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1 Introduction
The concept of fractional differential equations (abbreviated as FDEs) has been examined
and considered seeing its usefulness and plentiful presentations in different disciplines of
applied science, engineering, and technology such as computer networking, fluid dynam-
ics, control theory, mathematical biology, economics, viscoelasticity, optimization theory,
and control theory [1–8]. Nonlinear fractal oscillator is recognized in a fractal space by
fractal derivative, and its variational principle is gained for a thin film equation [9]. In a
fractal space He’s fractional derivative [10] is assumed to originate evolution equations in-
volving fractional order [11]. In a fractal process, the Fornberg–Whitham fractional equa-
tion through He’s fractional derivative is considered [12], and future challenges of fractal
calculus have been illustrated from two-scale thermodynamics to fractal variational prin-
ciple by Ji-Huan He [13]. Substantial consideration has been given to the presence of so-
lutions of initial and boundary value problems (BVPs) having CFD.

Diverse sort of problems dedicated to FDEs, like local and nonlocal BVPs, Dirichlet and
Neumann BVPs, integral BVPs, and impulsive BVPs, have been explored so far. An indis-
pensable class of FDEs named implicit fractional differential equations (shortly IFDEs) has
been considered by numerous writers. This is because of the point that many problems
of finances and decision-making can be modeled by using IFDEs. Recently more courtesy
has been given to scrutinizing sufficient conditions essential for the existence of solutions
to IFDEs. It was observed sensibly that the existence of solutions to IFDEs had a lot of so-
licitations in optimization theory, quantitative theory, viscoelasticity, and fluid mechanics
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[14–19]. Nonlocal Cauchy problem via a fractional operator including power kernel in
Banach spaces was considered in [20]. The fractional hampered generalized regularized
long wave equation in the sagacity of Caputo, Atangana–Baleanu, and Caputo–Fabrizio
fractional derivatives was investigated in [21]. In [22] authors presented a method for non-
linear fractional regularized long-wave (RLW) models. Mehmet Yavuz [23] inspected in-
novative solutions of fractional order best valuing models and their fundamental mathe-
matical studies.

Fixed point concept has been used to probe the existence and uniqueness for some prob-
lems. Operating these notions, one needs strong compact settings due to which the area
is limited to some BVPs. To spread the methods to additional classes of BVPs, mathemati-
cians have been attracted to finding a tool of nonlinear analysis. One of the strong tools is
the degree method. After studying the present literature, we pointed out that IFDEs hav-
ing integral boundary conditions have not been properly studied by the degree method.
There are very few results in the literature which utilized the degree method for the exis-
tence of solutions to initial and some BVPs having CFD [1, 24–27]. Therefore, inspired by
the applications of IFDEs, Samina et al. [28] investigated the presence of solutions to the
following coupled system “of IFDEs through fixed point theory

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dκu(�) = F (�, w(�), Dκu(�)),

Dδw(�) = F (�, u(�), Dδw(�)),

u(0) = –u(ξ ), u′(0) = –u′(ξ ),

w(0) = –w(ξ ), w′(0) = –w′(ξ ),

where κ , δ ∈ (1, 2], ξ ∈ (0,∞), � ∈ [0, ξ ] and F ,F : J × R × R → R are nonlinear con-
tinuous functions.” Using fixed point theory, Cabada et al. [29] discussed the following
problem:

Dκu(�) + F
(
�, u(�)

)
= 0, � ∈ (0, 1),

u(0) + u′′(0) = 0, u(1) = ζ

∫ 1

0
u(s) ds,

where 2 < κ < 3, 0 < ζ < 2, D is the CFD and F : J× [0,∞) → [0,∞).
Motivated by [28] and [29], we use degree theory and investigate some suitable condi-

tions for uniqueness and existence of solutions to the following IFDEs:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dκu(�) = F (�, w(�), Dκu(�)), � ∈ J,

Dδw(�) = F (�, u(�), Dδw(�)), � ∈ J,

u(0) = r(u), u′(0) = uo, u(1) = 1
�(κ)

∫ 1
0 (1 – s)κ–1g1(s, u(s)) ds,

w(0) = h(w), w′(0) = wo, w(1) = 1
�(δ)

∫ 1
0 (1 – s)δ–1g2(s, w(s)) ds,

(1.1)

where κ , δ ∈ (2, 3], D denotes the CFD, F ,F : J × R × R → R, g1, g2 : J × R → R, and
r, h : J →R are continuous functions.

2 Preliminaries
To prove the main results, we need some definitions and results in the sequel from the
existing literature. Throughout the work the notations M = C(J,R) and N = C(J,R) are
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used for Banach spaces having the norm ‖u‖ = sup{|u(�)| : � ∈ J}. The product M×N is
a Banach space with the norm ‖(u, w)‖ = ‖u‖ + ‖w‖.

Definition 2.1 ([30]) “LetW : V →M be a bounded continuous function, whereV ⊆M.
Then, for all bounded subset S ⊆ V , W is

(1) σ -Lipschitz if ∃K ≥ 0 
 σ (W(S)) ≤Kσ (S), ∀ bounded subsets S ⊆ V ;
(2) strict σ -contraction if ∃0 ≤K < 1 with σ (W(S)) ≤Kσ (S), ∀ bounded sets S ⊆ V ;
(3) σ -condensing if σ (W(S)) < σ (S), ∀ bounded sets S ⊆ V having σ (S) > 0. In the other

sense, σ (W(S)) ≥ σ (S) implies σ (S) = 0.

Furthermore, W : V →M is Lipschitz whenever ∃K > 0 provided

∥
∥W(u) – W(w)

∥
∥ ≤K|u – w|, ∀u, w ∈ V .

Further, if K < 1, then W is a strict contraction.”

Proposition 2.1 ([31]) If W , T : V → M are σ -Lipschitz maps having constants K1 and
K2 respectively, then W + T is σ -Lipschitz having constant K1 + K2.

Proposition 2.2 ([31]) If W : V → M is Lipschitz having constant K, then W is σ -
Lipschitz having the same constant K.

Proposition 2.3 ([31]) If W : V → M is compact, then W is σ -Lipschitz having the con-
stant K = 0.

Theorem 2.1 ([31]) Let W : M→M be σ -condensing having

	 = {u ∈M : ∃0 ≤ ϑ ≤ 1 with u = ϑWu}.

If 	 is bounded in M, so ∃r > 0 
 	 ⊂ Sr(0), so the degree

Q
(
I – ϑW , Sr(0), 0

)
= 1, ∀ϑ ∈ J.

It means that W has at least one fixed point.

Definition 2.2 ([32]) “The arbitrary order (κ > 0) integral of a function F : R+ → R is
given by

IκF (�) =
1

�(κ)

∫ �

0
(� – s)κ–1F (s) ds. (2.1)

Definition 2.3 ([32]) The arbitrary order (κ > 0) derivative of a function F : R+ → R in
the Caputo sense is given by

DκF (�) =
1

�(n – κ)

∫ �

0
(� – s)n–κ–1F (n)(s) ds.” (2.2)



Sarwar et al. Advances in Difference Equations        (2021) 2021:116 Page 4 of 15

Lemma 2.1 [32] Let κ > 0, then

Iκ
[
Dκh(�)

]
= h(�) + c0 + c1� + c2�

2 + · · · + cn–1�
n–1

for arbitrary ci ∈R, i = 0, 1, 2, . . . , n – 1.

3 Main results
Before studying the existence results for BVP (1.1), we list the following assumptions.

(C1) For random u, w, u, w ∈R, ∃ numbers kr , kh ∈ [0, 1) with

∣
∣r(u) – r(u)

∣
∣ ≤ kr|u – u|,

∣
∣h(w) – h(w)

∣
∣ ≤ kh|w – w|.

(C2) For arbitrary u, w ∈R, ∃ constants cr , ch, Mr , Mh with

∣
∣r(u)

∣
∣ ≤ cr|u| + Mr ,

∣
∣h(w)

∣
∣ ≤ ch|w| + Mh.

(C3) For arbitrary u, w ∈R, ∃ constants zg1 , zg2 , Ng1 , Ng2 with

∣
∣g1

(
s, u(s)

)∣
∣ ≤ zg1 |u| + Ng1 ,

∣
∣g2

(
s, w(s)

)∣
∣ ≤ zg2 |w| + Ng2 .

(C4) For arbitrary u, w ∈R, ∃ constants c1, d1 > 0, 0 < c2, d2 < 1, MF , MF with

∣
∣F

(
s, w(s),ω(s)

)∣
∣ ≤ c1|w| + c2|ω| + MF ,

∣
∣F

(
s, u(s), z(s)

)∣
∣ ≤ d1|u| + d2|z| + MF ,

where Dκu(s) = ω(s) and Dκw(s) = z(s).
(C5) For arbitrary u, w, u, w ∈ R, ∃ constants a1, a2 with

∣
∣g1

(
s, u(s)

)
– g1

(
s, u(s)

)∣
∣ ≤ a1|u – u|,

∣
∣g2

(
s, w(s)

)
– g2

(
s, w(s)

)∣
∣ ≤ a2|w – w|.

(C6) For arbitrary u, w, u, w ∈ R, ∃ constants Cg1 , Cg2 > 0, 0 < Dg1 , Dg2 < 1 with

∣
∣F

(
s, w(s),ω(s)

)
– F

(
s, w(s),ω(s)

)∣
∣ ≤ Cg1 |w – w| + Dg1 |ω – ω|,

∣
∣F

(
s, u(s), z(s)

)
– F

(
s, u(s), z(s)

)∣
∣ ≤ Cg2 |u – u| + Dg2 |z – z|,

where Dκu(s) = ω(s) and Dκw(s) = z(s).

Lemma 3.1 Let the integrable function h : J →R. Then the IFDE

Dκu(�) = h(�), 2 < κ ≤ 3,
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with boundary condition of type

u(0) = r(u), u′(0) = uo, u(1) =
1

�(κ)

∫ 1

0
(1 – s)κ–1g1

(
s, u(s)

)
ds,

has a solution

u(�) =
(
1 – �2)r(u) +

(
� – �2)uo +

�2

�(κ)

∫ 1

0
(1 – s)κ–1g1

(
s, u(s)

)
ds

+
1

�(κ)

∫ �

0
(� – s)κ–1h(s) ds –

�2

�(κ)

∫ 1

0
(1 – s)κ–1h(s) ds.

Proof Applying the operator Iκ to Dκu(�) = h(�), and by Lemma 2.1, we have

u(�) = c0 + c1� + c2�
2 + Iκh(�). (3.1)

Utilizing the boundary conditions to (3.1), we get

c0 = r(u), c1 = uo, c2 = –r(u) – uo – Iκh(1) +
1

�(κ)

∫ 1

0
(1 – s)κ–1g1

(
s, u(s)

)
ds.

Substituting in equation (3.1), we have

u(�) = r(u) + uo� – �2r(u) – �2uo +
�2

�(κ)

∫ 1

0
(1 – s)κ–1g1

(
s, u(s)

)
ds

–
�2

�(κ)

∫ 1

0
(1 – s)κ–1h(s) ds +

1
�(κ)

∫ �

0
(� – s)κ–1h(s) ds

=
(
1 – �2)r(u) +

(
� – �2)uo +

�2

�(κ)

∫ 1

0
(1 – s)κ–1g1

(
s, u(s)

)
ds

–
�2

�(κ)

∫ 1

0
(1 – s)κ–1F

(
s, w(s), Dκu(s)

)
ds

+
1

�(κ)

∫ �

0
(� – s)κ–1F

(
s, w(s), Dκu(s)

)
ds. �

By Lemma 3.1, the solutions of coupled system (1.1) are solutions of the following system
of integral equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(�) = (1 – �2)r(u) + (� – �2)uo + �2

�(κ)
∫ 1

0 (1 – s)κ–1g1(s, u(s)) ds

– �2

�(κ)
∫ 1

0 (1 – s)κ–1F (s, w(s), Dκu(s)) ds

+ 1
�(κ)

∫ �

0 (� – s)κ–1F (s, w(s), Dκu(s)) ds,

w(�) = (1 – �2)h(w) + (� – �2)wo + �2

�(δ)
∫ 1

0 (1 – s)δ–1g2(s, w(s)) ds

– �2

�(δ)
∫ 1

0 (1 – s)δ–1F (s, u(s), Dδw(s)) ds

+ 1
�(δ)

∫ �

0 (� – s)δ–1F (s, u(s), Dδw(s)) ds.

(3.2)

Let A = (A1,A2), B = (B1,B2), and T = A + B, where A1 : M→M and A2 : N →N are
defined by

A1(u)(�) =
(
1 – �2)r(u) +

(
� – �2)uo
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and

A2(w)(�) =
(
1 – �2)h(w) +

(
� – �2)wo,

and B1,B2 : M×N →M×N are defined by

B1(u, w)(�) =
�2

�(κ)

∫ 1

0
(1 – s)κ–1g1

(
s, u(s)

)
ds

–
�2

�(κ)

∫ 1

0
(1 – s)κ–1F

(
s, w(s), Dκu(s)

)
ds

+
1

�(κ)

∫ �

0
(� – s)κ–1F

(
s, w(s), Dκu(s)

)
ds

and

B2(u, w)(�) =
�2

�(δ)

∫ 1

0
(1 – s)δ–1g2

(
s, w(s)

)
ds –

�2

�(δ)

∫ 1

0
(1 – s)δ–1F

(
s, u(s), Dδw(s)

)
ds

+
1

�(δ)

∫ �

0
(� – s)δ–1F

(
s, u(s), Dδw(s)

)
ds.

Then the solution of (1.1) in the operator form becomes

(u, w) = T (u, w) = A(u, w) + B(u, w). (3.3)

Lemma 3.2 The following Lipschitz condition is satisfied for the operator A:

∣
∣A(u, w)(�) – A(u, w)(�)

∣
∣ ≤ kθ

∥
∥(u, w) – (u, w)

∥
∥. (3.4)

Proof For any (u, w), (u, w) ∈M×N , we have

∣
∣A(u, w)(�) – A(u, w)(�)

∣
∣ =

∣
∣
(
1 – �2)r(u) +

(
1 – �2)h(w) –

(
1 – �2)r(u) –

(
1 – �2)h(w)

∣
∣

≤ ∣
∣
(
1 – �2)(r(u) – r(u)

∣
∣ +

∣
∣
(
1 – �2)(h(w) – h(w)

∣
∣

≤ ∣
∣r(u) – r(u)

∣
∣ +

∣
∣h(w) – h(w)

∣
∣

≤ kr|u – u| + kh|w – w|,

which implies that

∣
∣A(u, w)(�) – A(u, w)(�)

∣
∣ ≤ kθ

∥
∥(u, w) – (u, w)

∥
∥, (3.5)

where kθ = max{kr , kh}. Thus A is Lipschitz having constant kθ , and in view of Proposi-
tion 2.2, A is σ -Lipschitz having constant kθ . �

Lemma 3.3 The operator B : M×N →M×N is continuous.

Proof Let {(un, wn)} be a sequence in a bounded set

Dk =
{∥
∥(u, w)

∥
∥ ≤ r : (u, w) ∈M×N

}
,
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so that (un, wn) → (u, w) as n → ∞ in Dk . To check the continuity of B, we have to show
that

∥
∥B(un, wn) – B(u, w)

∥
∥ → 0 as n → ∞.

For this, we have

∣
∣B1(un, wn)(�) – B1(u, w)(�)

∣
∣

=
�2

�(κ)

∫ 1

0
(1 – s)κ–1g1

(
s, un(s)

)
ds –

�2

�(κ)

∫ 1

0
(1 – s)κ–1F

(
s, wn(s), Dκun(s)

)
ds

+
1

�(κ)

∫ �

0
(� – s)κ–1F

(
s, wn(s), Dκun(s)

)
ds –

�2

�(κ)

∫ 1

0
(1 – s)κ–1g1

(
s, u(s)

)
ds

+
�2

�(κ)

∫ 1

0
(1 – s)κ–1F

(
s, w(s), Dκu(s)

)
ds

–
1

�(κ)

∫ �

0
(� – s)κ–1F

(
s, w(s), Dκu(s)

)
ds

≤
∣
∣
∣
∣

1
�(κ)

∫ 1

0
(1 – s)κ–1g1

(
s, un(s)

)
ds –

1
�(κ)

∫ 1

0
(1 – s)κ–1g1

(
s, u(s)

)
ds

–
1

�(κ)

∫ 1

0
(1 – s)κ–1F

(
s, wn(s), Dκun(s)

)
ds

+
1

�(κ)

∫ 1

0
(1 – s)κ–1F

(
s, w(s), Dκu(s)

)
ds

+
1

�(κ)

∫ �

0
(� – s)κ–1F

(
s, wn(s), Dκun(s)

)
ds

–
1

�(κ)

∫ �

0
(� – s)κ–1F

(
s, w(s), Dκu(s)

)
ds

∣
∣
∣
∣,

which implies that

∣
∣B1(un, wn)(�) – B1(u, w)(�)

∣
∣

≤
∣
∣
∣
∣

1
�(κ)

∫ 1

0
(1 – s)κ–1g1

(
s, un(s)

)
ds –

1
�(κ)

∫ 1

0
(1 – s)κ–1g1

(
s, u(s)

)
ds

∣
∣
∣
∣

+
∣
∣
∣
∣

1
�(κ)

∫ 1

0
(1 – s)κ–1F

(
s, wn(s), Dκun(s)

)
ds

–
1

�(κ)

∫ 1

0
(1 – s)κ–1F

(
s, w(s), Dκu(s)

)
ds

∣
∣
∣
∣

+
∣
∣
∣
∣

1
�(κ)

∫ �

0
(� – s)κ–1F

(
s, wn(s), Dκun(s)

)
ds

–
1

�(κ)

∫ �

0
(� – s)κ–1F

(
s, w(s), Dκu(s)

)
ds

∣
∣
∣
∣

=
1

�(κ)

∫ 1

0
(1 – s)κ–1∣∣g1

(
s, un(s)

)
– g1

(
s, u(s)

)∣
∣ds
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+
1

�(κ)

∫ 1

0
(1 – s)κ–1∣∣F

(
s, wn(s), Dκun(s)

)
– F

(
s, w(s), Dκu(s)

)∣
∣ds

+
1

�(κ)

∫ �

0
(� – s)κ–1∣∣F

(
s, wn(s), Dκun(s)

)
– F

(
s, w(s), Dκu(s)

)∣
∣ds.

From the continuity of F it follows that

F
(
s, wn(s),ωn(s)

) →F
(
s, w(s),ω(s)

)
as n → ∞.

For each � ∈ J, using (C5) we obtain

∫ �

0

(� – s)κ–1

�(κ)
∣
∣F

(
s, wn(s),ωn(s)

)
– F

(
s, w(s),ω(s)

)∣
∣ds → 0 as n → ∞,

similarly other terms approach 0 as n → ∞. It follows that

∣
∣B1(un, wn)(�) – B1(u, w)(�)

∣
∣ → 0 as n → ∞.

Similarly,

∣
∣B2(un, wn)(�) – B2(u, w)(�)

∣
∣ → 0 as n → ∞.

Therefore B1 and B2 and thus B is continuous. �

Lemma 3.4 The following growth conditions are valid for the operators A and B:

∥
∥A(u, w)

∥
∥ ≤ cθ

∥
∥(u, w)

∥
∥ + M for each (u, w) ∈M×N (3.6)

and

∥
∥B(u, w)

∥
∥ ≤ θ

∥
∥(u, w)

∥
∥ +  for each (u, w) ∈M×N (3.7)

respectively, where cθ = max{cr , ch}, θ = max{zg1 + 2d1
1–d2

, zg2 + 2c1
1–c2

}, and  = 2MF
1–c2

+ 2MF
1–d2

+
Ng1 + Ng2 .

Proof For the growth condition, consider

∣
∣A(u, w)

∣
∣ =

∣
∣
(
A1(u),A2(w)

)∣
∣

=
∣
∣
(
1 – �2)r(u) +

(
� – �2)uo +

(
1 – �2)h(w) +

(
� – �2)wo

∣
∣

≤ ∣
∣r(u) + uo

∣
∣ +

∣
∣h(w) + wo

∣
∣

≤ ∣
∣r(u)

∣
∣ +

∣
∣h(w)

∣
∣ + |uo| + |wo|

≤ cr|u| + ch|w| + Mr + Mh + |uo| + |wo|
≤ cθ

∥
∥(u, w)

∥
∥ + M,
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where M = Mr + Mh + |uo|+ |wo|, hence the operator A satisfies the growth condition. Now

∥
∥B1(u, w)(�)

∥
∥

=
∥
∥
∥
∥

�2

�(κ)

∫ 1

0
(1 – s)κ–1g1

(
s, u(s)

)
ds –

�2

�(κ)

∫ 1

0
(1 – s)κ–1F

(
s, w(s), Dκu(s)

)
ds

+
1

�(κ)

∫ �

0
(� – s)κ–1F

(
s, w(s), Dκu(s)

)
ds

∥
∥
∥
∥

≤ 1
�(κ)

∫ 1

0
(1 – s)κ–1∥∥g1

(
s, u(s)

)∥
∥ds +

1
�(κ)

∫ 1

0
(1 – s)κ–1∥∥F

(
s, w(s), Dκu(s)

)∥
∥ds

+
1

�(κ)

∫ �

0
(� – s)κ–1∥∥F

(
s, w(s), Dκu(s)

)∥
∥ds

≤ zg1 |u| + 2c1|w| + 2c2|ω| + Ng1 + 2MF

≤ zg1 |u| +
2c1

1 – c2
|w| +

2MF
1 – c2

+ Ng1 ,

similarly

∥
∥B2(u, w)(�)

∥
∥ ≤ zg2 |w| +

2d1

1 – d2
|u| +

2MF
1 – d2

+ Ng2 .

Now

∥
∥B(u, w)

∥
∥ =

∥
∥B1(u, w)

∥
∥ +

∥
∥B2(u, w)

∥
∥

≤ zg1 |u| + zg2 |w| +
2d1

1 – d2
|u| +

2c1

1 – c2
|w| +

2MF
1 – c2

+
2MF
1 – d2

+ Ng1 + Ng2

≤
(

zg1 +
2d1

1 – d2

)

|u| +
(

zg2 +
2c1

1 – c2

)

|w| +
2MF
1 – c2

+
2MF
1 – d2

+ Ng1 + Ng2 ,

which implies that

∥
∥B(u, w)

∥
∥ ≤ θ

∥
∥(u, w)

∥
∥ + , (3.8)

which is the required growth condition on B. �

Lemma 3.5 The operator B : M × N → M × N is compact. Consequently, B is σ -
Lipschitz with the constant zero.

Proof Consider a sequence {(un, wn)}n∈N in D, where D is a bounded subset of Dk . Then,
by using the growth condition of B (3.7), it is clear that G(D) is bounded. Now, we will
show that B is equicontinuous. For each {(un, wn)} in D and for each ε > 0, we have

∣
∣B1(un, wn)(�) – B1(un, wn)(τ )

∣
∣

=
∣
∣
∣
∣

�2

�(κ)

∫ 1

0
(1 – s)κ–1g1

(
s, un(s)

)
ds –

�2

�(κ)

∫ 1

0
(1 – s)κ–1F

(
s, wn(s), Dκun(s)

)
ds

+
1

�(κ)

∫ �

0
(� – s)κ–1F

(
s, wn(s), Dκun(s)

)
ds –

τ 2

�(κ)

∫ 1

0
(1 – s)κ–1g1

(
s, un(s)

)
ds
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+
τ 2

�(κ)

∫ 1

0
(1 – s)κ–1F

(
s, wn(s), Dκun(s)

)
ds

–
1

�(κ)

∫ �

0
(τ – s)κ–1F

(
s, wn(s), Dκun(s)

)
ds

–
1

�(κ)

∫ τ

�

(τ – s)κ–1F
(
s, wn(s), Dκun(s)

)
ds

∣
∣
∣
∣,

which implies that

∣
∣B1(un, wn)(�) – B1(un, wn)(τ )

∣
∣

≤
∣
∣
∣
∣

�2

�(κ)

∫ 1

0
(1 – s)κ–1g1

(
s, un(s)

)
ds –

τ 2

�(κ)

∫ 1

0
(1 – s)κ–1g1

(
s, un(s)

)
ds

∣
∣
∣
∣

+
∣
∣
∣
∣

1
�(κ)

∫ �

0
(� – s)κ–1F

(
s, wn(s), Dκun(s)

)
ds

–
1

�(κ)

∫ �

0
(τ – s)κ–1F

(
s, wn(s), Dκun(s)

)
ds

∣
∣
∣
∣

+
∣
∣
∣
∣

τ 2

�(κ)

∫ 1

0
(1 – s)κ–1F

(
s, wn(s), Dκun(s)

)
ds

–
�2

�(κ)

∫ 1

0
(1 – s)κ–1F

(
s, wn(s), Dκun(s)

)
ds

∣
∣
∣
∣

+
∣
∣
∣
∣

1
�(κ)

∫ τ

�

(τ – s)κ–1F
(
s, wn(s), Dκun(s)

)
ds

∣
∣
∣
∣

=
∣
∣
∣
∣

1
�(κ)

∫ �

0

(
(� – s)κ–1 – (τ – s)κ–1)F

(
s, wn(s), Dκun(s)

)
ds

∣
∣
∣
∣

+
∣
∣
∣
∣
(τ 2 – �2)

�(κ)

∫ 1

0
(1 – s)κ–1F

(
s, wn(s), Dκun(s)

)
ds

∣
∣
∣
∣

+
∣
∣
∣
∣

1
�(κ)

∫ τ

�

(τ – s)κ–1F
(
s, wn(s), Dκun(s)

)
ds

∣
∣
∣
∣

+
∣
∣
∣
∣
(�2 – τ 2)

�(κ)

∫ 1

0
(1 – s)κ–1g1

(
s, un(s)

)
ds

∣
∣
∣
∣

=
|(�2 – τ 2)|‖g1‖

�(κ)

∫ 1

0
(1 – s)κ–1 ds +

‖F‖
�(κ)

∫ �

0

∣
∣(� – s)κ–1 – (τ – s)κ–1∣∣ds

+
(τ 2 – �2)‖F‖

�(κ)

∫ 1

0
(1 – s)κ–1 ds +

‖F‖
�(κ)

∫ τ

�

(τ – s)κ–1 ds

=
2‖F‖

�(κ + 1)
(τ – �)κ –

‖g1‖
�(κ + 1)

(
τ 2 – �2).

Taking limit as τ → �, we get

∣
∣B1(un, wn)(�) – B1(un, wn)(τ )

∣
∣ → 0. (3.9)

So there exists ε > 0 such that

∣
∣B1(un, wn)(�) – B1(un, wn)(τ )

∣
∣ <

ε

2
, (3.10)
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similarly

∣
∣B2(un, wn)(�) – B2(un, wn)(τ )

∣
∣ <

ε

2
. (3.11)

Therefore, from (3.10) and (3.11), we get

∣
∣B(un, wn)(�) – B(un, wn)(τ )

∣
∣ < ε. (3.12)

Thus B is equicontinuous, and therefore B(D) is compact in M×N . In view of Proposi-
tion 2.3, B is σ -Lipschitz having zero constant. �

Theorem 3.1 Under assumptions (C1)–(C4), BVP (1.1) has at least one solution (u, w) ∈
M×N provided cθ + θ < 1 and a solution set of (1.1) is bounded in M×N .

Proof By Lemma 3.2, A is Lipschitz having constant kθ ∈ [0, 1), and by Lemma 3.5, B is
Lipschitz having zero constant. Therefore, by Proposition 2.1, T is a σ -contraction having
constant kθ . Now define

Q =
{

(u, w) ∈M×N : ∃� ∈ J,
 (u, w) = �T (u, w)
}

.

We have to prove that Q is bounded in M×N . So, choose (u, w) ∈Q, then by using (3.6)
and (3.7), we have

∥
∥(u, w)

∥
∥ =

∥
∥�T (u, w)

∥
∥

= �
(∥
∥A(u, w) + B(u, w)

∥
∥
)

≤ �(cθ

∥
∥(u, w)

∥
∥ + M + θ

(∥
∥(u, w)

∥
∥ + 

)

= �(cθ + θ )
∥
∥(u, w)

∥
∥ + �(M + ).

Thus Q is bounded in M × N . Therefore Theorem 2.1 guarantees that T possesses at
least one fixed point. Hence the considered problem has at least one solution. �

Theorem 3.2 Suppose that (kθ + C′ + D′) < 1. Let assumptions (C1), (C5), and (C6) be
satisfied. Then BVP (1.1) has a unique solution.

Proof In the light of Banach contraction theorem, for any (u, w), (u, w) ∈M×N , consider

∣
∣B1(u, w) – B1(u, w)

∣
∣

=
∣
∣
∣
∣

�2

�(κ)

∫ 1

0
(1 – s)κ–1g1

(
s, u(s)

)
ds +

1
�(κ)

∫ �

0
(� – s)κ–1F

(
s, w(s), Dκu(s)

)
ds

–
�2

�(κ)

∫ 1

0
(1 – s)κ–1F

(
s, w(s), Dκu(s)

)
ds –

�2

�(κ)

∫ 1

0
(1 – s)κ–1g1

(
s, u(s)

)
ds

–
1

�(κ)

∫ �

0
(� – s)κ–1F

(
s, w(s), Dκu(s)

)
ds

+
�2

�(κ)

∫ 1

0
(1 – s)κ–1F

(
s, w(s), Dκu(s)

)
ds

∣
∣
∣
∣
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≤
∣
∣
∣
∣

�2

�(κ)

∫ 1

0
(1 – s)κ–1(g1

(
s, u(s)

)
– g1

(
s, u(s)

))
ds

∣
∣
∣
∣

+
∣
∣
∣
∣

1
�(κ)

∫ �

0
(� – s)κ–1(F

(
s, w(s), Dκu(s)

)
– F

(
s, w(s), Dκu(s)

))
ds

∣
∣
∣
∣

+
∣
∣
∣
∣

�2

�(κ)

∫ 1

0
(1 – s)κ–1(F

(
s, w(s), Dκu(s)

)
– F

(
s, w(s), Dκu(s)

))
ds

∣
∣
∣
∣

≤
∣
∣
∣
∣

1
�(κ + 1)

(
g1

(
s, u(s)

)
– g1

(
s, u(s)

))
∣
∣
∣
∣

+
∣
∣
∣
∣

2
�(κ + 1)

(
F

(
s, w(s), Dκu(s)

)
– F

(
s, w(s), Dκu(s)

))
ds

∣
∣
∣
∣

≤ ∣
∣
(
g1

(
s, u(s)

)
– g1

(
s, u(s)

))∣
∣ + 2

∣
∣
(
F

(
s, w(s),ω(s)

)
– F

(
s, w(s),ω(s)

))
ds

∣
∣

≤ a1‖u – u‖ + 2
(
Cg1‖w – w‖ + Dg1‖ω – ω‖)

≤ a1‖u – u‖ + 2
(

Cg1‖w – w‖ +
Cg1 Dg1

1 – Dg1
‖w – w‖

)

= a1‖u – u‖ +
2Cg1

1 – Dg1
‖w – w‖,

which implies that

∣
∣B1(u, w) – B1(u, w)

∣
∣ ≤ C′∥∥(u, w) – (u, w)

∥
∥, (3.13)

where C′ = max{a1, 2Cg1
1–Dg1

}, similarly

∣
∣B2(u, w) – B2(u, w)

∣
∣ ≤ D′∥∥(u, w) – (u, w)

∥
∥. (3.14)

Now, from (3.13) and (3.14), we have

∣
∣B(u, w) – B(u, w)

∣
∣ =

∣
∣B1(u, w) – B1(u, w)

∣
∣ +

∣
∣B2(u, w) – B2(u, w)

∣
∣

≤ C′∥∥(u, w) – (u, w)
∥
∥ + D′∥∥(u, w) – (u, w)

∥
∥,

it follows that

∣
∣B(u, w) – B(u, w)

∣
∣ ≤ (

C′ + D′)∥∥(u, w) – (u, w)
∥
∥. (3.15)

Thus, from (3.4) and (3.15), we have

∣
∣T (u, w) – T (u, w)

∣
∣ ≤ ∣

∣A(u, w) – A(u, w)
∣
∣ +

∣
∣B(u, w) – B(u, w)

∣
∣

≤ kθ

∥
∥(u, w) – (u, w)

∥
∥ +

(
C′ + D′)∥∥(u, w) – (u, w)

∥
∥

=
(
kθ + C′ + D′)∥∥(u, w) – (u, w)

∥
∥,

it means that T is a contraction. Therefore system (1.1) has a unique solution. �
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Example 3.1 Consider the given problem as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D
11
5 u(�) = �3

40 + e–�

50 sin w(�) + e–�

50 D
11
5 u(�),

D
13
6 w(�) = �2

50 + e–π�

30 sin u(�) + e–π�

30 D
13
6 w(�),

u(0) = 5
8 sin(u) + 3

4 , u′(0) = 1, u(1) = 1
�( 11

5 )

∫ 1
0 (1 – s)

6
5 cos u(s)

30 ds,

w(0) = 2
11 cos(w) + 5

8 , w′(0) = 2, w(1) = 1
�( 13

6 )

∫ 1
0 (1 – s)

7
6 e–w(s)

50 ds.

(3.16)

Here,

F
(
�, w(�), Dκu(�)

)
=

�3

40
+

e–�

50
sin w(�) +

e–�

50
D

11
5 u(�) and

F
(
�, u(�), Dδw(�)

)
=

�2

50
+

e–π�

30
sin u(�) +

e–π�

30
D

13
6 w(�).

Now assumptions (C1)–(C6) are satisfied for kr = cr = 5
8 , kh = ch = 2

11 , Mr = 3
4 , Mh = 5

8 , zg1 =
a1 = 1

32 , zg2 = a2 = 1
50 , Cg1 = c1 = 1

55 , Dg1 = c2 = 1
65 , Cg2 = d1 = 1

30 , Dg2 = d2 = 1
35 , MF = 1

40 ,
MF = 1

60 , and Ng1 = Ng2 = 0. Consider the set

Q =
{

(u, w) ∈ C(J×R×R,R),∃� ∈ J : (u, w) = �T (u, w)
}

.

Let (u, w) ∈Q and � ∈ J, then

∥
∥(u, w)

∥
∥ =

∥
∥�T (u, w)

∥
∥

= �
[∥
∥A(u, w) + B(u, w)

∥
∥
]

≤ �
[
(cθ + θ )

∥
∥(u, w)

∥
∥ + (M + )

]

= �
[
0.731

∥
∥(u, w)

∥
∥ + 4.375

]
,

which shows that Q is bounded. Thus, by Theorem 3.1, problem (3.16) possesses at least
one solution, and the solution set is bounded. Further kθ + C′ + D′ � 0.762 < 1, hence
Theorem 3.2 guarantees that problem (3.16) has a unique solution.

Example 3.2 Consider another problem as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

D 16
7 u(�) = e–π�

10+�2 + cos w(�)
52+�3 + D

16
7 u(�)

55+�2 ,

D 9
4 w(�) = e–30�

35+�
+ cos u(�)

63(1+�)2 + D
9
4 w(�)

19+�2 ,

u(0) = 2
25 e–πu + 3

9 , u′(0) = 1
5 , u(1) = 1

�( 16
7 )

∫ 1
0 (1 – s) 9

7 s
√

u(s)
48+s ds,

w(0) = 3
13 sin(w) + 1

18 , w′(0) = 2
7 , w(1) = 1

�( 9
4 )

∫ 1
0 (1 – s) 5

4 s
√

w(s)
75+s ds.

(3.17)

Here,

F
(
�, w(�), Dκu(�)

)
=

e–π�

10 + �2 +
cos w(�)
52 + �3 +

D 16
7 u(�)

55 + �2 and

F
(
�, u(�), Dδw(�)

)
=

e–30�

35 + �
+

cos u(�)
63(1 + �)2 +

D 9
4 w(�)

19 + �2 .



Sarwar et al. Advances in Difference Equations        (2021) 2021:116 Page 14 of 15

Now assumptions (C1)–(C6) are satisfied for kr = cr = 2
25 , kh = ch = 3

13 , Mr = 1
3 , Mh = 1

18 ,
zg1 = a1 = 1

48 , zg2 = a2 = 1
75 , Cg1 = c1 = 1

52 , Dg1 = c2 = 1
55 , Cg2 = d1 = 1

63 , Dg2 = d2 = 1
19 , MF =

1
10 , MF = 1

35 , and Ng1 = Ng2 = 0. Consider the set

Q =
{

(u, w) ∈ C(J×R×R,R),∃� ∈ J : (u, w) = �T (u, w)
}

.

Let (u, w) ∈Q and � ∈ J, then

∥
∥(u, w)

∥
∥ =

∥
∥�T (u, w)

∥
∥

= �
[∥
∥A(u, w) + B(u, w)

∥
∥
]

≤ �
[
(cθ + θ )

∥
∥(u, w)

∥
∥ + (M + )

]

= �
[
0.684

∥
∥(u, w)

∥
∥ + 1.553

]
,

which shows that Q is bounded. Thus, by Theorem 3.1, problem (3.17) possesses at least
one solution, and the solution set is bounded. Further kθ + C′ + D′ � 0.684 < 1, hence
Theorem 3.2 guarantees that problem (3.17) has a unique solution.

4 Conclusion
Upon the applications of a nonlinear analysis tool called degree method, we have estab-
lished some appropriate results which are required for the existence and uniqueness of
the solution to a coupled system of nonlinear IFDEs. Classical fixed point theory has been
used to investigate the existence and uniqueness for some problems. Utilizing these re-
sults, one needs strong compact conditions due to which the area is restricted to some
BVPs. Therefore we used the degree method which relaxed these conditions. There are
very few results in the literature which utilized the degree method for the existence of so-
lutions to initial and some BVPs having CFD, but a coupled system of IFDEs has not yet
been investigated very well. All the results have been demonstrated by proper examples.
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