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Abstract
Fall armyworm (Spodoptera frugiperda), a highly destructive and fast spreading
agricultural pest native to North and South America, poses a real threat to global food
security. In this paper, to explore the dynamics and implications of fall armyworm
outbreak in a field of maize biomass, we propose a new dynamical system for maize
biomass and fall armyworm interaction via Caputo fractional-order operator, which is
not only a nonlocal operator but also contains all characteristics concerned with
memory of the dynamical system. We define the basic reproduction number, which
represents the average number of newborns produced by one individual female
moth during its life span. We establish that the basic reproduction number is a
threshold quantity, which determines persistence and extinction of the pest. Finally,
we simulate the Caputo system using the Adam–Bashforth–Moulton method to
illustrate the main results.
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1 Introduction
Fall armyworm (FAW), Spodoptera frugiperda, a highly destructive and fast spreading
agricultural pest native to North and South America, poses a real threat to global food se-
curity. Spodoptera frugiperda remains an important pest of members of family Poaceace
including major food crops such as corn, sorghum, rice wheat, maize, and diverse pas-
ture [1]. According to FAO [2], food security is defined as a “situation that exists when all
people, at all times, have physical, social, and economic access to sufficient, safe, and nu-
tritious food that meets their dietary needs and food preferences for an active and healthy
life” [2]. In recent years, the FAW has spread globally and emerged in countries where it
had rarely or never before been presented, posing a real threat to global food security [3, 4].
Prior studies suggest that FAW pest is native to and widely distributed in the tropical and
subtropical regions of America [1], and its invasion into Africa was reported for the first
time in January 2016 [1]. Since then, it has become an epidemic pest in and beyond sev-
eral African countries [1, 3–5]. FAW is regarded to be a major pest of maize biomass and
other crops, such as rice, millet, sorghum, and cotton [5]. Due to the importance of maize
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biomass in many countries, there is a need to explore the implications of FAW outbreak
in a field of maize biomass to increase the harvest of this crop.

Mathematical modeling has become a tool used to explore many real-world phenom-
ena. Ordinary differential equations (ODEs) and partial differential equations (PDEs) with
and without memory effects are some of the tools that have been commonly used to for-
mulate equation(s) that mirror the real-world problem(s) [6–12]. In recent years a number
of mathematical models were developed to explore plant–pest interaction [11–19]. Tang
et al. [17] proposed impulsive differential equation models or hybrid dynamical system
to model the introduction of a periodic IPM strategy, which includes periodic spraying
of pesticide and release of natural enemies at critical time [14–17]. On the other hand,
Tang et al. [17] developed an impulsive pest-natural enemy model, in which pulsing ac-
tions such as spraying pesticide and releasing natural enemies were considered with the
assumption that the pesticide kills a pest instantly, whereas Chowdhury [18] formulated
and extensively investigated continuous and discrete predator–prey models concerning
IPM strategy. Discrete host parasitoid models were also proposed in circumstances where
the timing of pesticide application leads to the death of parasitoid, and four different cases
involving the timing of applications were investigated [11, 18].

The aforementioned studies and several other cited therein have certainly produced
many useful results and improved the existing knowledge on plant–pest interaction. How-
ever, one of the limitations of these studies is that their models were based on integer-order
ordinary differential equations. Recent studies suggest that models that use integer-order
differential equations do not adequately capture memory effects and hereditary proper-
ties, which are inherent in many real-world problems [20]. As such, in recent years, frac-
tional calculus has become an intriguing field. Several researchers have shown that models
that utilize fractional calculus are more likely to replicate real-world problems compared
those that use integer-order differential equations since fractional-order differential equa-
tions are able to capture memory effects [20, 21].

Therefore the present work aims to utilize fractional calculus to explore the implications
of FAW infestation in a field planted with initial number of maize biomass at time t = 0 and
obtaining maximum harvest of the biomass at the end of the season. The proposed model
incorporates all the relevant biological information. In particular, the FAW population has
been subdivided into egg population, larvae population, pupae population, and the adult
population, also known as moth. Although the FAW has six larval instar stages, we have
considered this as a single group to reduce complexity of the model. The proposed model
also incorporates the use of nonbiological control methods such as use of pesticides and
commonly known traditional methods such as hand picking of caterpillars. The role of
biological control on FAW dynamics was comprehensively explored in [12], and hence
we did not consider this aspect. At larval stage cannibalism is known to occur in FAW
dynamics, and we also incorporate this aspect. We support qualitative and quantitative
analytical results obtained in this study by numerical illustration.

We organize the paper as follows. In Sect. 2, we give some necessary definitions and
some known properties of fractional calculus. In Sect. 3, we propose a fractional-order
model for fall armyworm and maize biomass interaction. We investigate the local and
global stability of the model equilibria. To support analytical findings, we carry out nu-
merical simulation and present their results in Sect. 4. In the last section, we present the
conclusions of this paper.
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2 Preliminaries on the Caputo fractional calculus
We begin by introducing the definition of Caputo fractional derivative and state related
theorems (see [22–24]), which we will utilize to derive important results in this work.

Definition 2.1 ([22–24]) Suppose that q, a, t ∈ R, q > 0, t > a. The Caputo fractional
derivative is given by

c
aDq

t f (t) =
1

�(n – q)

∫ t

a

f n(ξ )
(t – ξ )q+1–n dξ , n – 1 < q, n ∈N,

where � is the gamma function.

Definition 2.2 ([22, 24]) The Riemann–Liouville fractional integral of arbitrary real order
q > 0 of a function f (t) is defined by the integral

Jqf (t) =
1

�(q)

∫ t

0
(t – ξ )q–1f (ξ ) dξ ,

and J0f (t) = f (t).

Definition 2.3 ([25]) Let q > 0, n – 1 < q < n, n ∈ N. Suppose that f (t), f ′(t), . . . , f (n–1)(t)
are continuous on [t0,∞) and have the exponential order and that c

t0 Dq
t f (t) is piecewise

continuous on [t0,∞). Then

L
{c

t0
Dq

t f (t)
}

= sqF (s) –
n–1∑
k=0

sq–k–1f (k)(t0),

where F (s) = L{f (t)}.

Lemma 2.1 ([26]) Let x(·) be a continuous and differentiable function with x(t) ∈ R+. Then,
for any time instant t ≥ t0, we have

c
t0 Dq

t

(
x(t) – x∗ – x∗ ln

x(t)
x∗

)
≤

(
1 –

x∗

x(t)

)
c
t0 Dq

t x(t), x∗ ∈R
+,∀q ∈ (0, 1).

3 Model formulation and analysis
3.1 Model formulation
A fractional-order model we introduce consists of two populations, maize biomass and the
FAW population, where one of the populations is a stage-structured giving a total of five
populations. Meanwhile, the FAW population is divided into four classes, which represent
the FAW life cycle and are the egg stage E(t), Larvae L(t), pupal P(t), and the adult stage
(Moth) A(t). Although the FAW typically has six larval instars, to reduce complexity of the
model in a biological sensible way, all larval instars are represented by class L(t). The life
cycle of FAW starts when eggs are laid in masses on maize biomass, mostly underside of
these biomass. The following equation describes the FAW egg population dynamics:

c
aDq

t E(t) = bq
(

1 –
E

Kq
E

)
WA –

(
α

q
E + uq

E + μ
q
E
)
E,
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where b represents the egg laying rate for an adult female FAW, that is, an average number
of eggs each female adult FAW will lay per day, KE represents the egg carrying capacity, that
is, the availability of space to lay eggs, W is the proportion of adult FAW that are females,
αE is the egg hatching rate, and uE accounts for the effects of intervention strategies a
farmer will implement once they observe eggs laid on the maize biomass, μE is the egg
mortality rate. FAW larvae generally emerge simultaneously three to five days following
oviposition. The following equation summarizes the population dynamics of the larvae
stage:

c
aDq

t L(t) = α
q
E

(
1 –

L
Kq

L

)
E + θqLM –

(
α

q
L + uq

L + μ
q
L
)
L,

where the transition rate from the egg stage to larvae is αE . Prior studies [3, 27] suggest that
whenever the food is limited, the older larvae of FAW exhibit a cannibalistic behavior on
the smaller larvae. Hence to account for this aspect, we assume that the death rate due to
lack of food is proportional to the smaller larvae αEE and to the coefficient L/KL that rep-
resent the availability of food for each larvae. Therefore KL models the availability of food
and space for the larvae population, μL represents the natural mortality rate of the larvae,
and 1/αL is the average duration of the larvae stage, which is estimated to the of 14–30 days
[3, 28, 29]. In particular, it is estimated that this duration is shorter, around 14 days dur-
ing warm summer months and longer, and around 30 days during cooler weather [28, 29].
The parameter uL models the role of intervention strategies implemented by the farmer,
which may be use of pesticides or handpicking of the larvae. The term θqLM represents
the interaction of larvae and maize biomass, which results in conversion of maize biomass
into larvae biomass. Hence we can write θq = eqβq, where the parameter e represents the
efficiency with which caterpillar (FAW larvae) convert consumed maize biomass.

Pupation of the FAW normally occurs in the soil at a depth of 2–8 cm [29]. Here the larva
constructs a loose cocoon, oval in shape and 20–30 mm in length, through tying together
particles of soil with silk [3]. In areas where the soil is too hard, larvae web together leaf
debris and other material to form a cocoon on the soil surface [3]. The following equation
represents the dynamics of pupae stage:

c
aDq

t P(t) = α
q
LL –

(
μ

q
P + αq

p + uq
P
)
P,

where μP is the natural mortality rate, 1/αP represents the duration of the pupae stage,
which is approximately 8–9 days during the summer; however, during winter it may reach
20–30 days [3, 28]. It is worth noting that the pupal stage of FAW does not enter a dia-
pause period to withstand protracted periods winter or summer seasons in the absence of
the host plant biomass [3, 30]. The effects of intervention strategies on reducing the pop-
ulation of the pupae is modeled by uP . Adult FAW are 20–25-mm long with a wingspan
of approximately 30–40 mm. Female and male adult FAW have different color pattern on
their forewing. Adult female FAW are responsible for laying eggs on the surface of maize
biomass, and this process usually starts after a preoviposition period of 3–4 days and con-
tinues until they become 3-week old. The following equation summarizes the population
dynamics of the adult FAW:

c
aDq

t A(t) = α
q
PP –

(
μ

q
A + uq

A
)
A,



Daudi et al. Advances in Difference Equations         (2021) 2021:99 Page 5 of 27

Figure 1 Model flow diagram illustrating the dynamics of fall armyworm in a field of maize biomass. The fall
armyworm life cycle is divided into four classes: the egg stage E(t), Larvae L(t), pupal P(t), and the adult stage
(Moth) A(t). The compartment M(t) represents maize plant population. The dotted line demonstrates that fall
armyworm larvae are responsible for attacking the maize plant

where αP accounts for the proportion of FAW pupa population that successfully pro-
gresses to the adult stage, uA denotes the effects of intervention strategies, and 1/μA is
the life span, which is estimated to average about 10 days, with a range of about 7–21 days
[3]. It is worth noting that the duration of the life cycle for FAW lasts for about 30 days at
28◦C and may take longer, 60–90 days, when the weather is cooler [28]. In addition, under
favorable conditions, the FAW larvae have a potential to feed and breed on maize biomass
year-round [28].

Plant biomass (plant seeds) planted at time t = 0 emerges in a period of 0 to 7 days.
We assume that planting of maize seed per hectare at the beginning of the season is done
in a day. In this regard, we let M(t) represent the population density of maize biomass
per hectare Therefore the population dynamics of the maize biomass is governed by the
equation

c
aDq

t M(t) = rqM
(

1 –
M
Kq

M

)
– βqLM,

where r is the growth rate of maize biomass, KM is the maximum biomass of maize plants,
and β is rate at which larvae (FAW larva) attacks the biomass of the maize plants.

Our assumptions on the dynamics of fall armyworm in a maize biomass population den-
sity are demonstrated in Fig. 1, and equations are presented in the system

c
aDq

t M(t) = rqM(1 – M
Kq

M
) – βqLM,

c
aDq

t E(t) = bq(1 – E
Kq

E
)WA – (αq

E + uq
E + μ

q
E)E,

c
aDq

t L(t) = α
q
E(1 – L

Kq
L

)E + θqLM – (αq
L + uq

L + μ
q
L)L,

c
aDq

t P(t) = α
q
LL – (μq

P + α
q
p + uq

P)P,
c
aDq

t A(t) = α
q
PP – (μq

A + uq
A)A.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1)

3.2 Positivity and boundedness of solutions to model (1)
Theorem 3.1 There exists a unique solution for the fractional-order model (1) in (0,∞).
Moreover, the solution is nonnegative for all t > 0 and remains in R

5
+.
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Proof We begin by demonstrating that R5
+ = {(M, E, L, P, A) ∈R

5
+ : M ≥ 0, E ≥ 0, L ≥ 0, P ≥

0, A ≥ 0} is positively invariant. For that, we have to demonstrate that on each hyperplane
bounding the nonnegative orthant the vector field points to R

5
+. Let us consider the fol-

lowing cases.
Case 1. Assume that the exists t∗ > t0 such that M(t∗) = 0 and M(t) < 0 for t ∈ (t∗, t1],

where t1 is sufficiently close to t∗. If M(t∗) = 0, then

c
t0 DqM(t∗) = 0.

Therefore c
t0 DqM(t) ≥ 0 for all t ∈ [t∗, t1].

Case 2. Assume that the exists t∗ > t0 such that E(t∗) = 0 and E(t) < 0 for t ∈ (t∗, t1], where
t1 is sufficiently close to t∗. If E(t∗) = 0, then

c
t0 DqE(t∗) = bqWA > 0.

Therefore c
t0 DqE(t) > 0 for all t ∈ [t∗, t1].

Case 3. Assume that the exists t∗ > t0 such that L(t∗) = 0 and L(t) < 0 for t ∈ (t∗, t1], where
t1 is sufficiently close to t∗. If L(t∗) = 0, then

c
t0 DqL(t∗) = α

q
EE > 0.

From the last two equations of system (1) we can easily verify that

c
t0 DqP(t) = α

q
LL > 0,

c
t0 DqA(t) = α

q
PP > 0.

}

From the discussion above we observe that each hyperplane bounding the nonnegative or-
thant, the vector field points to R

5
+, that is, all solutions of system (1), remains nonnegative

for all t ≥ 0. �

Theorem 3.2 Let X (t) = (E(t), L(t), P(t), A(t)) be a unique solution of the model (1) for
t ≥ 0. Then the solution X (t) is bounded above, that is, X (t) ∈ �, where � denotes the
feasible region given by

� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(E(t), L(t), P(t), A(t))

∣∣∣∣∣∣∣∣∣

0 ≤ E(t) ≤ KE

0 ≤ L(t) ≤ CL

0 ≤ P(t) ≤ CP

0 ≤ A(t) ≤ CA

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Proof Here we will now demonstrate that the solutions of system (1) are bounded for all
t ≥ 0. For biological relevance, the least possible lower bound for each of the variables in
system (1) is zero. Based on this, our discussion will be on determining the upper bound
for these variables. Moreover, we can easily establish that the following conditions should
hold: 0 ≤ M(t) ≤ KM and 0 ≤ E(t) ≤ KE . For instance, we have

c
aDq

t M(t) = rqM
(

1 –
M
Kq

M

)
– βqLM
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≤ rqM
(

1 –
M
Kq

M

)
.

Therefore it follows that lim supt→∞ M(t) ≤ KM . Based on these bounds, we have

c
aDq

t L(t) = α
q
E

(
1 –

L
Kq

L

)
E + θqLM –

(
α

q
L + uq

L + μ
q
L
)
L

≤ α
q
EKq

E –
[(

α
q
L + uq

L + μ
q
L +

α
q
EKq

E

Kq
L

)
– θqKq

M

]
L.

Applying the Laplace transform leads to

sqL
[
L(t)

]
– sq–1L(0) ≤ α

q
EKq

E
s

–
[(

α
q
L + uq

L + μ
q
L +

α
q
EKq

E

Kq
L

)
– θqKq

M

]
L

[
L(t)

]
.

Grouping like terms, we get

L
(
L(t)

) ≤ α
q
EKq

E s–1

sq + [(αq
L + uq

L + μ
q
L + α

q
EKq

E
Kq

L
) – θqKq

M]

+
sq–1L(0)

sq + [(αq
L + uq

L + μ
q
L + α

q
EKq

E
Kq

L
) – θqKq

M]

=
α

q
EKq

E sq–(1+q)

sq + [(αq
L + uq

L + μ
q
L + α

q
EKq

E
Kq

L
) – θqKq

M]

+
sq–1L(0

sq + [(αq
L + uq

L + μ
q
L + α

q
EKq

E
Kq

L
) – θqKq

M]
.

Applying the inverse Laplace transform leads to

L(t) ≤L–1
{

α
q
EKq

E sq–(1+q)

sq + [(αq
L + uq

L + μ
q
L + α

q
EKq

E
Kq

L
) – θqKq

M]

}

+ L–1
{

sq–1L(0

sq + [(αq
L + uq

L + μ
q
L + α

q
EKq

E
Kq

L
) – θqKq

M]

}

≤ α
q
EKq

E tqEq,q+1

(
–
[(

α
q
L + uq

L + μ
q
L +

α
q
EKq

E

Kq
L

)
– θqKq

M

]
tq

)

+ L(0)Eq,1

(
–
[(

α
q
L + uq

L + μ
q
L +

α
q
EKq

E

Kq
L

)
– θqKq

M

]
tq

)

≤ max

{
α

q
EKq

E

[(αq
L + uq

L + μ
q
L + α

q
EKq

E
Kq

L
) – θqKq

M]
, L(0)

}

×
([(

α
q
L + uq

L + μ
q
L +

α
q
EKq

E

Kq
L

)
– θqKq

M

]
tqEq,q+1

×
(

–
[(

α
q
L + uq

L + μ
q
L +

α
q
EKq

E

Kq
L

)
– θqKq

M

]
tq

)



Daudi et al. Advances in Difference Equations         (2021) 2021:99 Page 8 of 27

+ Eq,1

(
–
[(

α
q
L + uq

L + μ
q
L +

α
q
EKq

E

Kq
L

)
– θqKq

M

]
tq

))

=
C

�(1)
:= CL,

where CL = max{[(αq
L + uq

L + μ
q
L + α

q
EKq

E
Kq

L
) – θqKq

M], L(0)}. Thus L(t) is bounded from above.
From the equation for pupa population we have

c
aDq

t P(t) = α
q
LL –

(
μ

q
P + αq

p + uq
P
)
P ≤ α

q
LCL –

(
μ

q
P + αq

p + uq
P
)
P.

Applying the Laplace transform leads to

sqL
[
P(t)

]
– sq–1P(0) ≤ α

q
LCL

s
–

(
μ

q
P + αq

p + uq
P
)
L

[
P(t)

]
.

Combining the like terms, we get

L
(
P(t)

) ≤ α
q
LCL

s–1

sq + (μq
P + α

q
p + uq

P)
+ P(0)

sq–1

sq + (μq
P + α

q
p + uq

P)

= α
q
LCL

sq–(1+q)

sq + (μq
P + α

q
p + uq

P)
+ P(0)

sq–1

sq + (μq
P + α

q
p + uq

P)
.

Applying the inverse Laplace transform leads to

P(t) ≤L–1
{
α

q
LCL

sq–(1+q)

sq + (μq
P + α

q
p + uq

P)

}
+ P(0)L–1

{
sq–1

sq + (μq
P + α

q
p + uq

P)

}

≤ α
q
LCLtqEq,q+1

(
–
(
μ

q
P + αq

p + uq
P
)
tq) + P(0)Eq,1

(
–
(
μ

q
P + αq

p + uq
P
)
tq)

≤ α
q
LCL

(αq
P + μ

q
p + uq

P)
(
μ

q
P + αq

p + uq
P
)
tqEq,q+1

(
–
(
α

q
P + μq

p + uq
P
)
tq)

+ P(0)Eq,1
(
–
(
α

q
P + μq

p + uq
P
)
tq)

≤ max

{
α

q
LCL

(αq
P + μ

q
p + uq

P)
, P(0)

}((
α

q
P + μq

p + uq
P
)
tqEq,q+1

(
–
(
α

q
P + μq

p + uq
P
)
tq)

+ Eα,1
(
–
(
α

q
P + μq

p + uq
P
)
tq))

=
C

�(1)
:= CP,

where CP = max{ α
q
LCL

(αq
P+μ

q
p)

, P(0)}. Thus P(t) is bounded from above. From the last equation
of system (1) we have

c
aDq

t A(t) = α
q
PP –

(
μ

q
A + uq

A
)
A ≤ α

q
PCP –

(
μ

q
A + uq

A
)
A.

By applying the Laplace transform it follows that

sqL
[
A(t)

]
– sq–1A(0) ≤ α

q
LCP

s
–

(
μ

q
A + uq

A
)
L

[
A(t)

]
.
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Grouping similar terms, we have

L
(
A(t)

) ≤ α
q
PCP

s–1

sq + (μq
A + uq

A)
+ A(0)

sq–1

sq + (μq
A + uq

A)

= α
q
LKq

L
sq–(1+q)

sq + (μq
P + α

q
p)

+ P(0)
sq–1

sq + (μq
P + α

q
p)

.

Utilizing inverse Laplace transform, we get

A(t) ≤L–1
{
α

q
PCP

sq–(1+q)

sq + (μq
A + uq

A)

}
+ A(0)L–1

{
sq–1

sq + (μq
A + uq

A)

}

≤ α
q
PCPtqEq,q+1

(
–
(
μ

q
A + uq

A
)
tq) + A(0)Eq,1

(
–
(
μ

q
A + uq

A
)
tq)

≤ α
q
PCP

(αq
A + uq

A)
(
μ

q
A + uq

A
)
tqEq,q+1

(
–
(
μ

q
A + uq

A
)
tq) + A(0)Eq,1

(
–
(
μ

q
A + uq

A
)
tq)

≤ max

{
α

q
PCP

(μq
A + uq

A)
, A(0)

}((
μ

q
A + uq

A
)
tq

× Eq,q+1
(
–
(
μ

q
A + uq

A
)
tq) + Eq,1

(
–
(
μ

q
A + uq

A
)
tq))

=
C

�(1)
= CA,

where CP = max{ α
q
PCP

(μq
A+uq

A)
, A(0)}. Thus A(t) is bounded from above. This completes the

proof. �

3.3 Model equilibria
By direct calculations we can observe that system (1) has four equilibrium points:

(i) Trivial equilibrium

E1 =
{

E1 = 0, L1 = 0, P1 = 0, A1 = 0, M1 = 0
}

.

(ii) First axial equilibrium point

E2 =
{

M2 = Kq
M, E2 = 0, L2 = 0, P2 = 0, A2 = 0

}
.

(iii) Second axial equilibrium point E3 = {M3E3, L3, P3, A3}, where

E3 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E3 = Kq
E Kq

L m1m2m3m4
α

q
E(bqWKq

L α
q
Lα

q
P+Kq

E m1m3m4)
( bqWα

q
Eα

q
Lα

q
P

m1m2m3m4
– 1),

L3 = Kq
E Kq

L m1m2m3m4
bqW (KEαE+Kq

L m2)αq
Lα

q
P

( bqWα
q
Eα

q
Pα

q
L

m1m2m3m4
– 1),

P3 = Kq
E Kq

L m1m2m3m4
bqW (KEαE+Kq

L m2)αq
Pm3

( bqWα
q
Eα

q
Lα

q
P

m1m2m3m4
– 1),

A3 = Kq
E Kq

L m1m2m3m4
bqW (KEαE+Kq

L m2)m3m4
( bqWα

q
Eα

q
Lα

q
P

m1m2m3m4
– 1),

M3 = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

with

m1 =
(
μ

q
E + α

q
E + uq

E
)
, m2 =

(
μ

q
L + α

q
L + uq

L
)
,
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m3 =
(
μ

q
P + αq

p + uq
P
)
, m4 =

(
μ

q
A + uq

A
)
.

We can observe that this equilibrium point makes biological sense whenever

bqWα
q
Eα

q
Lα

q
P

m1m2m3m4
> 1.

Let

R0 = bqW
(

α
q
E

μ
q
E + α

q
E + uq

E

)(
α

q
L

μ
q
L + α

q
L + uq

L

)(
α

q
P

μ
q
P + α

q
P + uq

P

)(
1

μ
q
A + uq

A

)

=
bqWα

q
Eα

q
Lα

q
P

m1m2m3m4
.

Biologically, R0 is a threshold quantity that accounts for the persistence of the
FAW population, and thus when R0 > 1, the population of FAW persists and will be
an attack on maize plants leaves, and finally the population of maize plants is
extinct. Hence we can precisely define R0 as the average number of off-spring
generated by an adult female FAW during its entire life span. Precisely, we can note
that a proportion W of moth will each lay b eggs per day for an average duration of

1
μ

q
A+uq

A
; laid egg has the probability α

q
E

μ
q
E+α

q
E+uq

E
of surviving to become larva.

Caterpillars that emerge following oviposition have the probability α
q
L

μ
q
L+α

q
L+uq

L
of

surviving to become pupa, which also has the probability α
q
P

μ
q
P+α

q
P+uq

P
of surviving to

become moth.
(iv) Interior equilibrium point

E4 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E4 = –bqKq
E Wα

q
Lα

q
Ph2+bqKq

E Wα
q
P
√

h2
2–4h1h3

–bqWα
q
Lα

q
Ph2+bqWα

q
P
√

h2
2–4h1h3–2Kq

E h1m1m4
,

L4 = –h2+
√

h2
2–4h1h3

2h1
,

P4 = –α
q
Lh2+α

q
L
√

h2
2–4h1h3

2h1m3
,

A4 = –α
q
Pα

q
Lh2+α

q
Pα

q
L
√

h2
2–4h1h3

2h1m3m4
,

M∗ = 2h1rqKq
M–βqKq

Mh2+βqKq
M
√

h2
2–4h1h3

2h1r ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (3)

where

h1 = bqKq
LθqKq

MWα
q
Pα

q
L,

h2 = –(bqθqrqWKq
L Kq

Mα
q
Lα

q
P + θqβqeqKq

E Kq
L Kq

Mm1m2m3

+ bqrqWKq
E Kq

Lα
q
Eα

q
Lα

q
P – bqrqWKq

Lα
q
Lα

q
Pm2),

h3 = –(θqKEKq
L Kq

Mm1m2m3 + rqKq
E Kq

L m1m2
2m3),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Based on (3), h1, h2, and h3, � = (h2
2 – 4h1h3) > 0 implies that the equilibrium point

E4 has a unique feasible equilibrium.
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3.4 Local stability of equilibrium points
In this section, we study the local stability behavior of the four equilibrium points com-
puted earlier by using the Jacobian matrix

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

rq – 2Mrq

KM
– βqL 0 –βqM 0 0

0 –m1 – bqWA
KE

0 0 bqW (1 – E
KE

)

θqL (1 – L
Kq

L
)αq

E θqM – m2 – α
q
EE

KL
0 0

0 0 α
q
L –m3 0

0 0 0 α
q
P –m4

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4)

(a) Trivial equilibrium point. Evaluating the Jacobian matrix (4) about E1 leads to

J
(
E1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

rq 0 0 0 0
0 –m1 0 0 bqW
0 α

q
E –m2 0 0

0 0 α
q
L –m3 0

0 0 0 α
q
P –m4

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5)

The trivial equilibrium point is locally stable if all eigenvalues λi (i = 1, 2, 3, 4) of
J(E1) satisfy the condition |arg(λi)| > qπ

2 [31]. We can observe that one of the
eigenvalues of (5) is rq > 0. The other equilibrium points are obtained from the
characteristic equation

λ4 + c1λ
3 + c2λ

2 + c3λ + c4 = 0 (6)

with

c1 = m1 + m2 + m4,
c2 = m1m2 + (m1 + m2)(m3 + m4) + m3m4,
c3 = m1m2(m3 + m4) + m3m4(m1 + m2),
c4 = m1m2m3m4 – bqWα

q
Eα

q
Lα

q
P

= m1m2m3m4(1 – R0).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

The Routh–Hurwitz criteria for local asymptotic stability of the equilibrium point
E1 are

H1 = c1 > 0, c3 > 0, c4 > 0,
H2 = c1c2c3 – c2

3 – c2
1c4 > 0.

}
(7)

As we can observe, all the coefficients of the characteristic polynomial (6) are
positive whenever R0 < 1, implying that condition H1 holds for R0 < 1. Since we
have established that the trivial equilibrium point E1 has another eigenvalue rq,
which is always positive, we will not investigate the positivity of condition H2, and
hence we conclude that E1 is an unstable equilibrium point.
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(b) First axial equilibrium point E2. Evaluating the Jacobian matrix (4) about E2 leads to

J
(
E2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

–rq 0 –βqKq
M 0 0

0 –m1 0 0 bqW
0 α

q
E θqKq

M – m2 0 0
0 0 α

q
L –m3 0

0 0 0 α
q
P –m4

⎤
⎥⎥⎥⎥⎥⎥⎦

. (8)

From (8) we can observe that one of the eigenvalues is –rq < 0, and the other
eigenvalues are roots of the characteristic equation

λ4 + b1λ
3 + b2λ

2 + b3λ + b4 = 0 (9)

with

b1 = m1 + m2 + m4 – θqKq
M,

b2 = (m1 + m2)(m3 + m4) + m1m2 + m3m4 – θqKq
M(m1 + m3 + m4),

b3 = m1(m3m4 + m2(m3 + m4)) + m2m3m4 – θqKq
M(m1(m3 + m4) + m3m4),

b4 = m1m2m3m4((1 – R0) – θqKq
M).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

The Routh–Hurwitz criteria for local asymptotic stability of the equilibrium point
E2 are

Ĥ1 = b1 > 0, b3 > 0, b4 > 0,
Ĥ2 = b1b2b3 – b2

3 – b2
1b4 > 0.

}
(10)

If conditions specified in (10) hold, then the equilibrium point E2 is locally
asymptotically stable.

(c) Second axial equilibrium point E3. Evaluating the Jacobian matrix (4) about E3, we
get

J
(
E3) =

⎡
⎢⎢⎢⎢⎢⎢⎣

rq – βqL3 0 0 0 0
0 –n̂1 0 0 n̂2

n̂3 n̂4 –n̂5 0 0
0 0 α

q
L –m3 0

0 0 0 α
q
P –m4

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

with

n̂1 = –m1 –
bqWA3

KE
, n̂2 = bqW

(
1 –

E3

KE

)
, n̂3 = θqL,

n̂4 =
(

1 –
L3

Kq
L

)
, n̂5 = m2 +

α
q
EE

KL
.

From (11) we can observe that –rq( βqL3

rq – 1) is an eigenvalue, and other eigenvalues
can be determined from the characteristic polynomial

λ4 + d1λ
3 + d2λ

2 + d3λ + d4 = 0
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with

d1 = m1 + m3 + m4 + n̂5,

d2 = n̂1n̂5 + m3m4 + (m3 + m4)(n̂1 + n̂5),

d3 = n̂1n̂5(m3 + m4) + m3m4(n̂1 + n̂5),

d4 = m3m4n̂1n̂5 – n̂2n̂4α
q
Lα

q
P.

Ahmed et al. [31] presented some Routh–Hurwitz stability conditions for
fractional-order systems. One well-known Routh–Hurwitz condition is that an
equilibrium point is locally stable if all eigenvalues of the community matrix satisfy
the condition |arg(λi)| > qπ

2 . The Routh–Hurwitz criteria for the local asymptotic
stability of the equilibrium point E3 are

ξ1 = d1 > 0, d3 > 0, d4 > 0,
ξ2 = d1d2d3 – d2

3 – d2
1d4 > 0.

}
(12)

Since the existence of the equilibrium point E3 is based on R0 > 1, (2), we conclude
that the equilibrium point E3 is locally asymptotically stable provided that
conditions (12) hold and (i) rq < βqL3 and (ii) R0 > 1.

(d) Interior equilibrium point E4. Evaluating the Jacobian matrix (4) about E4, we get

J
(
E4) =

⎡
⎢⎢⎢⎢⎢⎢⎣

n1 0 –n2 0 0
0 –n3 0 0 n4

n5 n6 n7 0 0
0 0 α

q
L –m3 0

0 0 0 α
q
P –m4

⎤
⎥⎥⎥⎥⎥⎥⎦

(13)

with

n1 = rq –
2Mrq

KM
– βqL, n2 = –βqM, n3 = –m1 –

bqWA
KE

,

n4 = bqW
(

1 –
E

KE

)
, n5 = θqL, n6 =

(
1 –

L
Kq

L

)
α

q
E ,

n7 = θqM – m2 –
α

q
EE

KL
.

The characteristic equation of (13) is

λ5 + z1λ
4 + z2λ

3 + z3λ
2 + z4λ + z5 = 0,

where

z1 = m3 + m4 + n3 – n1 – n7,

z2 = n2n5 – n1n3 + m3(m4 + n3 – n1 – n7) + n1n7 – n3n7 – m4(n1 – n3 + n7),

z3 = n3(n1n7 + n2n5) + m4
(
n2n5 – n3n7 + n1(n7 – n3)

)



Daudi et al. Advances in Difference Equations         (2021) 2021:99 Page 14 of 27

– m3
(
n1(n3 – n7) + n3n7 + m4(n1 – n3 + n7) – n2n5

)
,

z4 = n3m4(n2n5 + n1n7) + m3
(
n3(n2n5 + n1n7) + m4

(
n2n5 – n3n7 + n1(n7 – n3)

))

– α
q
Lα

q
Pn4n6,

z5 = α
q
Lα

q
Pn1n4n6 + n3m3m4(n2n5 + n1n7).

The Routh–Hurwitz criteria necessary and sufficient for local asymptotic stability of
the equilibrium point E4 are that the Hurwitz determinants Hi are all positive [32].
For a fifth-degree polynomial, these criteria are

H1 = z1 > 0,
H2 = z1z2 – z3 > 0,
H3 = z1z2z3 + z1z5 – z2

1z4 – z2
3 > 0,

H4 = (Z3z4 – z2z5)(z1z2 – z3) – (z1z4 – z5)2 > 0,
H5 = c5H4 > 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(14)

Thus we have the following result.

Theorem 3.3 The interior equilibrium point E4 is locally asymptotically stable if condi-
tions in (14) hold; otherwise, it is unstable.

3.5 Global stability of equilibrium points
In this section, we study the global stability of the equilibrium points E1, E2, E3, and E4

determined earlier.
(a) Trivial equilibrium point E1. Let us consider the Lyapunov function

U1(M, E, L, P, A) = M(t) +
(

m4

bqW

)
E(t) +

(
m1m4

bqWα
q
E

)
L(t)

+
(

m1m2m4

bqWα
q
Eα

q
L

)
P(t) +

(
m1m2m3m4

bqWα
q
Eα

q
Lα

q
P

)
A(t).

As we can observe, the Lyapunov functional U1(M, E, L, P, A) is defined, continuous,
and positive definite for all M(t), E(t), L(t), P(t), and A(t). It is evident that U1

vanishes at E1. The fractional derivative of U (t) along the solutions of system (1)
leads to

c
t0 Dq

t U1(t) = c
t0 Dq

t M(t) +
(

m4

bqW

)
c
t0 Dq

t E(t) +
(

m1m4

bqWα
q
E

)
c
t0 Dq

t L(t)

+
(

m1m2m4

bqWα
q
Eα

q
L

)
c
t0 Dq

t P(t) +
(

m1m2m3m4

bqWα
q
Eα

q
Lα

q
P

)
c
t0 Dα

t A(t)

= rqM(t)
(

1 –
M(t)
Kq

M

)
– βqL(t)M(t)

+
(

m4

bqW

)(
bq

(
1 –

E(t)
Kq

E

)
WA(t) – m1E(t)

)

+
(

m1m4

bqWα
q
E

)(
α

q
E

(
1 –

L(t)
Kq

L

)
E(t) + θqL(t)M(t) – m2L(t)

)
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+
(

m1m2m4

bqWα
q
Eα

q
L

)(
α

q
LL(t) – m3P(t)

)

+
(

m1m2m3m4

bqWα
q
Eα

q
Lα

q
P

)(
α

q
PP(t) – m4AV

)

= –m4
E(t)A(t)

KE
– m1m2

E(t)L(t)
KL

–
m1m2m3m2

4

bqWα
q
Eα

q
Lα

q
P

×
(

1 –
bqWα

q
Eα

q
Lα

q
P

m1m2m3m4

)
A(t) – θq

(
bqWα

q
Eβq

m1m4θq – 1
)

L(t)M(t)

+ rqM(t)
(

1 –
M(t)
Kq

M

)

= –m4
E(t)A(t)

KE
– m1m2

E(t)L(t)
KL

–
m4

R0
(1 – R0)A(t)

– θq
(

bqWα
q
Eβq

m1m4θq – 1
)

L(t)M(t) + rqM(t)
(

1 –
M(t)
Kq

M

)
.

Note that c
t0 Dq

t U1(t) = 0 if M(t) = Kq
M , R0 = 1, and m1m4θ

q ≤ bqWα
q
Eβq. Thus

c
t0 Dq

t U1(t) is negative definite if M(t) = Kq
M , R0 ≤ 1, and m1m4θ

q ≤ bqWα
q
Eβq.

Therefore we have the following theorem.

Theorem 3.4 The trivial equilibrium point E1 is globally asymptotically stable if M(t) =
Kq

M , R0 ≤ 1, and m1m4θ
q ≤ bqWα

q
Eβq; otherwise, it is unstable.

(b) First axial equilibrium point E2. Define the function

U2(M, E, L, P, A) = M(t) – M∗ – M∗ ln
M(t)
M∗ +

(
m4

bqW

)
E(t)

+
(

m1m4

bqWα
q
E

)
L(t) +

(
m1m2m4

bqWα
q
Eα

q
L

)
P(t)

+
(

m1m2m3m4

bqWα
q
Eα

q
Lα

q
P

)
A(t).

Evidently, the function U2(M, E, L, P, A) is defined, continuous, and positive definite
for all M(t), E(t), L(t), P(t), and A(t). Furthermore, U2 vanishes at E2. Hence the
fractional derivative of U2(t) along the solutions of the system satisfies

c
t0 Dq

t U2(t) ≤
(

1 –
M∗

M(t)

)
c
t0 Dq

t M(t) +
(

m4

bqW

)
c
t0 Dq

t E(t) +
(

m1m4

bqWα
q
E

)
c
t0 Dq

t L(t)

+
(

m1m2m4

bqWα
q
Eα

q
L

)
c
t0 Dq

t P(t) +
(

m1m2m3m4

bqWα
q
Eα

q
Lα

q
P

)
c
t0 Dα

t A(t)

= –rqM∗
(

1 –
M(t)
Kq

M

)(
1 –

M(t)
M∗

)
– m4

E(t)A(t)
KE

– m1m2
E(t)L(t)

KL

–
m1m2m3m2

4

bqWα
q
Eα

q
Lα

q
P

(
1 –

bqWα
q
Eα

q
Lα

q
P

m1m2m3m4

)
A(t)

–
βqbqWα

q
E + m1m4θ

q

bqWα
q
E

(
1 –

βqbqWα
q
E

m1m4θq + βqbqWα
q
E

M∗

M(t)

)
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= –rqM∗
(

1 –
M(t)
Kq

M

)(
1 –

M(t)
M∗

)
– m4

E(t)A(t)
KE

– m1m2
E(t)L(t)

KL

–
βqbqWα

q
E + m1m4θ

q

bqWα
q
E

(
1 –

βqbqWα
q
EM∗

(m1m4θq + βqbqWα
q
E)M(t)

)

–
m1m2m3m2

4

bqWα
q
Eα

q
Lα

q
P

(1 – R0)A(t).

Therefore c
t0 Dq

t U2(t) is negative definite if the following conditions hold: (i) R0 ≤ 1,
(ii) M < M∗, (iii) βqbqWα

q
EM∗ ≤ (m1m4θ

q + βqbqWα
q
E)M(t). Therefore we have the

following theorem.

Theorem 3.5 The trivial equilibrium point E2 is globally asymptotically stable if the
following conditions hold: (i) R0 ≤ 1, (ii) M < M∗, and (iii) βqbqWα

q
EM∗ ≤ (m1m4θ

q +
βqbqWα

q
E)M(t); otherwise, it is unstable.

(c) Global stability of equilibrium points E3 and E4. We will use the following Lyapunov
function to investigate the global stability of the equilibrium points E3 and E4:

U3(t) = a0

[
M(t) – M∗ – M∗ ln

(
M(t)
M∗

)]
+ a1

[
E(t) – E∗ – E∗ ln

(
E(t)
E∗

)]

+ a2

[
L(t) – L∗ – L∗ ln

(
L(t)
L∗

)]
+ a3

[
P(t) – P∗ – P∗ ln

(
P(t)
P∗

)]

+ a4

[
A(t) – A∗ – A∗ ln

(
A(t)
A∗

)]
,

where a1, a2, a3, and a4 are positive constants to be determined. Let
g0(M) = rq(1 – M

Kq
M

), g1(E, A) = bq(1 – E
Kq

E
)WA, and g2(E, L) = α

q
E(1 – L

Kq
L

)E. Recall that
at this equilibrium, we have the following identities:

g0(M) = βqL∗M∗, g1(E∗, A∗) = m1E∗, g2(E∗, L∗) + θqL∗M∗ = m2L∗,
α

q
LL∗ – m3P∗, α

q
PP∗ = m4A∗.

}

Setting

a1 = g2(E∗, L∗), a3 = g1(E∗ ,A∗)g2(E∗ ,L∗)
α

q
LL∗ ,

a2 = g1(E∗, A∗), a4 = g1(E∗ ,A∗)g2(E∗ ,L∗)
α

q
PP∗ ,

⎫⎬
⎭

it follows from Lemma 2.1 that

c
t0 Dα

t U2(t)

≤
(

1 –
M∗

M(t)

)
c
t0 Dq

t M(t) + g2
(
E∗, L∗)(1 –

E∗

E(t)

)
c
t0 Dq

t E(t)

+ g1
(
E∗, A∗)(1 –

L∗

L(t)

)
c
t0 Dq

t L(t)
(

g1(E∗, A∗)g2(E∗, L∗)
α

q
LL∗

)(
1 –

P∗

P(t)

)
c
t0 Dq

t P(t)

+
(

g1(E∗, A∗)g2(E∗, L∗)
α

q
PP∗

)(
1 –

A∗

A(t)

)
c
t0 Dq

t A(t)
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= g0
(
M∗)(1 –

M∗

M

)(
g(M)
g(M∗)

–
LM

L∗M∗

)
+ θqg1

(
E∗, A∗)(1 –

L
L∗

)(
1 –

M
M∗

)

+ g2
(
E∗, L∗)(1 –

E∗

E

)(
g1(E, A) – g1

(
E∗, A∗) E

E∗

)

+ g1
(
E∗, A∗)(1 –

L∗

L

)(
g2(E, L) – g2

(
E∗, L∗) L

L∗

)

+
(

g1(E∗, A∗)g2(E∗, L∗)
α

q
LL∗

)(
1 –

P∗

P

)(
α

q
LL – α

q
LL∗ P

P∗

)

+
(

g1(E∗, A∗)g2(E∗, L∗)
α

q
PP∗

)(
1 –

A∗

A

)(
α

q
PP – α

q
PP∗ A

A∗

)

= g0
(
M∗)(1 –

M∗

M

)(
g(M)
g(M∗)

–
LM

L∗M∗

)
+ θqg1

(
E∗, A∗)(1 –

L
L∗

)(
1 –

M
M∗

)

+ g1
(
E∗, A∗)g2

(
E∗, L∗)(1 –

E
E∗ –

E∗g1(E, A)
Eg1(E∗, A∗)

+
g1(E, A)

g1(E∗, A∗)

)

+ g1
(
E∗, A∗)g2

(
E∗, L∗)(3 –

A
A∗ –

A∗P
AP∗ –

P∗L
PL∗ –

L∗g2(E, L)
Lg2(E∗, L∗)

+
g2(E, L)

g2(E∗, L∗)

)
.

Let �(x) = 1 – x + ln x for x > 0. It follows that �(x) ≤ 0 with the equality if and only
if x = 1. Using this relation, we have

1 –
E
E∗ –

E∗g1(E, A)
Eg1(E∗, A∗)

+
g1(E, A)

g1(E∗, A∗)

= �

(
E∗g1(E, A)
Eg1(E∗, A∗)

)
–

E
E∗

+
g1(E, A)

g1(E∗, A∗)
– ln

(
E∗g1(E, A)
Eg1(E∗, A∗)

)

≤ g1(E, A)
g1(E∗, A∗)

– ln

(
g1(E, A)

g1(E∗, A∗)

)
–

E
E∗ + ln

(
E
E∗

)
.

Similarly, we can write

3 –
A
A∗ –

A∗P
AP∗ –

P∗L
PL∗ –

L∗g2(E, L)
Lg2(E∗, L∗)

+
g2(E, L)

g2(E∗, L∗)

= �

(
A∗P
AP∗

)
+ �

(
A∗P
AP∗

)
+ �

(
L∗g2(E, L)
Lg2(E∗, L∗)

)
–

A
A∗

+
g2(E, L)

g2(E∗, L∗)
– ln

(
A∗g2(E, L)
Ag2(E∗, L∗)

)

≤ g2(E, L)
g2(E∗, L∗)

– ln

(
g2(E, L)

g2(E∗, L∗)

)
–

A
A∗ + ln

(
A
A∗

)
.

Therefore c
t0 Dq

t U3(t) is negative definite if the following conditions hold:
(i) (1 – M∗

M )( g(M)
g(M∗) – LM

L∗M∗ ) ≤ 0,
(ii) (1 – L

L∗ )(1 – M
M∗ ) ≤ 0.

Therefore we have the following theorem.
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Theorem 3.6 The equilibrium points E3 and E4 are globally asymptotically stable if the
following conditions hold:

(i) (1 – M∗
M )( g(M)

g(M∗) – LM
L∗M∗ ) ≤ 0

(ii) (1 – L
L∗ )(1 – M

M∗ ) ≤ 0;
otherwise, they are unstable.

4 Numerical results
4.1 Model parameterization
In this section, we present the baseline values for the model parameters. Majority of the
parameter values are taken from previously published studies, and a few not available in
literature were estimated within plausible and reasonable ranges so as to draw reasonably
realistic scenarios.

(i) Natural mortality rate of adult FAW μA: The life span of female adult FAW is 15–21
days. It follows that the natural mortality rate of the moth is

μA =
1

expected lifetime
.

(ii) Egg laying rate b and life span of adult moth μ–1
A : During its entire life span of

15–21 days and adult female FAW’s total egg production per female averages about
1500 with a maximum of over 2000 [28]. The average daily egg laying rate can be
expressed as follows:

eggs laid per day =
eggs laid in a lifetime

expected lifetime
.

Westbrook et al. [33] estimated that a female adult moth with a life span of 18 days
can oviposit about 125 eggs. Hence in our simulations, we set b = 125 eggs per day
and μA = 1/18 per day.

(iii) Egg hatching rate αE and gender ratio W : Mathematically, the egg hatching rate is
the inverse of average duration of the egg stage, that is,

αE =
1

Average duration of the egg stage
.

Depending on the climate, the duration of egg stage takes an average period of 2–3
days [3, 28]. Westbrook et al. [33] estimated a gender ratio of 50:50 males/females.

(iv) Average duration of the larval stage α–1
L : The duration of the larval stage is

influenced by climate changes. During summer periods, the larval stage is about 14
days and 30 days during cool weather [3, 28, 29].

(v) Average duration of the pupal stage α–1
P : Similarly to the larval stage, the pupal

stage also depends on the climate. It is about 8–9 days during summer but reaches
20–30 days during the winter [3, 28].

4.2 Sensitivity analysis of the reproduction number
Analytical results of the model have shown that the basic reproduction number is an im-
portant threshold parameter for the persistence and extinction of FAW during any out-
break. Since the parameters of the proposed model have either been drawn from literature
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Table 1 Sensitivity index of the basic reproduction number

Parameter b W uA αL uL αP uP μA αE

Sensitivity index +1 +1 –0.64 +0.61 –0.55 +0.50 –0.45 –0.36 +0.25
Parameter uE μL μP μE

Sensitivity index –0.23 –0.06 –0.05 –0.02

or estimated, there is need to investigate the influence of each parameter on the magni-
tude of the basic reproduction number R0 so as to understand the uncertainty regarding
their values. To infer on the relationship between the model parameters and individual
parameters, we conduct sensitivity analysis as follows.

Definition 4.1 (See [34]) The normalized sensitivity index of R0, which depends differ-
entiably on a parameter, say κ , is defined by

R0
κ =

∂R0

∂κ
× κ

R0
. (15)

The model parameters whose sensitivity index is positive will increase the size of R0

whenever they are increased, whereas those with negative index decrease R0 whenever
they are increased. It follows from (15) that the normalized sensitivity of R0 with regard
to the model parameters that define it is given by


R0
b = 1, 

R0
W = 1, R0

αi
= μi+ui

μi+αi+ui
> 0,

R0
μi

= – μi
μi+αi+ui

< 0, R0
μA

= – μA
μA+uA

< 0,


R0
ui = – ui

μi+αi+ui
< 0, 

R0
uj = – uA

μA+uA
< 0 for i = E, P, L.

⎫⎪⎬
⎪⎭ (16)

As we can observe from (16), the model parameters b, W , and αj (j = E, L, P, A) increase the
size of R0 whenever they are increased, whereas the model parameters μj and uj decrease
the size of R0 whenever they are increased. It is worth noting that an increase in either
b or W by 10% may result in an increase in the magnitude of R0 by 10%. However, an
increase by 10% of αj increases the size of R0 by a value less than 10%. In addition, note
that uj has a negative effect on R0, implying that intervention strategy has an impact on
extinction and persistence of FAW in the environment. Without loss of generality, we set
uE = uL = uP = uA = 0.3 and computed the sensitivity index for each model parameter that
defines R0. The results are presented in Table 1 and Fig. 2.

Numerical results in Table 1 suggests that pest control intervention strategies more ef-
fects on minimizing the FAW population in the field if such strategies target the adult
FAW population. Simulation results in Fig. 3 demonstrate the effects of varying the inter-
vention strategies on extinction and persistence of pests in the field. For simplicity, we set
u = uE = uL = uP = uA, whereas the other parameter values are taken from Table 2. From
the results we can note that any value of u > 0.5 leads to the extinction of the pest, and
persistence of the pests occurs for u < 0.5.

4.3 Population level effects
In this section, we conducted additional simulations to numerically illustrate the dynam-
ical behavior of system (1) and to validate the analytical results such as the stability of the
equilibria. We used the fractional Adam–Bashforth–Moulton method [35] to conduct the
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Figure 2 Sensitivity analysis of the basic reproduction numberR0 with respect to model parameters.
Baseline values used given in Table 2. The exact numerical indices are also presented in Table 1, whereas
control parameters are set to uE = uL = uP = uA = 0.3. Overall, we can note that model parameters b andW are
highly correlated withR0. In particular, an increase in either b orW by 10% may result in an increase in the
magnitude ofR0 by 10%

Figure 3 Effects of varying intervention strategies on the magnitude ofR0. Here we set u = uE ,uL = uP = uA .
(a) Dynamics ofR0 on a wide ranges of values for u. (b) Zoomed graph, that is, an illustration of the dynamics
ofR0 for a refined range of values for u. From the results we can note that any value of u > 0.5 leads to the
extinction of the pest, and persistence of the pests occurs for u < 0.5

simulations, that is, for a differential equation

dαx(t)
dtα

= f
(
t, x(t)

)
,

the fractional variant of the one step Adam–Moulton method is given by

xn+1 =
[α]–1∑

i=0

ti
n+1
i!

xi
0 +

hα

�(α + 2)

n∑
i=0

ai,n+1f (ti, xi) +
hα

�(α + 2)
f
(
tn+1, xp

n+1
)
,

where ti = ih with some fixed h, and

ai,n+1 =

⎧⎨
⎩

nα+1 – (n – α)(n + 1)α , i = 0,

(n – i + 2)α+1 + (n – i)α+1 – 2(n – i + 1)α+1, 1 ≤ i ≤ n.
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Table 2 Model parameters and their baseline values

Symbol Definition Baseline value Source

b Number of eggs laid per day per female moth 125 eggs per moth per day [28]
W Proportion of female adult moth 0.5 [33]
α–1
E Average duration of egg stage 3 (3–5) days [28]

α–1
L Development time of the larva 14 (14–30) days [28]

α–1
P Development time of pupae 9 (8–30) days [28]

μ–1
A Moth life span 18 (15–21) days [28]

KM Maximum biomass of maize plants 50 kg plant–1 Estimate.
KE ,KL Egg environmental carrying capacity 108 Estimate.
KL Egg environmental carrying capacity 106 Estimate.
μE ,μL ,μP Natural mortality rate of immature stages 0.01 day–1 Estimate.
β Plant attack rate by caterpillars 5× 10–8 day–1 Estimate.
r Growth rate of maize plants 0.05 day–1 Estimate.
e Leaf impact factor 0.2 day–1 Estimate.
uE ,uL ,uP ,uA Implications of parasite control varied

To determine the error in this method, by assuming that ti = ih = iτ
N with some N ∈N, we

have (see [35])

max
0≤i≤N

∣∣x(ti) – xi
∣∣ =

⎧⎨
⎩
O(h2), α ≤ 1,

O(h1+α), α < 1.

Simulating system (1), we assumed the following initial population levels: E(0) = 1000,
L(0) = P(0) = 0, A(0) = 500, and M(0) = 15.

Numerical results in Fig. 4 illustrate the dynamics of the pest and maize biomass when-
ever the reproduction ratio R0 is less than unity. As we can note, if the moth cannot pro-
duce more than one off-spring, then within a period of 200 days, all the FAW populations
(eggs, larvae, pupae, and moth) will become extinct, whereas the maize biomass will in-
crease with time till it reaches the expected maximum biomass per plant (50 kg plant–1).
We can also observe that the convergence of solutions to their respective limiting points in
time depends on the fractional order q: as q approaches unity, the time taken by solutions
to converge to the limiting point increases. From the simulation results shown in Fig. 5 we
can observe that whenever each female moth reproduces more than one off-spring, that
is, R0 > 1, then the pest population will persist in the field till the final harvesting time
t = 300 day. In addition, the final maize biomass per plant will be less than the expected
50 k,plant–1. Precisely, maize biomass increases from the start and reaches a maximum
of 50 kg plant–1 after approximately 100 days, and after that, it decreases gradually till it
stabilizes at approximated 18 kg plant–1. Figure 6 shows the solutions of model system
(1) for an experiment set up with small population sizes for the pest, that is, E(0) = 100,
L(0) = P(0) = 0, and A(0) = 50, together with a control rate of uE = uL = uP = uA = 0.45 day
–1, leading to R0 = 1.3583. Furthermore, q was fixed to 0.8. As we can observe, the pest
population increases rapidly within the first 100 days, and then it stabilizes. The maize
biomass also increases during the first 50 days and attains a maximum approximately close
to the expected value 50 kg plant–1, and then the biomass decreases gradually for approx-
imately 50 days before it becomes stable at approximately 50 kg plant–1. Overall, the egg
population will dominate all the pest populations.

Numerical results in Fig. 7 depicts the effects of a FAW outbreak with a large initial pest
life cycle population, E(0) = 2000, L(0) = P(0) = 0, and A(0) = 15, combined with less ef-
fective control measures, that is, uE = uL = 0.45, and uP = uA = 0. More often, pesticides,
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Figure 4 Numerical results of system (1) demonstrating the convergence of solutions to the pest-free
equilibrium forR0 ≤ 1. On construction of the simulations, we considered initial population levels discussed
earlier, while baseline values for the model parameters are as in Table 2. In addition, we set
uE = uL = uP = uA = 0.52 to obtainR0 = 0.8630. We can note that wheneverR0 < 1, the pest population
becomes extinct while maize biomass increases with time, reaching its expected maximum of 50 kg plant–1

which are known to effectively control FAW, are expensive such that farmers in some ar-
eas rely on traditional methods of controlling the pest such as hand picking of caterpillars,
picking and destroying egg masses, spraying lime, salt, oil, and soap solution. Prior studies
suggests that traditional methods are less effective and are likely to eliminate the egg and
larvae population. Hence, in Fig. 7, we explore the effects of a FAW outbreak with a large
initial pest life cycle population coupled with less effective control measures. As we can
observe, an outbreak with a large pest population coupled with less effective control mea-
sure may result in the pest population increasing rapidly so that in less than 100 days, they
will reach their respective maximum. After an initial increase, the maize biomass would
gradually decrease to a level below its initial biomass. The results highlight the impor-
tance of effective control measure on increasing maize biomass whenever there is a FAW
outbreak.
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Figure 5 Numerical results of system (1) demonstrating the convergence of solutions to the pest persistence
equilibrium point forR0 > 1. Baseline values for the model parameters are as in Table 2. In addition, we set
uE = uL = uP = uA = 0.35 to obtainR0 = 2.8931. As we can observe, the solutions suggest that the pest will
persist in the field and the final maize biomass will be less than the expected 50 kg plant–1

5 Concluding remarks
In this study, we presented a Caputo fractional-order model for fall armyworm
(Spodoptera frugiperda) infestation in a maize field. Fall armyworm (Spodoptera
frugiperda) commonly known as FAW remain a major pest of maize. The pest has al-
ready been considered as one of the greatest threat to food security in Africa despite the
fact that it was first detected in 2016. The pest is highly destructive and fast spreading.
Moth are capable of flying up to 100 km in one night. Based on its destructiveness, there
is need to gain understanding the dynamics of this pest and the maize plant whenever
there is an outbreak. Through the use of mathematical models, it is possible to predict
many real-world problems in various fields such as agriculture, economics, biology, engi-
neering, and so on. In particular, mathematical models are capable of providing solutions
to phenomena that are difficult to measure in the field. Here fractional derivatives model
have been utilized to model the dynamics of FAW infestation in a maize field based on the
fact that fractional calculus is naturally related to many adaptive systems with memory
and hereditary properties, which widely exist in several fields such as biology, agriculture,
medicine, physics, chemistry, and engineering [21].
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Figure 6 Model solutions showing the effects of a FAW outbreak with a small initial pest life cycle population.
We considered E(0) = 100, L(0) = P(0) = 0, and A(0) = 50. Furthermore, we fixed q = 0.8 and
uE = uL = uP = uA = 0.45 to obtainR0 = 1.3583

Mathematical analysis of the proposed model reveals that there exists a threshold pa-
rameter, the basic reproduction number, which governs the persistence and extinction
of FAW in the field. Biologically, this basic reproduction number represents the average
number of newborns produced by one individual female moth during its life span. We have
noted that if one female moth is not capable of producing more than one off-spring, then
the pest population becomes extinct; otherwise, it persists. The basic reproduction num-
ber was qualitatively and quantitatively used to investigate the local and global stability
of the model steady state. For two steady states, the model has the pest-free equilibrium
and the pest persistence equilibrium. We have observed that both are locally and glob-
ally stable. In particular, the pest-free equilibrium point is both locally and globally stable
whenever the basic reproduction number is less than unity. However, when the basic re-
production number is greater than unity, there exists a pest persistence equilibrium point,
which is also both locally and globally stable.

We have also noted that the model parameters, the egg laying rate and proportion of
female moth in the environment, have a strong positive influence on increasing the size
of the basic reproduction number. Precisely, increasing in the proportion of female moth
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Figure 7 Model solutions showing the effects of a FAW outbreak with a large initial pest life cycle population,
E(0) = 2000, L(0) = P(0) = 0, and A(0) = 15, coupled with less effective control measures, that is, uE = uL = 0.45
and uP = uA = 0, leading toR0 = 58. We set q = 0.8

in the environment by a certain percent increases the size of the basic reproduction by a
similar percentage. FAW intervention strategies aimed at reducing moth population were
observed to have a stronger impact on reducing the size of the basic reproduction number
than any other model parameter. Numerical illustrations are included to support analytical
results and to explore optimal intervention levels essential to minimize persistence of the
pest population. We also used numerical simulations to illustrate the impact of initial pest
population level during an outbreak on maize growth in a field.

The proposed model is not exhaustive. In the future work, we will explore the effects
of temperature and seasonal variation on the dynamics of FAW and its implications on
maize growth. In the current study, we found that there is a need for better metadata in
plant population studies to help explain calibration and validation of proposed models.
Although we did not manage to validate the proposed model with data, due to its unavail-
ability, the proposed model and results will certainly improve the existing knowledge on
FAW dynamics and its implications in maize crops.
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