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Abstract
In this paper, we define a Halpern–Ishikawa type iterative method for approximating
a fixed point of a Lipschitz pseudocontractive non-self mapping T in a real Hilbert
space settings and prove strong convergence result of the iterative method to a fixed
point of T under some mild conditions. We give a numerical example to support our
results. Our results improve and generalize most of the results that have been proved
for this important class of nonlinear mappings.
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1 Introduction
Let H be a real Hilbert space with norm ‖ · ‖ and C be a nonempty subset of H . A mapping
T : C → H is said to be L-Lipschitz if there exists L ≥ 0 such that

‖Tx – Ty‖ ≤ L‖x – y‖ for all x, y ∈ C. (1)

T is said to be contraction if L ∈ [0, 1) and is called nonexpansive mapping if L = 1. We
observe that every contraction mapping is nonexpansive and every nonexpansive mapping
is Lipschitz.

A mapping T : C → H is said to be k-strictly pseudocontractive if there exists k ∈ [0, 1)
such that

‖Tx – Ty‖2 ≤ ‖x – y‖2 + k
∥
∥x – y – (Tx – Ty)

∥
∥

2, ∀x, y ∈ C. (2)

We remark that every k-strictly pseudocontractive mapping is Lipschitz and hence the
class of k-strictly pseudocontractive mappings includes properly the class of nonexpansive
mappings.

An important class of mappings more general than the class of k-strictly pseudocontrac-
tive mappings is the class of pseudocontractive mappings. T is said to be pseudocontractive
if

‖Tx – Ty‖2 ≤ ‖x – y‖2 +
∥
∥x – y – (Tx – Ty)

∥
∥

2, ∀x, y ∈ C. (3)
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The class of pseudocontractive mappings is related to one of the important classes of
operators known as monotone mappings. A mapping A : C → H is said to be monotone if

〈Ax – Ay, x – y〉 ≥ 0, ∀x, y ∈ C.

Note that a mapping A : C → H is monotone if and only if T := I – A is pseudocontrac-
tive, where I is an identity mapping on C. Thus, the zeros of A are fixed points of T , that
is, N(A) := {x ∈ C : Ax = 0} = F(T) := {x ∈ C : x = Tx}.

Several authors have studied iterative methods for approximating fixed points of non-
expansive, k-strictly pseudocontractive and pseudocontractive mappings (see, e.g., [3, 6,
15, 17, 22, 27, 28] and the references contained therein). In 1953, Mann [15] introduced
the following scheme, which is refereed to as Mann iteration method:

xn+1 = αnxn + (1 – αn)Txn, (4)

where the initial guess x0 ∈ C is arbitrary and {αn} ⊆ [0, 1] such that limn→∞ αn = 0 and
∑

αn = ∞. The Mann iteration method has been extensively investigated for approxi-
mating fixed points of nonexpansive mappings (see, e.g., [17]). In an infinite-dimensional
Hilbert space, the Mann iteration method can provide only weak convergence (see, e.g.,
[7]). To obtain strong convergence, numerous authors have modified the Mann iterative
method (see, e.g., [8, 10, 11]) in many ways.

In 1967, Halpern [8] studied the following recursive formula:

xn+1 = αnu + (1 – αn)Txn, n ≥ 0, (5)

where αn is a sequence of numbers in (0, 1). He proved strong convergence of {xn} to a fixed
point of T , where αn := n–a, for a ∈ (0, 1), in the framework of Hilbert spaces. Halpern’s
scheme (5) has been studied extensively by many authors (see, e.g., [2, 12, 18, 21]). In
particular, Reich [18] proved that the result of Halpern remains true in uniformly smooth
Banach spaces (see also [19]).

In 1977, Lions [12] improved the result of Halpern, still in Hilbert spaces, by proving
strong convergence of {xn} to a fixed point of T , where the real sequence {αn} satisfies the
following conditions:

(i) lim
n→∞αn = 0; (ii)

∞
∑

n=0

αn = ∞; (iii) lim
n→∞

αn – αn–1

α2
n

= 0.

In 2002, Xu [24] (see also [25]) improved the result of Lion in two directions. First, he
weakened the condition (iii) by removing the square in the denominator so that we can
choose the sequence αn = 1

n+1 . Second, he proved the strong convergence of Halpern’s
scheme (5) in the framework of real uniformly smooth Banach spaces.

For approximating fixed points of a Lipschitz pseudocontractive self-mapping T ,
Ishikawa [9] introduced the following process known as Ishikawa iteration:

⎧

⎪⎪⎨

⎪⎪⎩

x0 ∈ C,

yn = βnxn + (1 – βn)Txn,

xn+1 = αnxn + (1 – αn)Tyn, n ≥ 0,

(6)
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where {αn}, {βn} are sequences of positive numbers satisfying the conditions:
(i) 0 ≤ αn ≤ βn ≤ 1;

(ii) limn→∞ βn = 0;
(iii)

∑
αnβn = ∞.

He showed that the sequence {xn} converges strongly to a fixed point of the mapping T ,
provided that C is a compact convex subset of a Hilbert space H . Several authors have
extended the results of Ishikawa [9] to Banach spaces without compactness assumption
on C (see, e.g., [13, 23]).

However, we observe that all the above results are valid only for self-mappings. For ap-
proximating fixed points of non-self mappings, several iterative schemes have been stud-
ied (see, e.g., [16, 20]) with the use of metric projection or sunny nonexpansive retraction
mapping which are generally difficult to compute in practical applications.

In 2015, Colao and Marino [4] introduced a new searching strategy for the coefficient
αn which makes the Mann algorithm well-defined for non-self mappings in the setting of
a real Hilbert space H . In fact, they studied the following scheme:

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x0 ∈ C,

α0 = max{ 1
2 , h(x0)},

xn+1 = αnxn + (1 – αn)Txn,

αn+1 = max{αn, h(xn+1)}, n ≥ 0,

(7)

where h(x) := inf{λ ≥ 0 : λx + (1 – λ)Tx ∈ C},∀x ∈ C ⊆ H and T is a non-self mapping of
C into H . Indeed, they obtained weak and strong convergence of the algorithm to a fixed
point of nonexpansive non-self mappings under appropriate conditions.

Recently, Colao et al. [5] extended this result of Colao and Marino [4] to a class of k-
strictly pseudocontractive mappings. We observe that these results (the results obtained
in [4] and [5]) provide a way forward to avoid the use of metric projection or sunny non-
expansive mapping in constructing algorithms for approximating fixed points of a more
general class of non-self mappings.

It is our purpose in this paper to construct and study a Halpern–Ishikawa type itera-
tive scheme for non-self mappings in the setting of Hilbert spaces. As a result, we obtain
strong convergence of the scheme to a fixed point of a Lipschitz pseudocontractive non-
self mapping under some mild conditions. Our results extend and generalize many results
in the literature.

2 Preliminaries
Let C be a nonempty subset of a Hilbert space H . A mapping T : C → H is said to be
inward if, for any x ∈ C, we have

Tx ∈ IC(x) :=
{

x + λ(w – x) : for some w ∈ C and λ ≥ 1
}

.

The set IC(x) is called inward set of C at x. A mapping I – T , where I is an identity mapping
on C, is called demiclosed at zero if for any sequence {xn} in C such that xn ⇀ x and Txn –
xn → 0 as n → ∞, then x = Tx.

In what follows, we shall make use of the following lemmas.
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Lemma 2.1 Let H be a real Hilbert space. Then, for any given x, y ∈ H , the following in-
equality holds:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉.

Lemma 2.2 ([1]) Let C be a convex subset of a real Hilbert space H and let x ∈ H . Then
x0 = PCx if and only if

〈z – x0, x – x0〉 ≤ 0, ∀z ∈ C.

Lemma 2.3 ([24]) Let {an} be a sequence of nonnegative real numbers satisfying the fol-
lowing relation:

an+1 ≤ (1 – αn)an + αnδn, n ≥ 0,

where {αn} ⊂ (0, 1) and {δn} ⊂ R satisfy the conditions
∑∞

n=0 αn = ∞ and lim supn→∞ δn ≤ 0.
Then limn→∞ an = 0.

Lemma 2.4 ([28]) Let C be a closed convex subset of a real Hilbert space H and T : C → C
be a continuous pseudo-contractive mapping. Then

(i) F(T) is a closed convex subset of C;
(ii) I – T is demiclosed at zero.

Lemma 2.5 ([14]) Let {an} be sequence of real numbers such that there exists a subsequence
{ni} of {n} such that ani < ani+1 for all i ∈ N . Then there exists a nondecreasing sequence
{mk} ⊂ N such that mk → ∞ and the following properties are satisfied by all (sufficiently
large) numbers k ∈ N :

amk ≤ amk +1 and ak ≤ amk +1.

In fact, mk = max{j ≤ k : aj < aj+1}.

Lemma 2.6 ([26]) Let H be a real Hilbert space. Then, for all x, y ∈ H and α ∈ [0, 1], the
following equality holds:

∥
∥αx + (1 – α)y

∥
∥

2 = α‖x‖2 + (1 – α)‖y‖2 – α(1 – α)‖x – y‖2.

Lemma 2.7 ([4]) Let C be a nonempty, closed and convex subset of a real Hilbert space H
and T : C → H be a mapping. Define h : C → R by

h(x) = inf
{

λ ≥ 0 : λx + (1 – λ)Tx ∈ C
}

.

Then, for any x ∈ C, the following hold:
(1) h(x) ∈ [0, 1] and h(x) = 0 if and only if Tx ∈ C;
(2) if β ∈ [h(x), 1], then βx + (1 – β)Tx ∈ C;
(3) if T is inward, then h(x) < 1;
(4) if Tx /∈ C, then h(x)x + (1 – h(x))Tx ∈ ∂C.
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3 Results and discussion
Now, let C be a nonempty, closed and convex subset of a real Hilbert space H and let T :
C → H be an inward L-Lipschitz mapping. Let β ∈ (1 – 1

1+
√

L2+1
, 1) and {αn} ⊆ (0, 1) such

that limn→∞ αn = 0 and
∑

αn = ∞. We define a Halpern–Ishikawa type iterative scheme
as follows.

Choose u, x0 ∈ C. Let

h(x0) := inf
{

λ ≥ 0 : λx0 + (1 – λ)Tx0 ∈ C
}

and λ0 ∈ [

max
{

β , h(x0)
}

, 1
)

.

Then by Lemma 2.7 it follows that y0 := λ0x0 + (1 – λ0)Tx0 ∈ C.
Let l(y0) := inf{θ ≥ 0 : θx0 + (1 – θ )Ty0 ∈ C} and θ0 ∈ [max{λ0, l(y0)}, 1). Again by

Lemma 2.7, θ0x0 + (1 – θ0)Ty0 ∈ C, and hence it follows that

x1 := α0u + (1 – α0)
(

θ0x0 + (1 – θ0)Ty0
) ∈ C.

Thus, by mathematical induction, we have

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λn ∈ [max{β , h(xn)}, 1);

yn = λnxn + (1 – λn)Txn;

θn ∈ [max{λn, l(yn)}, 1);

xn+1 = αnu + (1 – αn)(θnxn + (1 – θn)Tyn),

(8)

where h(xn) := inf{λ ≥ 0 : λxn +(1–λ)Txn ∈ C} and l(yn) := inf{θ ≥ 0 : θxn +(1–θ )Tyn ∈ C}.
Next, we prove the following theorem.

Theorem 3.1 Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Let T : C → H be an L-Lipschitz pseudocontractive inward mapping with F(T) �= ∅. Let
{xn} be a sequence defined by (8). If there exists ε > 0 such that θn ≤ 1 – ε ∀n ≥ 0, then {xn}
converges strongly to a fixed point of T nearest to u.

Proof We make use of some ideas of the paper [27]. Let p ∈ F(T). Then from (8) and
Lemma 2.6, we have

‖xn+1 – p‖2 =
∥
∥αnu + (1 – αn)

(

θnxn + (1 – θn)Tyn
)

– p
∥
∥

2

≤ αn‖u – p‖2 + (1 – αn)
∥
∥θn(xn – p) + (1 – θn)(Tyn – p)

∥
∥

2

≤ αn‖u – p‖2 + (1 – αn)
[

θn‖xn – p‖2 + (1 – θn)‖Tyn – p‖2]

– (1 – αn)θn(1 – θn)‖Tyn – xn‖2,

and hence from (3) we obtain

‖xn+1 – p‖2 ≤ αn‖u – p‖2 + (1 – αn)θn‖xn – p‖2 + (1 – αn)(1 – θn)

× [‖yn – p‖2 + ‖yn – Tyn‖2] – (1 – αn)θn(1 – θn)‖Tyn – xn‖2

≤ αn‖u – p‖2 + (1 – αn)(1 – θn)‖yn – p‖2
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+ (1 – αn)(1 – θn)‖yn – Tyn‖2

+ (1 – αn)θn
(‖xn – p‖2 – (1 – θn)‖Tyn – xn‖2). (9)

Moreover, from (8), Lemma 2.6, and (3), we have

‖yn – p‖2 =
∥
∥λn(xn – p) + (1 – λn)(Txn – p)

∥
∥

2

= λn‖xn – p‖2 + (1 – λn)‖Txn – p‖2

– λn(1 – λn)‖xn – Txn‖2

≤ λn‖xn – p‖2 + (1 – λn)
[‖xn – p‖2 + ‖xn – Txn‖2]

– λn(1 – λn)‖xn – Txn‖2

= ‖xn – p‖2 + (1 – λn)2‖xn – Txn‖2. (10)

Furthermore, (8) and Lemma 2.6 imply that

‖yn – Tyn‖2 =
∥
∥λn(xn – Tyn) + (1 – λn)(Txn – Tyn)

∥
∥

2

= λn‖xn – Tyn‖2 + (1 – λn)‖Txn – Tyn‖2

– λn(1 – λn)‖xn – Txn‖2

≤ λn‖xn – Tyn‖2 + (1 – λn)L2‖xn – yn‖2

– λn(1 – λn)‖xn – Txn‖2

= λn‖xn – Tyn‖2 + (1 – λn)3L2‖xn – Txn‖2

– λn(1 – λn)‖xn – Txn‖2

= λn‖xn – Tyn‖2

– (1 – λn)
(

λn – L2(1 – λn)2)‖xn – Txn‖2. (11)

Substituting (10) and (11) into (9), we obtain

‖xn+1 – p‖2 ≤ αn‖u – p‖2 + (1 – αn)(1 – θn)
(‖xn – p‖2

+ (1 – λn)2‖xn – Txn‖2) + (1 – αn)(1 – θn)
(

λn‖xn – Tyn‖2

– (1 – λn)
(

λn – L2(1 – λn)2)‖xn – Txn‖2)

+ (1 – αn)θn‖xn – p‖2 – (1 – αn)θn(1 – θn)‖Tyn – xn‖2

= αn‖u – p‖2 + (1 – αn)‖xn – p‖2 – (1 – αn)(1 – θn)(1 – λn)

× (

1 –
(

L2(1 – λn)2 + 2(1 – λn)
))‖xn – Txn‖2

+ (1 – αn)(1 – θn)(λn – θn)‖Tyn – xn‖2. (12)

Then since, from the hypothesis, we have

1 – 2(1 – λn) – L2(1 – λn)2 ≥ 1 – 2(1 – β) – L2(1 – β)2 > 0, (13)
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and

θn ≥ λn, for all n ≥ 0, (14)

inequality (12) implies that

‖xn+1 – p‖2 ≤ αn‖u – p‖2 + (1 – αn)‖xn – p‖2. (15)

Thus, by induction,

‖xn+1 – p‖2 ≤ max
{‖u – p‖2,‖x0 – p‖2}, ∀n ≥ 0,

which provides that {xn} and hence {yn} are bounded.
Now, let x∗ = PF(T)(u). Then, using (8), Lemma 2.1, and following the methods used to

get (12), we obtain

∥
∥xn+1 – x∗∥∥2 =

∥
∥αnu + (1 – αn)

(

θnxn + (1 – θn)Tyn
)

– x∗∥∥2

=
∥
∥αn

(

u – x∗) + (1 – αn)
[

θnxn + (1 – θn)Tyn – x∗]∥∥2

≤ (1 – αn)
∥
∥θnxn + (1 – θn)Tyn – x∗∥∥2 + 2αn

〈

u – x∗, xn+1 – x∗〉

≤ (1 – αn)θn
∥
∥xn – x∗∥∥2 + (1 – αn)(1 – θn)

∥
∥Tyn – x∗∥∥2

– (1 – αn)θn(1 – θn)‖Tyn – xn‖2 + 2αn
〈

u – x∗, xn+1 – x∗〉,

and

∥
∥xn+1 – x∗∥∥2 ≤ (1 – αn)θn

∥
∥xn – x∗∥∥2

+ (1 – αn)(1 – θn)
[∥
∥yn – x∗∥∥2 + ‖yn – Tyn‖2]

– (1 – αn)θn(1 – θn)‖Tyn – xn‖2 + 2αn
〈

u – x∗, xn+1 – x∗〉

≤ (1 – αn)θn
∥
∥xn – x∗∥∥2 + (1 – αn)(1 – θn)

× [∥
∥xn – x∗∥∥2 + (1 – λn)2‖xn – Txn‖2] + (1 – αn)(1 – θn)

× [

λn‖xn – Tyn‖2 – (1 – λn)
(

λn – L2(1 – λn)2)‖xn – Txn‖2]

– (1 – αn)θn(1 – θn)‖Tyn – xn‖2 + 2αn
〈

u – x∗, xn+1 – x∗〉,

which implies that

∥
∥xn+1 – x∗∥∥2 ≤ (1 – αn)

∥
∥xn – x∗∥∥2 – (1 – αn)(1 – θn)(1 – λn)

× [

1 – L2(1 – λn)2 – 2(1 – λn)
]‖xn – Txn‖2

+ (1 – αn)(1 – θn)(λn – θn)‖xn – Tyn‖2

+ 2αn
〈

u – x∗, xn+1 – x∗〉 (16)

≤ (1 – αn)
∥
∥xn – x∗∥∥2 + 2αn

〈

u – x∗, xn – x∗〉

+ 2αn
∥
∥u – x∗∥∥‖xn+1 – xn‖. (17)
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Now, we consider two cases.
Case 1. Suppose that there exists n0 ∈ N such that {‖xn – x∗‖} is decreasing for all n ≥ n0.

Then it follows that {‖xn – x∗‖} is convergent. Thus, from (16), (13), and (14), we have

xn – Txn → 0 as n → ∞. (18)

Moreover, from (8) and (18), we obtain

‖yn – xn‖ = (1 – λn)‖xn – Txn‖ → 0 as n → ∞, (19)

and hence the Lipschitz continuity of T , (19), and (18) imply that

‖Tyn – xn‖ ≤ ‖Tyn – Txn‖ + ‖Txn – xn‖
≤ L‖yn – xn‖ + ‖Txn – xn‖ → 0 as n → ∞. (20)

In addition, from (3.1) and (18), we obtain

‖xn+1 – xn‖ ≤ αn‖u – xn‖ + (1 – αn)(1 – θn)‖Tyn – xn‖ → 0. (21)

Furthermore, since {xn} is a bounded subset of H which is reflexive, we can choose a
subsequence {xni} of {xn} such that

xni ⇀ w and lim sup
n→∞

〈

u – x∗, xn – x∗〉 = lim
i→∞

〈

u – x∗, xni – x∗〉.

Then from (18) and Lemma 2.4, we have w ∈ F(T). Therefore, by Lemma 2.2, we immedi-
ately obtain

lim sup
n→∞

〈

u – x∗, xn – x∗〉 = lim
i→∞

〈

u – x∗, xni – x∗〉

=
〈

u – x∗, w – x∗〉 ≤ 0. (22)

Then it follows from (17), (22), and Lemma 2.3 that ‖xn – x∗‖ → 0 as n → ∞. Conse-
quently, xn → x∗ = PF(T)(u).

Case 2. Suppose that there exists a subsequence {ni} of {n} such that

∥
∥xni – x∗∥∥ <

∥
∥xni+1 – x∗∥∥, ∀i ∈ N.

Then, by Lemma 2.5, there exists a nondecreasing sequence {mk} ⊂ N such that mk → ∞
and

∥
∥xmk – x∗∥∥ ≤ ∥

∥xmk +1 – x∗∥∥ and
∥
∥xk – x∗∥∥ ≤ ∥

∥xmk+1 – x∗∥∥, (23)

for all k ∈ N . Now, from (16), (13), and (14), it follows that xmk – Txmk → 0 as k → ∞.
Thus, like in Case 1, we obtain

lim sup
k→∞

〈

u – x∗, xmk – x∗〉 ≤ 0. (24)
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Now, from (17), we have

∥
∥xmk +1 – x∗∥∥2 ≤ (1 – αmk )

∥
∥xmk – x∗∥∥2 + 2αmk

〈

u – x∗, xmk – x∗〉

+ 2αmk

∥
∥u – x∗∥∥‖xmk +1 – xmk ‖, (25)

and hence (23) and (25) imply that

αmk

∥
∥xmk – x∗∥∥2 ≤ ∥

∥xmk – x∗∥∥2 –
∥
∥xmk +1 – x∗∥∥2 + 2αmk

〈

u – x∗, xmk – x∗〉

+ 2αmk

∥
∥u – x∗∥∥‖xmk +1 – xmk ‖

≤ 2αmk

〈

u – x∗, xmk – x∗〉 + 2αmk

∥
∥u – x∗∥∥‖xmk +1 – xmk ‖.

Thus, using (21), (24), and the fact that αmk > 0, we obtain

∥
∥xmk – x∗∥∥2 ≤ 0 and hence

∥
∥xmk – x∗∥∥ → 0 as k → ∞.

This together with (25) implies that ‖xmk +1 – x∗‖ → 0 as k → ∞. But, since ‖xk – x∗‖ ≤
‖xmk +1 – x∗‖, for all k ∈ N, it follows that xk → x∗ = PF(T)(u). Therefore, from the above
two cases, we can conclude that {xn} converges strongly to the fixed point of T nearest
to u. �

If, in Theorem 3.1, we assume that T is k-strictly pseudocontractive, then T is Lipschitz
pseudocontractive with L = 1+k

k , and hence we get the following corollary.

Corollary 3.2 Let C be a nonempty, closed and convex subset of a real Hilbert space H . Let
T : C → H be a k-strictly pseudocontractive inward mapping with F(T) �= ∅. Let β ∈ (1 –

k
k+

√
(k+1)2+k2

, 1) and {αn} ⊆ (0, 1) such that limn→∞ αn = 0 and
∑

αn = ∞. Let a sequence

{xn} be generated from arbitrary x0, u ∈ C by

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λn ∈ [max{β , h(xn)}, 1);

yn = λnxn + (1 – λn)Txn;

θn ∈ [max{λn, l(yn)}, 1);

xn+1 = αnu + (1 – αn)(θnxn + (1 – θn)Tyn),

(26)

where h(xn) := inf{λ ≥ 0 : λxn + (1 –λ)Txn ∈ C} and l(yn) := inf{θ ≥ 0 : θxn + (1 –θ )Tyn ∈ C}.
If there exists ε > 0 such that θn ≤ 1 – ε ∀n ≥ 0, then {xn} converges strongly to a fixed

point of T nearest to u.

If, in Theorem 3.1, we assume that T is nonexpansive, then we have that T is Lipschitz
pseudocontractive with L = 1, and hence we get the following corollary.

Corollary 3.3 Let C be a nonempty, closed and convex subset of a real Hilbert space H ,
and let T : C → H be a nonexpansive inward mapping with F(T) �= ∅. Let β ∈ (2 –

√
2, 1)

and {αn} ⊆ (0, 1) such that limn→∞ αn = 0 and
∑

αn = ∞. Let a sequence {xn} be generated
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from arbitrary x0, u ∈ C by

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λn ∈ [max{β , h(xn)}, 1);

yn = λnxn + (1 – λn)Txn;

θn ∈ [max{λn, l(yn)}, 1);

xn+1 = αnu + (1 – αn)(θnxn + (1 – θn)Tyn),

(27)

where h(xn) := inf{λ ≥ 0 : λxn + (1 –λ)Txn ∈ C} and l(yn) := inf{θ ≥ 0 : θxn + (1 –θ )Tyn ∈ C}.
If there exists ε > 0 such that θn ≤ 1 – ε ∀n ≥ 0, then {xn} converges strongly to a fixed

point of T nearest to u.

We now state and prove a convergence result for a monotone mapping.

Corollary 3.4 Let C be a nonempty, closed and convex subset of a real Hilbert space H .
Let A : C → H be an L-Lipschitz monotone inward mapping with N(A) �= ∅. Let β ∈ (1 –

1
1+

√
1+(1+L)2

, 1) and {αn} ⊂ (0, 1) such that limn→∞ αn = 0 and
∑

αn = ∞. Let a sequence

{xn} be generated from arbitrary x0, u ∈ C by

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λn ∈ [max{β , h(xn)}, 1);

yn = xn – (1 – λn)Axn;

θn ∈ [max{λn, l(yn)}, 1);

xn+1 = αnu + (1 – αn)(θnxn + (1 – θn)(I – A)yn),

(28)

where h(xn) := inf{λ ≥ 0 : xn – (1 –λ)Axn ∈ C} and l(yn) := inf{θ ≥ 0 : θxn + (1 –θ )(I – A)yn ∈
C}.

If there exists ε > 0 such that θn ≤ 1 – ε ∀n ≥ 0, then {xn} converges strongly to the zero
point of A nearest to u.

Proof Let Tx := (I – A)x. Then T is a Lipschitz pseudocontractive mapping with Lipschitz
constant L′ := (1 + L) and F(T) = N(A) �= ∅. Moreover, if A is replaced with (I – T), then
scheme (28) reduces to scheme (8), and hence the conclusion follows from Theorem 3.1. �

We observe that the method of proof of Theorem 3.1 provides the following result for
approximating the minimum-norm point of fixed points of Lipschitz pseudocontractive
non-self mappings.

Theorem 3.5 Let C be a nonempty, closed and convex subset of a real Hilbert space H
containing 0, and let T : C → H be an L-Lipschitz pseudocontractive inward mapping with
F(T) �= ∅. Let {xn} be a sequence defined by (8) with u = 0. If there exists ε > 0 such that
θn ≤ 1 – ε ∀n ≥ 0, then {xn} converges strongly to the minimum-norm point x∗ of F(T).

Remark 3.6 Note that, in the above results, the coefficients λn and θn can be chosen simply
as follows: λn = max{β , h(xn)} and θn = max{λn, l(yn)}.

Remark 3.7 If, in all the above theorems and corollaries, the set F(T) is a subset of interior
of C, then the assumption that there exists ε > 0 such that θn ≤ 1 – ε ∀n ≥ 0 may not be
required.
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4 Numerical example
Now, we give an example of a nonlinear mapping which satisfies the conditions of Theo-
rem 3.1.

Example 4.1 Let H = R with Euclidean norm. Let C = [–1, 1] and T : C → R be defined
by

Tx =

⎧

⎨

⎩

–3x, x ∈ [–1, 0],

x, x ∈ (0, 1].
(29)

Then we observe that T satisfies the inward condition and F(T) = [0, 1]. One can also easily
verify that

〈

x – Tx – (y – Ty), x – y
〉 ≥ 0, ∀x, y ∈ C.

Thus, I – T is monotone and hence T is a pseudocontractive mapping. To show that T is
a Lipschitz mapping, we consider the following cases.

Case 1: Let x, y ∈ [–1, 0]. Then we have

|Tx – Ty| = |–3x + 3y| = 3|x – y|.

Case 2: Let x, y ∈ (0, 1]. Then we have

|Tx – Ty| = |x – y|.

Case 3: Let x ∈ [–1, 0] and y ∈ (0, 1]. Then we have

|Tx – Ty| = |–3x – y|
= |3x + y|
= |x – y + 2x + 2y|
≤ |x – y| + 2|x + y|
≤ |x – y| + 2|x – y|
= 3|x – y|.

From the above cases, it follows that T is L-Lipschitz with L = 3.
Now, let β = 5

6 , u = 1
2 , x0 = –1, and αn = 2

n+5 . Then Tx0 = 3 and

h(x0) = inf
{

λ ≥ 0 : λx0 + (1 – λ)Tx0 ∈ C
}

= inf
{

λ ≥ 0 : –λ + 3(1 – λ) ∈ C
}

=
1
2

.

Now, let λ0 = 5
6 . Then y0 = λ0x0 + (1 – λ0)Tx0 = – 1

3 and Ty0 = 1, which gives

l(x0) = inf
{

θ ≥ 0 : θx0 + (1 – θ )Ty0 ∈ C
}

= 0.
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Figure 1 Convergence of xn with different values of x0 and u

If we choose θ0 = 5
6 , then we have

x1 = α0u + (1 – α0)
[

θ0x0 + (1 – θ0)Ty0
]

= –
1
5

.

Thus, Tx1 = 3
5 , which implies that h(x1) = 0. Now, if we choose λ1 = 5

6 , then we obtain

y1 = λ1x1 + (1 – λ1)Tx1 = –
1

15
, Ty1 =

1
5

and l(y1) = 0.

Again, we can choose θ1 = 5
6 , which yields x2 = 0.0778. In general, we observe that for

u = 0.5, x0 = –1 and αn = 2
n+5 , we can choose λn = θn = 5

6 . Thus, all the conditions of Theo-
rem 3.1 are satisfied and xn converges to 0.5 = PF(T)u (see Fig. 1).

On the other hand, for u = –0.8, x0 = 1, and αn = 2
n+5 , we obtain that xn converges to

0.0 = PF(T)u. Figure 1 is obtained using MATLAB version 7.5.0.342(R2007b).

5 Conclusion
In this paper, we have constructed and studied a Halpern–Ishikawa type iterative scheme
for non-self mappings in the setting of Hilbert spaces. As a result, we obtained strong con-
vergence of the scheme to a fixed point of a Lipschitz pseudocontractive non-self mapping
under some mild conditions. In addition, we provided a numerical example to support
our results. Our study can open the door for further research activity in the field for a
more general class of mappings in Hilbert and/or Banach spaces more general than Hilbert
spaces. Our results extend and generalize many results in the literature. More particularly,
Theorem 3.1 extends Theorem 8 of Colao et al. [5] in the sense that it provides a convergent
scheme for approximating fixed points of Lipschitz pseudocontractive non-self mappings
more general than that of k-strictly pseudocontractive non-self mappings.
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