ) = ξ .
On the other hand from (12), we get

d(ξ ,λ) = d
(

lim
n→∞ yn, lim

n→∞ xn

)
= lim

n→∞ d(xn, yn) = 0.

Therefore, ξ = λ. Thus χ = ζ ∈ X ∩ Y . Clearly X ∩ Y is closed in [0, 1].
Let (χ0, ζ0) ∈ (X, Y ). Then there exists a bisequence (x0, y0) such that

x0 = H(x0,χ0), y0 = H(y0, ζ0).

Since U ∪ V is open, there exists r > 0 such that Bd(x0, r) ⊆ U ∪ V and Bd(r, y0) ⊆ U ∪ V .
Choose χ ∈ (ζ0 – ε, ζ0 + ε) and ζ ∈ (χ0 – ε,χ0 + ε) such that |χ – ζ0| ≤ 1

Mn < ε
2 , |ζ – χ0| ≤

1
Mn < ε

2 and |χ0 – ζ0| ≤ 1
Mn < ε

2 .
Then we have y ∈ BX∪Y (x0, r) = {y, y0 ∈ V /d(x0, y) ≤ r + d(x0, y0)} and x ∈ BX∪Y (y0, r) =

{x, x0 ∈ U/d(x, y0) ≤ r + d(x0, y0)}.
Also

d
(
H(x,χ ), y0

)
= d

(
H(x,χ ), H(y0, ζ0)

)

≤ d
(
H(x,χ ), H(y, ζ0)

)
+ d

(
H(x0,χ ), H(y, ζ0)

)
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+ d
(
H(x0,χ ), H(y0, ζ0)

)

≤ 2M|χ – ζ0| + d
(
H(x0,χ ), H(y, ζ0)

)

≤ 2M|χ – ζ0| + α
(
ψ(x0, y)

)
ψ(x0, y) – ψ

(
H(x0,χ ), H(y, ζ0)

)

<
2

Mn–1 + ψ(x0, y) – ψ
(
H(x0,χ ), H(y, ζ0)

)
.

Letting n → ∞, we get

d
(
H(x,χ ), y0

)
< ψ(x0, y) – ψ

(
H(x0,χ ), H(y, ζ0)

)

< ψ(x0, y)

≤ d(x0, y) ≤ r + d(x0, y0).

Similarly, we can also prove d(x0, H(y, ζ )) ≤ d(x, y0) ≤ r + d(x0, y0).
On the other hand

d(x0, y0) = d
(
H(x0,χ0), H(y0, ζ0)

)

≤ M|χ0 – ζ0| ≤ 1
Mn–1 → 0 as n → ∞.

So x0 = y0. Thus, for each fixed ζ , ζ = χ ∈ (ζ0 – ε, ζ0 + ε) and H(·,χ ) : BX∪Y (x0, r) →
BX∪Y (x0, r). Thus, we conclude H(·,χ ) has a fixed point in U ∪ V . But this must be in
U ∪ V .

Therefore, H(·,χ ) has a fixed point in U ∩ V . But this must be in U ∩ V .
Therefore, χ = ζ ∈ X ∩ Y for ζ ∈ (ζ0 – ε, ζ0 + ε). Hence (ζ0 – ε, ζ0 + ε) ⊆ X ∩ Y . Clearly

X ∩ Y is open in [0, 1].
To prove the reverse, we can use a similar process. �

3.2 Application to the existence of solutions of integral equations
In this section, we study the existence and unique solution to an integral equations as an
application of Corollary 3.

Theorem 3.6 Let us consider the integral equation

γ (x) = f (x) +
∫

E1∪E2

S
(
x, y,γ (y)

)
dy, x ∈ E1 ∪ E2,

where E1 ∪ E2 is a Lebesgue measurable set. Suppose
(i) S : (E2

1 ∪ E2
2) × [0, +∞) → [0, +∞) and f ∈ L∞(E1) ∪ L∞(E2),

(ii) there is a continuous function τ : E2
1 ∪ E2

2 → [0, +∞) such that
|S(x, y,γ (y)) – S(x, y,β(y))| ≤ 1

2τ (x, y)|γ (y) – β(y)|, for (x, y) ∈ E2
1 ∪ E2

2 ,
(iii) ‖ ∫

E1∪E2
τ (x, y) dy‖ ≤ 1 i.e Supx∈E1∪E2

∫
E1∪E2

|τ (x, y)|dy ≤ 1.
Then the integral equation has a unique solution in L∞(E1) ∪ L∞(E2).

Proof Let A = L∞(E1) and B = L∞(E2) be two normed linear spaces, where E1, E2 are
Lebesgue measurable sets and m(E1 ∪ E2) < ∞.
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Consider d : A × B → [0, +∞) to be defined by d(f , g) = ‖f – g‖∞ for all (f , g) ∈ A × B.
Then (A, B, d) is a complete bipolar metric space.

Define the covariant mapping F : L∞(E1) ∪ L∞(E2) → L∞(E1) ∪ L∞(E2) by

F
(
γ (x)

)
=

∫

E1∪E2

S
(
x, y,γ (y)

)
dy + f (x), x ∈ E1 ∪ E2.

Define ψ : (A × B) ∪ (B × A) → [0, +∞) by ψ(γ (x),β(y)) = 2‖γ (x) – β(y)‖ and define

α : (–∞, +∞) → (0, 1) as α(t) =

⎧
⎨

⎩

5
6 if t > 0,

0 if t < 0.

Now, we have

d
(
Fγ (x), Fβ(x)

)
=

∥
∥Fγ (x) – Fβ(x)

∥
∥

=
∣∣∣
∣

∫

E1∪E2

S
(
x, y,γ (y)

)
dy + f (x) –

(∫

E1∪E2

S
(
x, y,β(y)

)
dy + f (x)

)∣∣∣
∣

≤
∫

E1∪E2

∣
∣S

(
x, y,γ (y)

)
– S

(
x, y,β(y)

)∣∣dy

≤ 1
2

∫

E1∪E2

τ (x, y)
∣∣γ (y) – β(y)

∣∣dy

≤ 1
2
∥∥γ (y) – β(y)

∥∥∞

∫

E1∪E2

τ (x, y) dy

≤ 1
2
‖γ – β‖∞‖ Sup

x∈E1∪E2

∫

E1∪E2

∣∣τ (x, y)
∣∣dy

=
5
6

× 2‖γ – β‖ – 2‖Fγ – Fβ‖
= α

(
ψ(γ ,β)

)
ψ(γ ,β) – ψ(Fγ , Fβ).

It follows from Corollary 3 that F has a unique fixed point in A ∪ B. �

4 Conclusions
In this paper, we obtain the existence and uniqueness of the solution for three self map-
pings in a complete bipolar metric space under a new Caristi type contraction with an
example. Also, we provide some applications to homotopy theory and nonlinear integral
equations by using fixed point theorems in bipolar metric spaces.
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