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Abstract

In this paper, we introduce the notion of cyclic R-contraction mapping and then study
the existence of fixed points for such mappings in the framework of metric spaces.
Examples and application are presented to support the main result. Our result unify,
complement, and generalize various comparable results in the existing literature.
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1 Introduction and preliminaries

Let (X, d) be any metric space, Y asubset of X, and f : X — Y. A point x in X that remains
invariant under f is called a fixed point of f. The set of all fixed points of f is denoted
by F(f). A sequence {x,} in X defined by x,,1 = f(x,,) = f"(%0), n =0,1,2,..., is called a
sequence of successive approximations of f starting from xy € X. If it converges to a unique
fixed point of f, then f is called a Picard operator.

Fixed point theory plays a vital role in the study of existence of solutions of nonlin-
ear problems arising in physical, biological, and social sciences. Some fixed point results
simply ensure the existence of a solution but provide no information about the unique-
ness and determination of the solution. The distinguishing feature of Banach-Caccioppoli
contraction principle is that it addresses three most important aspects known as exis-
tence, uniqueness, and approximation or construction of a solution of linear and non-
linear problems. The simplicity and usefulness of this principle has motivated many
researchers to extend it further, and hence there are a number of generalizations and
modifications of the principle. One way to extend the Banach theorem is to weaken the
contractive condition by employing the concept of comparison functions. For a detailed
survey of such extensions obtained in this direction, we refer to [1, 2] and references
therein.

We denote by P;(X), N, Ny, R, and R* the collection of nonempty closed subsets of a
metric space (X, d), the set of positive integers, the set of nonnegative integers, the set of
real numbers, and the set of positive real numbers, respectively.
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Let (X, d) be a metric space. A self mapping f on X is called a ¢-contraction if

d(fx,fy) < ¢(d(x,))
for all x, y in X, where ¢ is a suitable function on [0, 00), called a comparison function.

Definition 1.1 A map ¢; : [0,00) — [0,00) is said to be a Browder function if ¢, is right

continuous and monotone increasing.

Browder functions are examples of comparison functions. A self-mapping f on X is called
a Browder contraction if

d(fx,fy) < ¢1(d(x,y))

for all x,y € X, where ¢, is a Browder function. Every Browder contraction on a complete
metric space is a Picard operator [3]. Every Banach-contraction is a Browder contraction
if ¢1(¢) = yt for y €[0,1).

Boyd and Wong [4] introduced a class of comparison functions as follows.

Definition 1.2 A function ¢, : [0,00) — [0,00) is called a Boyd-Wong function if ¢, is
upper semicontinuous from the right and ¢,(¢) < ¢ for all £ > 0.

A self-mapping f on X is called a Boyd-Wong contraction if for all x,y € X,

d(fx.fy) < g2 (d(x,)),

where ¢, is a Boyd-Wong function. Every Boyd-Wong contraction on a complete metric
space is a Picard operator [4]. Note that Browder functions are Boyd-Wong functions.
Matkowski [5] initiated another class of comparison functions as follows.

Definition 1.3 A function ¢ : [0,00) — [0, 00) is called a Matkowski function if ¢ is in-
creasing and lim,_, o ¢"(£) = 0 for all £ > 0.

Every Matkowski function is a Boyd-Wond function ([1]).

Geraghty [6] defined the following class of comparison functions.

Let ® be the class of all mappings S : [0,00) — [0, 1) satisfying the condition: 8(¢,) — 1
implies £, — 0. Elements of ® are called Geraghty functions.

Note that ® # ¢. For example, if a mapping 8 : [0,00) — [0,1) is defined by S(x) = ﬁ,
x € [0,00), then B € ®.

Let (X, d) be a complete metric space, and f : X — X. If there exists a Geraghty function
B such that for any x,y € X, we have

d(fx, fy) < B(d(x,y))d(x,y),

then f is a Picard operator.

A self-mapping f on X is called a Meir-Keeler mapping if for any € > 0, there exists §¢ > 0
such that for all x,y € X with € < d(x,y) < € +§, we have d(fx,fy) < €.

Lim [7] defined the notion of L- function to characterize the Meir-Keeler mappings.
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Definition 1.4 A mapping 7 : [0,00) — [0,00) is called a Lim function or L-function if
n(0) =0, n(¢) > 0 for all £ > 0 and for any € > 0, there exists §c > 0 such that n(¢) < € for all
tele,e+4].

A self-map f on a metric space (X,d) is a Meir-Keeler mapping iff there exists an L-
function n such that d(fx, fy) < n(d(x, y)) for all x,y € X with d(x,y) > 0.

The notion of simulation functions was introduced by Khojasteh et al. [8] and then mod-
ified in [9] and [10].

Definition 1.5 A mapping ¢ : [0,00) x [0,00) — R is called a simulation function if the
following conditions hold:

(&1) ¢(t,s)<s—tforallt,s>0;
(&2) if {¢,} and {s,} are sequences in (0, 00) such that lim,_, « £, = lim,— s, € (0, 00) and
ty < 8y for all n € N then limsup,,_, o ¢ (¢4,54) <O.

Note that Boyd-Wong functions are simulation functions.
Consistent with Rodan-Lopez-de-Hierro and Shahzad [10], the following definitions,
examples, and results will be needed in the sequel.

Definition 1.6 Let A C R be a nonempty set. A function 0 : A x A — R is called an R-
Sfunction if:

(01) for any sequence {a,} C (0,00) N A with o(@y1,4,) > 0 Vu € N, we have lim,,—, o0 a,, =
0;

(02) for any sequences {a,}, {b,} in (0, 00) N A satisfying o(ay, b,) > 0Vn e N, lim,,, 0 a4, =
lim, o b, =L > 0and L <a, imply that L = 0.

Example 1.7 ([10], Example 18) Define ¢ : [0,00) x [0,00) — R by

(©.5) %s—t ift<s,
olt,s) =

0 ift>s.
Then p is an R-function that is not a simulation function.

Rodan-Lopez-de-Hierro and Shahzad [10] also considered the following condition:

(03) If {a,} and {b,} are sequences in (0, 00) N A such that lim,,_, ., b, = 0 and ¢(a,, b,) >0
Vn € N, then lim,,_, o @, = 0.

Example 1.8 ([10], Lemma 15) Every simulation function is an R-function that satisfies
(03)-

Example 1.9 ([10]) If ¢ : [0,00) — [0,1) is a Geraghty function, then g4 : [0,00) x
[0,00) — R defined by

0p(t,8) = p(s)s—t

is an R-function satisfying (o03).
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Example 1.10 ([10]) If ¢ : [0,00) — [0, 00) is an L-function, then g, : [0, 00) x [0,00) — R
defined by 04(t,s) = ¢(s) — t is an R-function satisfying (03).

Definition 1.11 Let (X, d) be a metric space. A self-map f of X is called an R-contraction if
there exists o € R4 such thatran(d) € A and o(d(fx, fy), d(x,y)) > 0 forallx, y € X withx #y,
where Ry is the family of all functions ¢ : A x A — R satisfying the conditions (o;) and
(02), and ran(d) is the range of the metric d defined by ran(d) = {d(x,y) : x,y € X} C [0, 00).

Definition 1.12 Let X be a nonempty set, p a positive integer, and f a self-map on X. If
{B;:i=1,2,...,p} is a finite family of nonempty subsets of X such that f(B;) C B,,f(B;) C
Bs,....f(By-1) C By,f(B,) C By. Then the set | J_, B; is called a cyclic representation of X
with respect to f.

Kirk et al. [11] introduced the notion of cyclic ¢-contraction mappings as follows.

Definition 1.13 Let (X, d) be a metric space, and {B; : i =1,2,...,p} be a finite family of
nonempty closed subsets of X. An operator f : ( J/_, B; — |/, B; is said to be a cyclic ¢-
contraction if | J_, B; is a cyclic representation of X with respect to f and

d(fx,fy) < o(d(x,))
forall x € B;, y € Bis1, 1 <i < p, where B,,1 = By, and ¢ is a Boyd-Wong function.

Kirk et al. [11] established the following fixed point results for Geraghty, Boyd-Wong,

and Caristi cyclic ¢-contractions.

Theorem 1.14 Let (X, d) be a complete metric space, and p a natural number. Suppose that
a self-mapping f is a cyclic p-contraction on \_J_, B;. Then there exists a unique element
z € (Y B such that f (z) = z.

Later, Pacurar and Rus [12] introduced the notion of weakly cyclic ¢-contraction. Kara-
pinar [13] improved the results in [12] dropping the requirement of continuity. For more
results in this direction, we refer to [14—16] and references therein.

We now introduce the following notion of cyclic R-contraction mapping.

Definition 1.15 Let (X,d) be a metric space, and By, By,...,B, € Py(X). A mapping f :
U2, Bi — UL, B is said to be a cyclic R-contraction if
(i) there exists o € R4 with ran(d) C A;
(ii) (", B; is a cyclic representation of X with respect to f, and
(iii) o(d(fx,fy),d(x,y)) >0 forallx € B;, y € Bj;1, 1 <i < p, where B,,,; = B.

Meir-Keeler, Geraghty, and simulation contractions are typical examples of R-contrac-
tions that satisfy (o3). Consequently, the cyclic-R-contractions are a generalization of
cyclic Meir-Keeler, cyclic Geraghty, cyclic manageable, and cyclic simulative contractions.

In this paper, we prove a fixed point result for cyclic R-contractions. Our result extends
and unifies fixed point results involving Boyd-Wong cyclic contractions, Meir-keeler cyclic
contractions, and Geraghty cyclic contraction mappings. Applying our result, we obtain the
existence of solutions of nonlinear Volterra integro differential equations.
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2 Main results
We start with the following result.

Theorem 2.1 Let (X,d) be a complete metric space, and B, B, ..., B, € Py(X). Suppose
that a mapping f is a cyclic R-contraction on | J_, B;. Then there exists a unique element
z e (Y B such that f (z) = z.

Proof Let xy be a given point in |}/ B;. Then there exists iy in {1,2,...,p} such that
%0 € Bj,. Since f(B;,) C Bj,+1, we have that f(x¢) € B;;41. Thus, there exists x; € B;,,; with
f(xo) = x1. Similarly, there exists x, € Bj,+» with f(x;) = x,. Continuing in this way, we
can construct a sequence in Ule B; by x,, = f(x,-1) = f"(x0) € Bjy+n for all n € N. Now, if
%xy41 = %, for some n € N, then the result follows immediately. Suppose that x,,,; # x, for
all 7 € N. Note that

Q(d(fxn—lyfxn)jd(xn—l’xn)) = Q(d(xmxnﬂ)r d(xn—hxn)) >0 forallmeN.
From property (o) of an R-function we have
lim d(x,,%,.1) = 0. (2.1)

We now show that {x,} is a Cauchy sequence. If not, then there exists L > 0 such that for
any k € N, we can construct two subsequences {x,,, } and {x,,} of {x,} with n; > m; > k
satisfying

AWKy %) > L.

Without any loss of generality, we assume that 7y is the smallest integer greater than 1
for which the last inequality holds. We can choose ji € {1,2,...,p} such that ny > my >
my — jx with ny belonging to the residue class of m1; —jx + 1, and hence x,,,_;, and x,, lie in
different adjacently labeled sets B; and B;,; for some i € {1,2,...,p}. Thus,

AXpy—js %) > L and  d(Xpy—j %, —2) <L forallkeN. (2.2)
By (2.2) we have

L< d(xmkfjk,xnk)
< d(xmk—jk,xnk—Z) + d(xnk—zyxnk—l) + d(xnk—lxxnk)

=< L+ d(xnkfz;xnkfl) + d(x}’lkflr x”k)' (23)
Taking the limit as k — oo on both sides of this inequality, we have
klggo AKXy —jyr%n, ) = L. (2.4)
Similarly,

L< d(xmkfjk ) x”k)

< d(xmk—jk!xmk—jk—l) + d(xmk—jk—lrxnk—l) + d(xnk—bxnk)- (25)
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Also,
d(xmk—jk—bxnk—l) < d(xmk—jk—lixmk—jk) + d(xmk—jernk) + d(xnernk—l)~ (26)
Taking the limit as k — oo on both sides of (2.5) and (2.6), we obtain that

lim d(xmk_jk_l,xnk_l) =L. (27)

k—00

Now, since

AXpy—jir%n,) > L forallk eN,

Lim d(Xpy—j -1, % -1) = im d(x,,_j,, %) =L, and
k—o00 k—00
Q(d(fxmk—jk—l:fxnk—l): d(xmk—/k—lr xnk—l)> = Q(d(xmk—jernk)r d(xmk—jk—lr xnk—l)) > 07

then by property (02) of an R-function, we conclude that 0 = L > 0, a contradiction. Hence,
{x,} is a Cauchy sequence in X. Since (X,d) is complete, there exists y € X such that
lim,, 00 %, = . Since J7_, B; is a cyclic representation of X with respect to f, there ex-
ist subsequences {x,,}, {xu,,, } {¥n,.0 b5 (%, 0 b (X, , 1 1 and {x,,,} of {x,} such that
(%) C Bu (1} C Bas () C Baves (5nyy s} © Byt (1) C Bpy and () C
By.1 = By. Since each By, i € {1,2,3,...,p}, is a closed subset of X and lim,,_, %, = y, we
deduce that y € (", B;.

Note that for each n € N, there exists i, € {1,2,...,p} such thatx,_; € B
v € B;,. Thus,

, %y € Bj,, and

in-1

Q(d(f%fxn—l),d(%xn_l)) = Q(d(fy,x,,),d(y,xn_l)) >0 forallmeN.

Using property (o) of an R-function, we obtain that lim,,_, . d(fy,x,) =d(fy,y) = 0.
Therefore, y is a fixed point of f in [, B;.
Uniqueness: Suppose that there exists another fixed point x* of f in [, B;, that is,
d(x*,y) >0 and d(fy,fx*) = d(y,x*). Since f is a cyclic R-contraction, we have

o(d(fy /i), d(y,5)) > 0.

By property (01) of an R-function we have 0 < d(x*,y) = lim,_, o d(x*, ) = 0, a contradic-
tion. This establishes the result. O

Example 2.2 Let X = R be endowed with the Euclidean metric d(x,y) = |x — y| for all

x,y € X. Suppose that B; = [-1,0], B, = [0,1],and A = ran(d) C [0, 00). Define f : Uizle,» —
U~ Biand 0: A x A — Ras

lo_¢ ift<s,

S

f@)=-= and olt,s) =
5 0 ift>s.

Note that (X, d) is a complete space and B; and B, are closed in X. If x € By, that is, -1 <

x<0,then0 < —’—; < % implies that f(x) € B,. Similarly, if x € B, that is, 0 <x <1, then

_é < -% < 0 implies that f(x) € B;.

Page 6 of 9



Abbas et al. Fixed Point Theory and Applications (2016) 2016:61 Page 7 of 9

Further, o(d(fx, fy), d(x,y)) = %d(x,y) —d(fx,fy) = % |x—y| >0 forall x € By, y € By. Thus,
all conditions of Theorem 2.1 are satisfied. Moreover, z = 0 € (), B; is a fixed point of f.

Example 2.3 Let X = R and d(x,y) = |x — y| for all x,y € X. Suppose that B; = {ﬁ}neNu{O},
B, = {—ﬁ}neNu{O}, and A =ran(d) C [0, 00). Define f : Uil B, — U?=1 Biandp:Ax A —
R as

2 ifx € By, %s—t ift<s,
£ = and o(t,s) =
5

if x € By, 0 ift>s.

It is clear that By and B, are closed subsets of a complete metric space (X,d) such that
f(Bl) C B, andf(Bz) C B;. Note that

o(d(fx,fy), d(x,)) = %d(x, y) —d(fx, fy)

1 x y
=gl 1'5‘

1 X x Yy
>§"C‘y"1‘%‘§‘

APV
=—lx—y|>

107" 77

for all x € By, y € By. Hence, all conditions of Theorem 2.1 are satisfied, andz=0 € ﬂiz:l B;
is a fixed point of f.

Remark 2.4 In this example, the mapping is a cyclic R-contraction that is neither a Meir-
Keeler cyclic contraction nor a simulative cyclic contraction and hence neither a Boyd-

Wong nor a Geraghty cyclic contraction. Indeed, if we take ¢ = s = 1, then (¢») fails.

Corollary 2.5 Let (X,d) be a complete metric space, and By, B, ..., B, € Py(X). Suppose
that a mapping f is a manageable cyclic contraction, or a simulative cyclic contraction, or
a Geraghty cyclic contraction, or a Boyd-Wong cyclic contraction, or a Meir-Keeler cyclic

contraction on \ [, B;. Then there exists a unique element z € (\._, B; such that f(z) = z.
i=1 q i=1

3 Application to nonlinear Volterra integral equations
Motivated by the work in [17], we obtain the existence and uniqueness of solutions for
nonlinear Volterra integral differential equations.

Consider the following problem:

X X ry
u(x,y)=f(x,y)+/0 g(x,y,s,u(s,y))d§+/0 /0 h(x,y,0,7,u(c,7))dr do, (3.1)

where f € C(R* x R*,R), g € C(E; x R, R), h e C(E; x RY,R), E; = {f(%,5,8) :s<x €
[0,00),y € [0,00)}, and E; = {f(x,y,s,t) : s <x € [0,00),£ <y € [0,00)}.

Let X be the space of functions z € C(R* x R*,R) satisfying |z(x, £)| = O(e***"), where
A is a positive constant, that is, |z(x,y)| < Moe***) for some constant M > 0.

Define the norm on X by |1zl|x = sup(, e rs <+ {12(x, )|}
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Note that (X, || - ||x) is a Banach space. Define the mapping 7 : X — X by

x x ry
T(u(x,y)) =f(x,y) + f g(x,y,é,u(é,y)) dé + / / h(x,y,a,r,u(a, 'C)) dtdo
0 o Jo
for every u € X. It is easy to see that u* € X is a solution of problem (3.1) if T'(u*) = u*.

Theorem 3.1 Suppose that problem (3.1) satisfies the following conditions:
Y

lg(x 3,6, 1) ~ g(6,5,6, )| < I (3,9, 6) u ~ i
and
|h(x,y,a, T,u)—hx,y,0,1, L't)| <hy(x,9,0,7)|lu—ul,

where h; € C(E1, [0,00)) and hy € C(E,, [0,00));
(II) There exist o, B in X and g, Bo in R with oy < a(x,t) < B(x,t) < Bolx, t) such that

a(x,t) <f(x,£) + /Oxg(t,s,é,ﬂ(“;‘,s)) dé + /Ox /;yh(t,s,a,t,ﬂ(a,r)) dtdo

and

Bx,t) = fx,t) + /Oxg(t,s,é,(x(é,s)) dt + /Ox /Oyh(t,s,a,t,a(o,r)) dt do

forall x,t € [0, 00);
(110)

X X y
/ hy(x, y, &) dE + / f hy(x,y,0,7)e"* ) dr do < 5,4
0 0 0

and
x X y
P(x,t)+/ g(x,y,é,O)dE+/ f h(x,y,0,7,0)dr do | < 8¢
0 0 0

for some nonnegative constants 8,8, < 1;

(IV) There exist a, B in X such that o(t) < B(t), T(a(x,t)) < B, t), and
T(B(x,t)) > alx,t). Then the integral Eq. (3.1) has a unique solution u* in
o ={ueX:aly) <ulxy) <px)}

Proof Let By ={u € X :u(x,t) < B(xt)} and By = {u € X : u(x, t) > a(x, t)}. Then B; and B,
are closed subsets of the complete metric space X. If u € B;, then by conditions (I), (II),
and (IV) we conclude that T(u(x,)) > a(x,t). Hence, Tu € B,. Similarly, u € B, implies
that Tu € B, and hence T(B;) C By and T(B;) C B;.

If u € By and v € By, then u(x, t) < B(x,t) < Bo and v(x, t) > a(x, ) > ag. From conditions
(I) and (III) we obtain that

|| T(u(x,y)) - T(v(x,y)) HX < 81 ”M _ VIIXeA(’“J’)‘
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Thus,
| T — Tv|lx < cllu—vixe*®?, where ¢ =68 <1.
Taking o(t,s) = ¢s — t, we have
o(IITu— Tvllx, lu—vix) = gllu—vix = | Tu—-Tv|x >0, u#v.

Consequently, T is a cyclic R-contraction on Ule B;. By Theorem 2.1, T has a unique fixed
point #* in ﬂle B; € w, which is the solution of the integral-differential Eq. (3.1). O

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this paper. The authors declare that they have no competing
interests. All authors read and approved the final manuscript.

Author details

'Department of Mathematics and Applied Mathematics, University of Pretoria, Hatfield, South Africa. ?Department of
Mathematics, King Abdulaziz University, PO. Box 80203, Jeddah, 21589, Saudi Arabia. 3Department of Mathematics, Kano
University of Science and Technology, PM.B. 3042, Wudil, Kano, Nigeria.

Acknowledgements
The authors are very indebted to both reviewers for a number of useful suggestions to improve this paper.

Received: 16 December 2015 Accepted: 4 May 2016 Published online: 11 May 2016

References
1. Berinde, V: Iterative Approximation of Fixed Points. Springer, Berlin (2007)
2. Latif, A: Banach contraction principle and its generalizations. In: Almezel, S, Ansari, QH, Khamsi, MA (eds.) Monograph:
Topics in Fixed Point Theory, pp. 33-64. Springer, Berlin (2014)
3. Browder, F: On the convergence of successive approximations for nonlinear functional equations. Indag. Math. 30,
27-35(1968)
4. Boyd, DW, Wong, JSW: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458-464 (1969)
5. Matkowski, J: Integrable solutions of functional equations. Diss. Math. 127, 1-68 (1975)
6. Geraghty, M: On contractive mappings. Proc. Am. Math. Soc. 40, 604-608 (1973)
7. Lim, TC: On characterizations of Meir-Keeler contractive maps. Nonlinear Anal. 46, 113-120 (2001)
8. Khojasteh, F, Shukla, S, Radenovi¢, S: A new approach to the study of fixed point theorems via simulation functions.
Filomat 29(6), 1189-1194 (2015)
9. Argoubi, H, Samet, B, Vetro, C: Nonlinear contractions involving simulation functions in a metric space with a partial
order. J. Nonlinear Sci. Appl. 8(6), 1082-1094 (2015)
10. Roldan-Lopez-de-Hierro, AF, Shahzad, N: New fixed point theorem under R-contractions. Fixed Point Theory Appl.
2015,98 (2015)
11. Kirk, WA, Srinivasan, PS, Veeramani, P: Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point
Theory 4(1), 79-89 (2003)
12. Pécurar, M, Rus, IA: Fixed point theory for cyclic ¢p-contractions. Nonlinear Anal., Theory Methods Appl. 72(3-4),
1181-1187 (2010)
13. Karapinar, E: Fixed point theory for cyclic weak ¢p-contraction. Appl. Math. Lett. 24(6), 822-825 (2011)
14. Abbas, M, Nazir, T, Romaguera, S: Fixed point results for generalized cyclic contraction mappings in partial metric
spaces. Rev. R. Acad. Cienc. Exactas Fis. Nat,, Ser. A Mat. 106, 287-297 (2012)
15. Karapinar, E, Moradi, S: Fixed point theory for cyclic generalized (¢ — ¢)-contraction mappings. Ann. Univ. Ferrara 59,
117-125(2013)
16. Karapinar, E: Best proximity points of cyclic mappings. Appl. Math. Lett. 25(11), 1761-1766 (2012)
17. Nashine, HK, Pathak, RP, Somvanshi, PS, Pantelic, S, Kumam, P: Solutions for a class of nonlinear Volterra integral and
integro-differential equation using cyclic (¢, ¥, 8)-contraction. Adv. Differ. Equ. 2013, 106 (2013)



	Fixed points for cyclic R-contractions and solution of nonlinear Volterra integro-differential equations
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Main results
	Application to nonlinear Volterra integral equations
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


