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Abstract

In this paper, we propose and investigate two new iterative algorithms for solving the
split equality variational inclusion problem in Hilbert spaces. We also prove that the
sequences generated by the proposed algorithms converge strongly to a common
solution of the split equality variational inclusion problem and fixed points of a family
of nonexpansive mappings, which is also an unique solution of a variational
inequality as an optimality condition for a minimization problem. The results
presented in this paper extend and generalize a variety of existing results in this area.
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point; variational inequality

1 Introduction

In this paper, we consider the split equality problem (SEP) proposed by Moudafi [1]. Let H,
H,, Hj be real Hilbert spaces, S,, : Hy — H; be a family of nonexpansive mappings, Fix(S,)
denote the fixed points set of S, n=1,2,..., C = ﬂle Fix(S,) € Hi, Q be the nonempty
closed convex set of H,. Let A : H; — H3, B: H, — Hj be two bounded linear operators.

The so-called SEP can mathematically be formulated as finding x € C, y € Q satisfying the
property:

xe€C,yeQ, Ax=DBy. (1)
Throughout this paper, we use I' to denote the solution set of SEP, that is,
I'={(x,9) € Hy x Hy,Ax=By,x€ C,y € Q}.

If B = I (the identity mapping on Hilbert space H), the problem (1) is equivalent to the
well-known split feasibility problem (SFP). It is easy to see that the SEP (1) includes the
SEP as a special case. The split equality problems allow asymmetric and partial relations
between the variables x and y. As is well known, the SEP has received much attention due
to its application in various disciplines such as medical image reconstruction, game theory,
decomposition methods for PDEs, and radiation therapy treatment planning [2—4].
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In 2011, Moudafi [5] introduced and studied the following split variational inclusion
problem (SVIP). Let Hy, H, be Hilbert spaces, A : H — H, be a bounded linear opera-
tor, A* be the adjoint of A, and B; : Hy — Hj, B, : H, — H, be two set-valued maximal

monotone mappings. SVIP is formulated as the following problem:
find x* € H; such that 0 € B; (x*), 0eB, (Ax*) )

Recently, Byrne et al. [6] proposed the following iterative method to solve the prob-
lem (2): For given x¢ € H; and A > 0, the iterative sequence {x,} is generated as follows:

Xn+l :]fl [xn + VA* (])1?2 - I)Axn] (3)

Moreover, iterative methods for nonexpansive mappings have been applied to solve min-
imization problem. Moudafi [7] proposed the viscosity approximation method: For every

initial xy € H, the sequence {x,} is generated by

Xnsl = ar(f(xn) + (1 - an)Txn (4)
under some certain appropriate conditions imposed on {«,}, and it is proved that the se-
quence generated by (4) converges strongly to the unique solution x* of the variational
inequality

(T-f)x",x-x*)>0, xeC.

For the iterative method (4), Marino and Xu [8] introduced a new viscosity approxima-

tion method and considered the following iterative sequence {x;}:
Xp+l = Oanf(xn) + ([ - anA)Txm (5)

and they proved that the sequence generated by (5) converges strongly to the unique so-

lution x* of the variational inequality
((A —yf)x*,x —x*) >0, xeC
which is the optimality condition for the following minimization problem:
o1
min 2 (Ax, x) — h(x),
where / is a potential function for yf.
In 2013, Kazmi and Rizvi [9] combined the iterative method (3) and the viscosity approx-

imation method (4) for solving a split variational inclusion and the fixed point problem of

a nonexpansive mapping. Kazmi and Rizvi presented the following iteration scheme:

Uy = )1 [ + Y A* (2 — DAx,);

(6)
Xn+l = anf(xn) + (1 - o) Tuay,
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and they proved that the sequences {u,}, {x,} converge strongly to z € Fix(T) N T", where
z = Prixr)nrf (2), I is the solution set of SVIP.

In 2015, Sitthithakerngkiet et al. [10] combined the iterative method (3) and the viscos-
ity approximation method (5) for solving a split variational inclusion and the fixed point
problem of a family of nonexpansive mappings. They proposed the following iteration

algorithm:

V=T + YA G52 = DA, -
Xp+l = ansf(xn) +( - anD)Snym
and they proved that the sequence converges strongly to a common solution of SVIP and
the fixed point of a family of nonexpansive mappings.
Inspired and motivated by the corresponding convergence results of (1), (2), and (7), we

consider the split equality variational inclusion problem (SEVIP):
find x € U'(0) = Fix(J%! ),y € K™'(0) = Fix(/};,) such that Ax = By, (8)

where Hi, H,, Hj are real Hilbert spaces, U : H; — 21 and K : H, — 22 are set-valued
maximal monotone mappings, A : H; — Hs, B: H, — Hj are two bounded linear opera-
tors.

In this paper, we will introduce a more general iterative method for SEVIP (8) and a fixed

point problem, which is defined in the following way:

Vo= Ju U~y G*G)wy, ©)
Wy = Oly,O'f(Wn) + (I —a,D)S,vy,

where o € [0,1], o, € (0,1),and D is a strongly positive bounded linear operator. Note that,
ifo=1Lu,=A,D=1,B=1,S, =T, scheme (9) can be reduced to (7), that is, the iterative
method (9) for solving the split equality variational inclusion problem can be reduced to
the iterative method (7) for solving SVIP and SFP.

Meanwhile, we will prove that the sequences generated by (9) converge strongly to a
common element of the solution set of a split equality variational inclusion problem and
the common fixed point set of a family of nonexpansive mappings, which is also an unique

solution of a variational inequality as an optimality condition for a minimization problem.

2 Preliminaries

We first recall that some definitions, notations, and conclusions which will be used in the
proofs of our main results. Let H be a real Hilbert space with inner product (-, -) and the
norm || - ||. We denote by ‘—’ strong convergence, by ‘—’ weak convergence. In order to

establish our convergence theorems, we need the following concepts.

Definition 2.1
(1) A mapping f: H — H is k-contractive if there exists a constant k € (0,1) such that

Ife =yl <kllx=yll, Vx,yeH.
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(2) A mapping T is nonexpansive if
ITx - Tyl < llx-yl, Vx,ye€H.
(3) A mapping T is monotone if
(Ix—Ty,x—y) >0, Vx,yeH.
(4) A mapping T is firmly nonexpansive if
ITx - Tyl* < (x -9, Tx - Ty), Vx,y€H.

(5) A bounded linear operator D is said to be strongly positive if there exists a constant
o > 0 such that

(Dx,x) > o||x|1?, VxeH.

(6) A mapping Pc is called the metric projection of H onto C, if Pcx is the unique point
in C with the property

lx = Pcx]|| = min{||x—y|| 1y € C}, Vx € H.
Moreover, Pc is characterized by the following properties:
(x = Pcx,y—Pcx) <0, VyeC.

Proposition 2.1 A Banach space E is said to have the Opial property, if for any sequence
{x,} with x,, — x*, we have

liminf”x,, —x* || < liminf ||x, — y||
n—00 n—oo

Vy € E with y # x*.

Proposition 2.2 [n Hilbert spaces, the following inequalities hold:
I +y1% < lxll* + 2¢p,2 +y), Va,y€H, (10)

1
{x,) = E(IIXII2 + 91 = e =y1%),  VayeH. (11)

Lemma 2.1 ([11]) Assume D is a strongly positive linear bounded operator on a Hilbert H
with coefficienty >0 and 0 <o < |D|| 7}, then | —aD| <1-a¥y.

Lemma 2.2 ([11]) Let C be a nonempty, closed, and convex subset of a Hilbert space H.
Assume that f : C — C is a contraction with a coefficient k € (0,1) and D is a strongly
positive linear bounded operator with a coefficient y > 0. Then, for 0 <y < %,

k=9, (D=yfle—(D-yf)y)=F -vk)lx-yI> VxyeH.

That is, D — yf is strongly monotone with coefficient y — y k.
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Lemma 2.3 ([12]) Let C be a nonempty closed subset of a real Hilbert space H, and let {S,}
be a sequence of mappings from C into itself. Suppose that {S,} satisfies the AKTT condition:
> sup{[|Susv — Suvll 1 v € C} < 00. Then for each x € C, {Syx} converges strongly to a
point in C. Furthermore, let S : C — C be defined by

Sx=8,x, VxeC.
Then lim,,_, o, sup{||Sv - S,,v|| : ve C} = 0.

Lemma 2.4 ([13]) Assume a,, is a sequence of nonnegative numbers such that a,,; < (1 -
Vu)an + 8, where {y,} is a sequence in (0,1) and {5,} is a sequence such that:

(i) D021 ¥n =005

(i) limsup,_, o f/—: <0o0r ) o2 |84 < 00.
Then lim,—, o a,, = 0.

Lemma 2.5 ([14]) Let U be a set-valued maximal monotone operator on H. For u > 0, we
define the resolvent J% = (I + ull)™\, then the following holds:
(i) Foreachu>0,]Y is a single-valued and firmly nonexpansive mapping.
(i) DUY) = H and Fix(J¥) = U7(0) = {x € D(G) : 0 € Ux}.
(iii) 5% — Tgl* < o’a;ﬁ Ux—J§ %, % — x), forall @, >0 and x € H.
In fact ||[J5x - T x| < ©LL Uy — x].
(iv) Suppose that U71(0) # @, then (x — JYx,Jx — w) > 0 for each x € H and each
we U™Y0), and each B > 0.

Lemma 2.6 ([15]) Let {S,} be a sequence of real numbers that does not decrease at infinity,
in the sense that there exists a subsequence {Sn;}i=0 of {Su} such that

{Sn} < {Sy;} forallj>0.
Also consider the sequence of the integers {T(n)},>n, defined by
T(n) = max{k < n|Sk < Sg41}-

Then {t(n)},>n, is a nondecreasing sequence verifyinglim,_, . T(n) = 00, and for all n > ny,
the following two estimates hold:

Sr(n) < Sr(n)+1; Sn =< Sr(n)+1'

3 Main result
In this section, the following supposed conditions always hold:
(1) Let Hy, Hy, H3 be Hilbert spaces.
(2) Let U and K be two set-valued maximal monotone mappings.
(3) Let A: Hy — Hs, B: Hy — Hj be two bounded linear operators and A*, B* be the
adjoint of A and B.
4) f= [2 ], where f;, i = 1,2 is a contraction mapping on H; with constant k € (0,1).
(5) Let S, be a sequence of nonexpansive mappings on Hi, D be a strongly positive
bounded linear operator with coefficient y > 0.
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(6) Assume the solution set of SEVIP (3) I #{,

u A*A -A*B
]L(tu,K) _ ]Myz , G=[A -B], G*G = .

Proposition 3.1 Let T =1 - yG*G : H; x H, — Hj X H,, where y € (0, %), with L =
p(G*G) being the spectral radius of the self adjoint operator G*G on Hy x Hy, then T is a

nonexpansive mapping.

Proof In fact, for any x,y € H; x Hy,

I1Tx— Tyl = | (I - yG*G)x— (I - yG*G)y|
= |x-y-vG G-’
= - yI? +v*|G* Gl - y)|* - 27 (x -3, G*G(x - »))
< e~ y1* + y’L| Glx - )| * - 27 (Glx - 9), G(x ~ 7))
= =y + 2L G - 9)|* - 2y | Glx - )|
= x> -y (2~ yL) |Gz - 9|
< llx—yI

This completes the proof of Proposition 3.1. d

Lemma 3.1 ((13]) Let Hy, Hy, Hs, A, B, A*, B*, U, K, J\"5), G, G*, f, S,., D, S be the same
as above. If T" # () (the solution set of SEVIP (8)), then w* = (x*,y*) € H; x H is a solution
of SEVIP (8) if and only if for any given y >0 and u >0

w* =K1 -y G*G)w*.

Theorem 3.1 Let H, Hy, Hs, A, B, A*, B*, U, K, ]\, G, G*, , S, D, S be the same as

above. Let w,, be generated by
vn =i = y G*G)wys 2
Wy = oy f (W) + (I — ay,D)S,vy.

Suppose S, satisfies the AKTT condition, Fix(S) = (75, Fix(S,).
If the solution set Q = Fix(S) N T is nonempty and the following conditions are satisfied:
(1) oy € (0: 1): lim,,_, o 0, = 0;
.. — 1 v
(ii) 0<V<a»0<0<%-
Then the sequence w, converges strongly to a point w*, where w* = Po(I — D — of)(w*) is

a unique solution of the variational inequalities
(D-ofyw,w*-2)<0, zeQ. 13)

Proof First, we show that w,, defined by (12) is well defined.
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We define a mapping
W, = au0f (W) + (I = auD)SJ (1 - yG*G)wy, 1> 0. (14)
By Lemma 2.1, Proposition 3.1, and (14), for any x,y C H;, we have

| W) = W)
= |enof (%) = anof ) + (I = D) (ST LX (1 - y G*G)x = S, TH (1 - v G*G)y) |
< a0 [f6) =f )] + 1 = DI [ST0H (1 - ¥ G* G)x = S,JUH (1 - v G*G)y|
<ayoklx =yl + 1 -ay)lx-yl
= (1-au(y —ok))llx-yl.

Since 0 < 1-a,(y —ok) <1, it follows that W, is a contraction. Therefore, by the Banach

contraction principle, W, has a unique fixed point in Hj, denoted by w,, that is,
Wi = 2u0 f (Wy) + (I = 0uD)SJL (I - y G*G)w, 15)

which is exactly (12).
Second, we claim that w,, is bounded.
Indeed, take any z € €2, we have z = ],%K) (I - yG*G)z and z € Fix(S) = (2, Fix(Sy),
o=zl = [JX9(1 -y G*G)w, — 2],
O R Y

< lwn -zl
Thus, we derive that

lwn 2l = |eacf (W) + (I = auD)S,v ~ 2|
= |ewof(Wn) — @uDz + (I = 0,D)S,vy — (I — DS,z ||
< ay|lof (wy) = Dz|| + 11 = a,D|l[|v,, - 2|
< ay|lof(wy) - Dz| + (1 - 0t ¥) lwy — 2|l
< aul|o (fwn) =f(2)) + (0 (2) = Dz) | + L = u¥) Iy 2l

< a,0k||wy, -zl + @, | 0f(2) - Dz| + (1 - a,¥)llwy — 2]

-D
= (1= a7 — ok I — 2l + (7 — o)L =D
y —ok
It follows that
_ _ of(z) - Dz
o7 = K[y = 2l| < a7 — ok 1L =Dl
y —ok
of(z) —Dz

vy —ok
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Hence the sequence {w,} of (15) is bounded, so are {v,}, {f(w,)}, and {S,v,,}.
Third, we show that ||w, — v,|| — 0.
Indeed, for any z € €2, we have
v =zl = P91 - y G G)w, ~ 2|
N 2

< ||wn -z-yG Gw,,”

= lwu —zlI* + v*| G*Gw, ||2 -2y(w, —z,G*Gw,)

< llwn —zlI” + Y°LIGw, ||* = 2 | Gw, |I*

= lwa —zl> =y (2 - y L) Gwyl*. (17)
It follows from (10) and (17) that

1wy~ 211 = 0 f (W) + (I~ @uD)S,vy — z|°

= | (I = uD)(Suvy - 2) + au(af (w,) = D2) ||
< |t = uD)(Suvn = 2| + 20u{0f (W) — Dz, W, — 2)
< (L-a,¥)* Ve — 2|I* + 2at{0f (W) — Dz, w,, — 2)

< (-, P)lwn —zl* = 1 - 2, 7)Y (2 - yL) | Gw, >

+ 20, || o f (Wn) - Dz| I, -zl (18)
This implies that

1 - 7)y 2 = yDIIGWul* < —uV Iy —2z)1* + 20 | o f (Wn) — Dz |y — 2|

<2y ||Uf(wn) _DZ” lw, —z|.

Since both w,, and f(w,) are bounded and «,, — 0, we have ||Gw,| — 0.

Then from (11) and Lemma 2.5, we derive that

v, =20 = [JE5 (1 =y G G)w, - 2]

< (Vn -z,w, — YyG Gw, —z)

1
= E{IIVVI —zlI” + lwa — 2lI> = y 2 = y DIGWu |* = Wy — vall®
- H)/G*Gwn H2 + 2<w,, - V,,,yG*GW,,)}.
This implies that
Vi =2l < Wi =21 = W = Vull® + 27 VL[ Wy = vl [ G- (19)

By (18) and (19), we have

lw, - Z||2 <(1- O[r17)2||"n - Z||2 + 2O‘n<6f(wn) - Dz,w, - Z)

< (A= a,P) v — 2% + 20, || o f (Wy) — Dz|| | Wy, — 2l
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< (Lo, P)lIwn —zl* = 1 = ) Wy — vall?

+2(1- an?)V\/ZHWn = ullllGwyll + 20, ”Uf(wn) _DZ” lw, —z|.
Hence, we obtain

(1 = ) Wn = vall> < 2(1 = 0, 7)Y VL Wy = vull[|Gw, |
+ 20, ||crf(w,,) - Dz|| 1w, —z||.

Since «,, — 0, ||Gw, || — 0, it follows that ||w, — v, || — 0.

Nextly, we show [|Sv,, — v, || = 0.

lwy = Suwyll = Wy = Spvy + Spvi — Suwy ||
S Nwn = Suvall + v — will
= ||Oln0f(wn) + (I = ,D)Syvy — Spvn H + v = wyll
=y |Lf(Wn) - DS,vy ” + v = wall.

Since {f(w,)} and {S,v,} are bounded, «,, — 0, ||w,, — v,|| = O, then ||w,, — S, w,|| = O.

Thus,

”Vn - SnVnH = ”Vn — Wy + W, — Snwn + Snwn - SnVn”
S Wi = Wall + Wy = Suwull + Wy = vall.
Since ||lwy, —v,|| = O, |lw, — Syw,|| = 0, we get ||v,, — S,,vu|| = O.
Moreover, we note that
”Svn - Vn” = ”SVn - Snvn” + ”Snvn - Vl’l”
< sup{[ISw = S,w| : w € (v} } + 1SV = vall.

By Lemma 2.3, we have ||Sv,, — v, || = 0.

Now, we prove that w € .

Since {v,} is bounded, we may assume that there exists a subsequence {v,,} of {v,} which
converges weakly to a point W, i.e. v,, — W as i — 00. Suppose that W ¢ Fix(S), since v,,, —
w and Sw # w. Applying Opial’s property, we obtain

liminf||v,, — w| < liminf|lv,, — SW||
1—> 00 1—> 00
< liminf{||vy, — Svy, |l + ISv,,, — SWI }
1— 00

< liminf ||lv,, — w||.
i—>00
This is a contraction, then w € Fix(S) = (5, Fix(S,).
Since {w,} and {v,,} are bounded, ||w, — v, || — 0, {w,} and {v,;} have the same asymptot-
ical behavior, we may assume that there exists a subsequence {wy, } of {w,,} which also con-
verges weakly to the point , i.e. w,, = W as n; — 0o. Suppose that w A TR 1~y GrG)W,
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Applying Opial’s property, we have
liminf ||w,, — ||
1—>00
< liminf||w,, - 401 - y G*G)W|
11— 00

< timint{ - 991 - 7 GG,

+ ||]’51;11,K) (1 - VG*G)Wnl _](U'K) (1 - VG*G)WH }

Un

< timinf{[|w,, — v | + [ w, — 7]}
11— 00

< liminf ||w,, — w||.
11— 00

This is a contraction, then w = ],Sff’K)(I - yG*G)W, by Lemma 3.1 we have w € I". Thus,
W is a solution of SEVIP, i.e. w € Q = Fix(S) N T.

We now show that limsup,_, . (of(w*) — Dw*,w, — w*) < 0, where w* = Po(I - D +
of)(w*) is the unique solution of VI (13).

Indeed, we can choose a subsequence {w,,} of {w,} such that

limsup(af (w*) - Dw*, w, — w*) = lingo(af(w*) - Dw*, wy,, —w").
n—00 n—

We also assume that w,,, — W. Therefore

limsup(of (w*) — Dw*, w,, — w*)
n—00

- n}i_r)noo(af(w*) - Dw*, wy,, — w¥)

= <<7f(w*) —-Dw*,w— w*>
= <(I—D +of )W —w*, w— w*>
=(I =D +of)w* - Po( - D + of)w*, W - Po(I - D + of )w*)

<0.
Then

lim sup(af(w*) - Dw*,w, — w*) <0. (20)

n—00

On the other hand, we will prove that w* = Po(I — D + of)(w*) is the unique solution of
VI (13).
Suppose w* € @ and w** € Q both are solutions to VI (13), then
(of(w*) — Dw*, w** — w*) <0

and

(O’f(W**) —DW**,W* _ W**) < 0.
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From the above inequalities we have
((D —of )W —(D-of)w", w* — w*) <0.

By Lemma 2.2, we have D — of is strongly monotone, then w** = w*, the uniqueness is
proved.

Finally, we show that w, converges strongly to w* as 1 — 0.
[wn = we "
= | f W) + (U = auD)Sv, — w* |
= [ = uD) (S = w*) + ctu(af (w,) - Dw) ||
< [ = D) (Suvn = w") | + 2atu{of (W) = DW*, wy — w)
< (L= 7P| = w*|* + 2000 (f (W) —f (W*), W, — W)
+ 20,(0f (W*) — DW*, w,, — w*)

< (U= @7 |Wn = W | + 2000k = w*|* + 20l f () — D", w1y — ).
This implies that
27 - 0w =" | < 0,7 [~ " [+ 2o () = D, w, — ')
From condition (i) and (20), we can obtain the desired conclusion

lim |w, - w*| =0.

n—00

This completes the proof. d

Theorem 3.2 Let Hy, H,, H3, A, B, A*, B*, U, K, ]L(,il’K), G, G, f, Sy, D, S be the same as
them of Theorem 3.1. Let w,, be generated by

V=S U =y G*G)w, o
Wit = n0f (W) + (I = D) Sy,
suppose S, satisfies the AKTT condition, Fix(S) = (5, Fix(S,). If the solution set Q =
Fix(S) N T is nonempty and the following conditions are satisfied:
() @y €(0,1), limy 000y =0, Y ooy aty = 00;

(i) D002 et — ] < 003

(iii) Z:io [ttn41 — | < 00;

(iv) 0<y < $,0<o<%,
then the sequence w, converges strongly to a point w*, where w* = Po(I — D — of)(w*) is a
unique solution of the variational inequalities

((D— af)w*, w* —z) <0, zeQ. (22)
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For any given z € 2, we have z = ],SIL,["’K")(I - yG*G)z and z € F(S) = (2, F(Su). By

Lemma 2.1 and Proposition 3.1, we have

[Wai1 =2l = ||auof (Wn) + (I = 0, D)S, v, — 2|
= |ewof (Wn) = @uDz + (I = 0uD)S,vy — (I — auD)S, 2|
< ay|of(wy) - Dz| + I - a,D] |v, - zll
< a|of(wy) - Dz| + A =, ) [JL5 (I - y G*G)w, — 2|
< ay|of(ws) - Dz| + 1 - @, 7)lw, — zll
< au|o(f(wn) —f(2) + (6f(2) - Dz) | + (1 — u¥) W — 2|

< a,okllw, -zl + @] of (2) - Dz + (1 - &, ¥) | Wy — 2]l

= (- a,(7 = k) llw, - 2l v a7 — okl @ =Dzl

vy —ok
-D
smax{nwn—zn,—”(’@ Z”}.
-ok
By a simple induction, we have
llof(z) - Dz||
w2l SmaX{IIWo—ZII,f_i :
—-ok

Therefore, {w,} is bounded, and so are {v,,}, {f(w,,)}, {S\v.}.
From (17), by a similar argument to the proof of Theorem 3.1, we derive that

[Wni1 — 2>

= |0 f (W) + (I = 2uD)S,v, — 2

= U = uD)(Su — 2) + i (0f (W) - D2) |

< ||t = auD)(Suvs = 2)||* + 200u{0f (W) = Dz, Wyt - 2)
< (1=, ¥)[lva = 2lI* + 20 (0f (Wn) — Dz, W1 — 2)
<(A-aP)lwn—zl* -1 - a,¥)y (2 - yL)[|Gw,|?

+ 20t || 0 f (W) — Dz || | Wii1 — 2.
This implies that

(1- an?)y(z - VL)||GWVI||2

< llwy _Z”2 = [ Wnn _Z||2 + 20, ”Uf(wn) _DZ” lwy, —zl|.

(24)

Now, the rest of the proofs will be analyzed as two cases due to the monotone property

of {[lw,, —zl[}.
Case 1: {||w, — z||} is a monotone sequence.
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Since {||w, — z||} is bounded, {||w, — z||} is convergent. Take the limit on both sides for

(24), in view of condition (i). We have
IGw,ll — O
By the same argument as in the proof of Theorem 3.1, we derive that
Vi = 21> < llwy = 21> = [Wn = vl + 27 VLl Wy, = vl |G- (25)
Then, from (23), (25), and (10), we derive that

IWis1 = Z||2 <(1- an7)2||Vn - Z”2 + 2an<of(wn) ~Dz, W41 — Z)
< (1 - an?)nwn - Z”2 - (1 - 0ln7)||Wn - Vn||2
+2(1 = 7)Y VLIWn = vl Gw|

+ 20 ||Uf(wn) _DZ” Wi — zl|.
Hence, we obtain

A = ) Wn = Vall* < W = 201> = [ Wps1 — 211 + 201 = 2, 7)Y VLI Wy = vall | Gw, |

+ 20| o f (Wn) - Dz| |, - 2l

Since {w,}, {v,}, {f(w,)} are bounded, lim,,_, .o {||w, — z||} exists and «,, — 0, then ||w,, —
Vull — 0.

Indeed, ],%f’K) (I - yG*@) is nonexpansive and by Lemma 2.5(iii) we derive that

Vs = all = [T = y G* G wyar = 51 - y G* Gy

n+l

= P01 = 7" G ~ 101~y G G|

Un+1 Un+1

+ 801 = ¥ G G)w, = SN (1 - y G G)w |

n+l

< s =+ LI 00 (1 GG, — |
Upsl

Since liminf,_, #, > 0, we may assume that there exists a real number m such that
u, > m> 0 for all n € N. Then we have

1Vis1 = vl < [ Wha1 — wll + WMT_M “]L(,g;{() (I - yG*G)WVl —Wp ”

S NWnir = wall + Myl — uy,

where M; = sup{% ||](U’K)(I— yG*G)w, —w,| :n € N}.

Un+l

Thus, we get

”Wn+2 — Wnil ”

= ||an+16f(wn+l) + (1 - Oln+1D)S;'1+1Vn+l - Oan'f(Wn) - (1 - anD)SnVn H
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= |l enr10f Wis1) + (I = 4:1D)Spa1Vis1 — o0 f (W) — (I = 2 D)S, v
- (I = ap1D)Sp1vy + (I — @1 D)Spi1 Vi — I — D) Sy1 v
+ (I = auD)Sus1Vn = W1 0f (Wy) + ctsrof (wy) |
= [ (I = @01 D)(Sui1Viar = Swi1Vn) + (@ — 2ps1) DSyia Vi
+ (I = auD)(Su1Vn — Suvin) + (@1 — @n)0f (W) + €10 (f (Wia1) = f (W) |
< = apa V) Vis1 = Vall + |ty = @it [ IDS1vall + (I = ¥ 1Spe1vin — Suviull
+ oty — el | of W) | + @na o klw, —w,ll
= (I = aua V) WVpe1 = Vall + 1o kl[wyr — wy ||
+ 1oty = @t | (IDSavall + [ of W) |) + (I = P 1S 1vi = Suvall
< (1= (¥ = 0 ) Wit = Wl + Mi|thne1 — 1]
+ 1t = @1 | (IDSsrvull + [ of W) ||) + 1S i1V = Suvinll
< (1= w17 = 0 k) W1 = Wall + Milthpi1 — ] + 2Ma |0ty — | + Ly,

=< (1 - an+1(7_ O'k))”WnJrl - Wn” +M3(|un+l - unl + |an - an+1|) +Lm

where Mz = max{supneN ||DSn+1Vn||¢ SUP,en ||Uf(Wn)||}x M3 = max{Ml,zMz}, Ln =
Sup{||Sn+1V =Suv|:vev,}.

By Lemma 2.4, we have ||w,,; — w,| — 0.

Then, from condition (i) and |u,+1 — u,| — 0, we have ||V — vyl = O.

Indeed,

”Wn - SnVn” = ”Wn - Sn—lvn—lll + ||Sn—1Vn—1 - Sn—lvn” + ”Sn—lvn - SnVn”
E Oy-1 Ho'f(wn—l) - DSn—lvn—l H + ”Vn—l - Vn”

+ sup{ |Syaw —S,wl :w e v,,}.

Since ||[Vy41 — Vull = 0, by Lemma 2.3 and condition (i), we have ||w,, — S,v,|| — 0.
Then

”SnVn - Vn” =< ”SnVn - Wn” + ”Wn - Vn”-

Since ||wy, — Syvull = 0 and ||w, — v,|| — O, we get ||S,v, — V|| = 0.

Moreover, we note that

”Svn - Vn” = ”SVn - Snvn” + ”Snvn - Vn”

= SUP{HSW— Sawl|l :w e {Vn}} + 1SV = Vall.
By Lemma 2.3 we have

[ISv,, = vu|| = O. (26)
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Since {v,} is bounded, we may assume that there exists a subsequence {v,,} of {v,,} which
converges weakly to a point W, i.e. v,, — Was i — 00, {w,,} and {v,} are bounded, {w,} and
{v,} have the same asymptotical behavior.

We may assume that there exists a subsequence {w,,} of {w,} which also converges
weakly to the point W, i.e. w,, = W as i — 00. By the same argument as in the proof of
Theorem 3.1, we derive that W is a solution of SEVIP, i.e. w € Q = Fix(S) N .

Next, by the same argument as in the proof of Theorem 3.1, we derive that

limsup(of (w*) - Dw*, w, — w*) <0,

n—00

where w* = Po(I — D + of)(w*) is the unique solution of VI (22).
Finally, we show that w, converges strongly to w* as n — oc.

[ = we”

= ||a,,af(wn) +( - o,D)S,v, —w* ||2

|| - otnD)(Snvn - w*) +ay, (of(wn) —Dw*) ||2

IA

|t = uD) (v = w*) | + 2au{af (W) = DW*, wyiy — w¥)
< (L= a7V = w* | + 200 (f (W) = f (WF), W1 - w*)
+ o f (W) — DWW — )
< (W=7 [wn = w'[|* + 200k = " | [ = |
+2atu(of (W*) — DW*, Wyyy — W)
< W=, [wa = w "+ aok(Jwn = w[|* + [ woss - w*[)

+ 2a,,(af(w*) - Dw*, Wy — w*).

It follows that
i 1-20,7 + 7> +auok o
P[P = 2T BT oy,
20,
1 o, k(af( ) Dw,wml—w*)
~ 20,(y —ok) 12 a2y? )
- (1- 2D - e -]
2
+1 zak<af( ) Dw*,w,,+1—w*),
n

where y,, = % and 8, = m”wn — w2+ g %}Z’;k (0f (W) = DW*, Wy — W*).
Hence, all conditions of Lemma 2.4 are satisfied.
Therefore, we immediately deduce that w, — w*.
Case 2: The sequence {||w,, — z||} is not monotone.
By Lemma 2.6, there exists a sequence of positive integers: {t(n)}, n > no, where nq is
large enough such that

7(n) = max{k < n: |wi - w*|| < Wi - w*[}.
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It is easy to see that {t(n)} is nondecreasing and (1) — oo as n — oo.
We have [[we) — w*|| < [Wemy = w*ll; Iy = w* | < [Wegya —w*l.

Just as the argument of Case 1, we have

lim, - o ||Wr(n) — Vi) | =0;
lim,,_, o0 ||Vr(n)+1 — Vi(n) | = lim,,_, o ||Wr(n)+1 - Wr(n)” =0;
limn—>oo ”Svr(n) - Vr(n)” = 0;

limsup,_, . (of (W*) = DW*, w; () —w*) <0.

According to Case 1, we have lim,,_, o [|Wr () — w*|| = 0 and lim,,_, o [|Wz ()41 — W*|| = 0.
Finally, from Lemma 2.6, we get

0< ||wn—w*|| §max{||w,,—w*

) [[Wem) — w* ||} < ”W,;(n)ﬂ —w* ” —0, n— o0
Therefore, the sequence {w,} converges strongly to w*.
This completes the proof. d

Corollary 3.1 Let Hy, Hy, H3, A, B, A*, B*, U, K, J\'"), G, G*, f, Sy, S be the same as them
of Theorem 3.1. Let w,, be generated by

vy = JEO -y G*GYws

n

Wyl = anf(wn) + (1 - an)SnVrr

Suppose S, satisfies the AKTT condition, Fix(S) = (2, Fix(S,,). If the solution set Q@ =
Fix(S) N T is nonempty and the following conditions are satisfied:
() ay€(0,1), limy 000, =0, Y oogaty = 00;
(i) D02 lotmst — ctl < 005
(ii) D020 |t — thn] < 00,
then the sequence w, converges strongly to w*, where w* = Pof (w*).

Corollary 3.2 Let Hy, Hy, H3, A, B, A*, B*, U, K, 'Y, G, G*, f, S,., S be the same as
them of Theorem 3.1. Let {wy} be a sequence of positive real numbers with y o) wi =1,
S=Y oS Lu =Y 3., X,}-’;Sk, and M, = Y_;_ w. Let w,, be generated by

v = JE -y G*GYws

n

Wit = Qyf (Wy) + (L — )Ly V.

Suppose S, satisfies the AKTT condition, Fix(S) = (oo, Fix(S,). If the solution set Q =
Fix(S) N T is nonempty and the following conditions are satisfied:
() an€(0,1), limy 000y =0, Y oopaty = 00;
(i) D02 lotmst — atl < 005
(iii) Yoo lsner = tha] < 00,
Then the sequence w, converges strongly to a point w*, where w* = Pof (w*).

It should be noted that by Bruck’s lemma [16] and He-Guo’s lemma [17] each L, is also
nonexpansive mapping and Fix(S) = (1,2, Fix(S,,).



Guo et al. Fixed Point Theory and Applications (2015) 2015:223 Page 17 of 18

Table 1 Numerical results for some initial points (xo, o) = (0.01,0.01),(1, 1),(15, 15)

Initial point ¢ Iter. Time

(0.01,0.01) 0.00001 2 0.00251
(0.01,0.01) 0.00001 2 0.00268
(1,1 0.00001 5 0.00452
(1,1 0.00001 6 0.00550
(15,15) 0.00001 8 0.00606
(15,15) 0.00001 8 0.00790

Table 2 Numerical results for some different u, = 1,0.5,0.2,0.1

up & Iter. Time

1 0.00001 22 002175
1 0.00001 21 0.01469
0.5  0.00001 36 0.02851
0.5  0.00001 37 0.03045
0.2 0.00001 125 0.11522
0.2 0.00001 113 0.08003
0.1 0.00001 1223 094707
0.1 0.00001 757 0.53070

4 Numerical example

In this section, we give an example and numerical results to illustrate our algorithms and
the main result of this paper. All the experiment are performed on a personal Lenovo
computer with Intel Core i3-2485M CPU 2.30 GHz and RAM 2.00 GB.

Example 4.1 Let H, = R*, H, = R*, H3 = R*, two operators of matrix multiplication I/ :
R* — R*, K : R* — R* defined by U(x) = T} (x), K(x) = T»(x), where

8 0 0 O 3 0 0 O
0 12 0 O 0 6 0 O
Tl = ) T2 =
0O 0 7 O 0 0 2 O
0O 0 0 20 0 0 0 12
put S,(x) = 1+2nx, o =1, D=1, then U, K, S, satisfy all conditions of Theorem 3.1 and

Corollary 3.1. We know (12) is equivalent to the following step:

Xn+l = ar(fl(xn) + (1 - an)Sn],Z (xn - VAT(Axn - Byn));
Vn+1 = anﬁ(yn) + (1 - an)Sn],fn (yn + )/BT(AJC,, - Byn))

Note that if 77, T, are positive linear operators, then they are maximal monotone. We
defined the resolvent mappings /i = (I + u,U)™, J& = (I + u,K)™, where u, > 0. Then we
present the following algorithm.

Algorithm 4.1
Step 0. Choose initial point (xg, y) € (0,1 x 10%) x (0,1 x 10°),¢>0, y € (0
trarily and put n = 1.

) arbi-

’A +A

Step 1. Compute (x,,,1, ¥,:1) as follows:

KXn+l = ‘Xr(fl(xn) +(1- an)Sn],Z (%, — VAT(Axn _Byn));
Vn+1 = Olan()’n) +(1- an)Sn],fn (yyt + )/BT(AJC,, - Byn))'
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Step 2. Set ||Ax,, — By, || < € as the stop criterion, else set n = n + 1 and go to step 1.

Table 1 shows the numerical results of Algorithm 4.1 with different initial points.
Table 2 shows that decreasing of i, has an effect on the number of iterations, that is, u,
will converge faster to a solution when #,, is increased.
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