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Abstract
In the present paper, we find some characterization theorems. Under certain pinching
conditions on the warping function satisfying some differential equation, we show
that the base of warped product submanifolds of a Sasakian space form ˜M2m+1(ε) is
isometric either to a Euclidean space Rn or a warped product of a complete manifold
N and the Euclidean line R.
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1 Introduction and main results
One of the significant motives for the geometric analysis of Riemannian manifolds (�, g)
is the study of the impact of differential equations on its geometry, as well as isometric
properties. Furthermore, it is well-known that their classification has an extensive influ-
ence on the global analysis of a Riemannian manifold with differential equations. It should
be noted that [21, 31, 33, 34] gave characterizations of Euclidean spaces by analyzing dif-
ferential equations. They showed that a nonconstant function ψ on a complete manifold
(�n, g) satisfies the following equation:

∇2ψ + cg = 0 (1)

if and only if (�n, g) is isometric to some Euclidean space R
n, where c is any positive con-

stant. Another characterization using a differential equation has been discovered by Río,
Kupeli, and Unal [21]. They demonstrated that the complete Riemannian manifold (�n, g)
is isometric to the warped product of a complete Riemannian manifold N and a Euclidean
line R with warping function θ satisfying the differential equation

d2θ

dt2 + λ1θ = 0 (2)
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if and only if there exists a real-valued nonconstant function ψ associated to a negative
eigenvalue λ1 ≤ 0, which satisfies the following differential equation:

�ψ + λ1ψ = 0. (3)

Such complete space classifications are extremely attractive and have been studied by sev-
eral mathematicians (see, e.g., [3, 4, 6, 7, 15, 16, 18–20]). For example, by using (1), Al,
Dayel, Deshmukh, and Belova [1] showed that a connected and complete Riemannian
manifold (�n, g) is isometric to R

n if and only if the nontrivial concircular vector field
u along the function ψ satisfies R(∇ψ ,∇ψ) = 0 or �u = 0. In [13], Chen and Deshmukh
proved that a complete Riemannian manifold admits a concurrent vector field if and only
if it is isometric to a Euclidean space by (1). Similarly, in [14], it has been shown that (�n, g)
is isometric to a Euclidean space if and only if (�n, g) permits a nontrivial gradient con-
formal vector field, that is, a Jacobi-type vector field. On the other hand, Matsuyama [24]
derived a characterization stating that if the complete totally real submanifold �n for the
complex projective space CP

n with bounded Ricci curvature admits a function ψ satisfy-
ing (3), for λ1 ≤ n, then �n is isometric to the hyperbolic space component that is con-
nected if (∇ψ)x = 0 or if it is isometric to the warped product of a complete Riemannian
manifold and the Euclidean line if ∇ψ is nonvanishing, where the warping function θ on
R satisfies equation (2). Furthermore, similar results have been obtained for generalized
Sasakian space forms by Jamali and Shahid [22]. In this study, inspired by [1–3, 5, 7, 9–
12, 22, 30, 35], we derive a similar characterization for C-totally real warped product sub-
manifolds of Sasakian space forms as rigidity theorems. To prove our main result, the next
lemma, which was proved in [26], will be stated.

Lemma 1.1 Suppose ˜M2m+1(ε) is a Sasakian space form and let � : �n = B ×f F →
˜M2m+1(ε) be a C-totally real immersion of the warped product submanifold �n into
˜M2m+1(ε) such that the base B is minimal. Then, the Ricci inequality is given as

Ric(X) + q� ln f ≤ n2

4
‖H‖2 + q‖∇ ln f ‖2 +

ε + 3
4

{pq + n – 1}, (4)

for every unit vector X ∈ Tx�
n, where p = dimB and q = dimF. The quantities in the above

inequality have been discussed, in detail, in [26].

The following abbreviations are used towards the end of this paper: ‘SSF’ stands for
Sasakian space form, ‘WF’ for warping function, and ‘WPS’ for warped product subman-
ifold. More precisely, we give the next theorem:

Theorem 1.1 Let � : �n = B ×f F → M
2m+1(ε) be a C-totally real isometric immersion

from a WPS �n into the SSF M
2m+1(ε) such that the Ricci curvature is bounded below by a

positive constant K > 0. Then, a complete minimal base B is isometric to a Euclidean space
R

p if the following equality holds:

(λ1 + q)K = λ1

{

qλ1

p
+

n2

4
‖H‖2 +

(ε + 3)
4

(pq + n – 1)
}

. (5)

The next result is motivated by the study of Río, Kupeli, and Unal [21].
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Theorem 1.2 Assuming that � : �n = B ×f F → M
2m+1(ε) is a C-totally real isometric

immersion of a complete WPS �n into the SSF M
2m+1(ε) such that its Ricci curvature

is bounded below by a positive constant K > 0. Let the complete base B be minimal in
M

2m+1(ε) and satisfy the following assumption:

n2|H|2 +
4pq
λ1

∣

∣Hess(ψ)
∣

∣

2 =
4p
λ1

(

ε + 3
4

(1 – pq – n) + K
)

(6)

for λ1 < 0. Then, B is isometric to a warped product of the form R ×θ N with the warping
function θ satisfying the following differential equation:

d2θ

dt2 + λ1θ = 0.

Remark 1.1 The paper deals with ordinary differential equations on C-totally real warped
product submanifolds. By optimizing the warping function of a C-totally real warped
product submanifold of Sasakian space forms, we studied characterizations theorems for
a C-totally real warped product submanifold of Sasakian space forms. Therefore, the pa-
per exhibits an excellent combination of the theory of ordinary differential equations with
Riemannian geometry.

2 Notation and formulas
The almost contact metric manifold (˜M, g) with Riemannian metric g preserves the fol-
lowing conditions:

φ2 = –I + ξ ⊗ η,

η(ξ ) = 1, φ(ξ ) = 0, η ◦ φ = 0,

g(φW1,φW2) = g(W1, W2) – η(W1)η(W2),

η(W1) = g(W1, ξ ), (7)

for the almost contact structure (φ,η, ζ ) and ∀ W1, W2 ∈ (T ˜M). A manifold ˜M2m+1 is
defined to be a Sasakian manifold if the following relation holds:

(˜∇W1φ)W2 = g(W1, W2)ζ – η(W2)W1. (8)

It follows that

˜∇W1ζ = –φW1, (9)

for every W1, W2 ∈ (T ˜M), where ˜∇ denotes the Riemannian connection with respect
to the metric g . A Sasakian space form is a Sasakian manifold considering constant φ-
sectional curvature ε, which is also defined as ˜M2m+1(ε). Consequently, in [6, Eq. (6)], the
Riemannian curvature tensor of ˜M2m+1(ε) is defined in detail, which is also usually defined
from˜R. If the structure field ξ is perpendicular to the submanifold �n in ˜M2m+1(ε), then �n

is a C-totally real submanifold of ˜M2m+1(ε). Furthermore, in this case, φ maps any tangent
space of �n into its corresponding normal space (see [2, 8, 23, 25, 32, 36]). Now, we recall



Ali et al. Advances in Difference Equations         (2021) 2021:69 Page 4 of 11

the Bochner formula [8] for a differentiable function on a Riemannian manifold �n, that
is, ψ : �n →R. Then, we have that

1
2
�|∇ψ |2 = Ric�n (∇ψ ,∇ψ) +

∣

∣Hess(ψ)
∣

∣

2 + g
(∇(�ψ),∇ψ

)

, (10)

where the Ricci tensor of �n is denoted by Ric.

3 The main results
3.1 Proof of Theorem 1.1
Equation (4) gives

Ric(X) + q�ψ ≤ n2

4
‖H‖2 + q‖∇ψ‖2 +

ε + 3
4

{pq + n – 1}.

Assuming the Ricci curvature is bounded below by a positive constant K > 0 (i.e.,
Ric(X) ≥ K ), we get

K + q�ψ ≤ n2

4
‖H‖2 + q‖∇ψ‖2 +

ε + 3
4

{pq + n – 1}. (11)

One of the most famous results connecting the curvature and topology of the complete
Riemannian manifold �n is a famous theorem of Myers [29], which states that if the Ricci
curvature with respect to unit vectors on B is bounded by a positive constant K > 0, then
B is compact. Then, integrating (11) and using Green’s lemma, we find that

Vol(B)K ≤ n2

4

∫

B×{q}
|H|2 dV + q

∫

B×{q}
|∇ψ |2 dV +

∫

B×{q}
ε + 3

4
{pq + n – 1}dV .

This can be written as

∫

B×{q}
|∇ψ |2 dV ≥ K

q
Vol(B) –

n2

4q

∫

B×{q}
|H|2 dV –

1
q

∫

B×{q}
ε + 3

4
{pq + n – 1}dV .

(12)

On the other hand, we have

∣

∣Hess(ψ) – tI
∣

∣

2 =
∣

∣Hess(ψ)
∣

∣

2 + t2|I|2 – 2tg
(

I, Hess(ψ)
)

,

which leads to

∣

∣Hess(ψ) – tI
∣

∣

2 = 2t�ψ + t2p +
∣

∣Hess(ψ)
∣

∣

2.

Substituting t = λ1
p and integrating the preceding equation with respect to the volume

element dV , we obtain

∫

B×{q}

∣

∣

∣

∣

Hess(ψ) –
λ1

p
I
∣

∣

∣

∣

2

dV =
∫

B×{q}

∣

∣Hess(ψ)
∣

∣

2 dV +
∫

B×{q}
λ2

1
p

dV . (13)
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Using the Bochner formula (10), along with the fact that �ψ = λ1ψ , we have

∫

B×{q}

∣

∣Hess(ψ)
∣

∣

2 dV = –λ1

∫

B×{q}
|∇ψ‖2 dV –

∫

B×{q}
Ric(∇ψ ,∇ψ) dV . (14)

Combining Eqs. (13) and (14), we derive

∫

B×{q}

∣

∣

∣

∣

Hess(ψ) –
λ1

p
I
∣

∣

∣

∣

2

dV =
∫

B×{q}
λ2

1
p

dV – λ1

∫

B×{q}
|∇ψ‖2 dV

–
∫

B×{q}
Ric(∇ψ ,∇ψ) dV . (15)

As we assumed that Ric(∇ψ ,∇ψ) ≥ K for K > 0, we have

∫

B×{q}

∣

∣

∣

∣

Hess(ψ) –
λ1

p
I
∣

∣

∣

∣

2

dV ≤
∫

B×{q}
λ2

1
p

dV – λ1

∫

B×{q}
|∇ψ‖2 dV – KVol(B).

Inserting Eq. (12) into the above equation, we derive

∫

B×{q}

∣

∣

∣

∣

Hess(ψ) –
λ1

p
I
∣

∣

∣

∣

2

dV ≤
∫

B×{q}
λ2

1
p

dV –
∫

B×{q}

(

λ1K
q

+ K
)

dV

+
λ1n2

4q

∫

B×{q}
|H|2 dV +

λ1

q

∫

B×{q}
ε + 3

4
(pq + n – 1) dV .

(16)

If (5) is satisfied, then (16) implies that

∣

∣

∣

∣

Hess(ψ) –
λ1

p
I
∣

∣

∣

∣

2

= 0.

Hence, we get

Hess(ψ)(V , V ) = cg(V , V ), (17)

for any V ∈ (B) with constant c = λ1
p . Therefore, by applying the Tashiro theorems [31,

34], we obtain that B is isometric to a Euclidean space R
p.

3.2 Proof of Theorem 1.2
Let us define the following equation with ψ = ln f . We have

∣

∣tψI + Hess(ψ)
∣

∣

2 =t2(ψ)2|I|2 +
∣

∣Hess(ψ)
∣

∣

2 + 2tψg
(

I, Hess(ψ)
)

.

However, it is well-known that |I|2 = tr(II∗) = p, as well as g(Hess(ψ), I∗) = tr(I∗Hess(ψ)) =
tr(Hess(ψ)). Thus, the preceding equation takes the form

∣

∣tψI + Hess(ψ)
∣

∣

2 =
∣

∣Hess(ψ)
∣

∣

2 + pt2(ψ)2 – 2tψ�ψ . (18)
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If ψ is an eigenfunction associated to the eigenvalue λ1 such that �ψ = λ1ψ , then we get

∣

∣tψI + Hess(ψ)
∣

∣

2 =
∣

∣Hess(ψ)
∣

∣

2 +
(

pt2 – 2tλ1
)

(ψ)2. (19)

On the other hand, we obtain

�
ψ2

2
= ψ�ψ – |∇ψ |2.

Using �ψ = λ1ψ again, we have

�
ψ2

2
= ψλ1ψ – |∇ψ |2,

which implies that

∫

B×{q}
(ψ)2 dV =

1
λ1

∫

B×{q}
|∇ψ |2 dV . (20)

It follows, from (19) and (20), that

∫

B×{q}

∣

∣Hess(ψ) + tψI
∣

∣

2 dV =
∫

B×{q}

∣

∣Hess(ψ)
∣

∣

2 dV +
(

pt2

λ1
– 2t

)∫

B×{q}
|∇ψ |2 dV .

(21)

In particular, setting t = λ1
p in (21) and integrating, we get

∫

B×{q}

∣

∣

∣

∣

Hess(ψ) +
λ1

p
ψI

∣

∣

∣

∣

2

dV =
∫

B×{q}

∣

∣Hess(ψ)
∣

∣

2 dV –
λ1

p

∫

B×{q}
|∇ψ |2 dV . (22)

Again taking the integral of (4) and involving the Green lemma, we have

∫

B×{q}
RicM(X) dV ≤ n2

4

∫

B×{q}
|H|2 dV + q

∫

B×{q}
|∇ψ |2 dV

+
∫

B×{q}
ε + 3

4
(pq + n – 1) dV . (23)

From (22) and (23), we can obtain

1
q

∫

B×{q}
RicM(X) dV ≤ n2

4q

∫

B×{q}
|H|2 dV –

p
λ1

∫

B×{q}

∣

∣

∣

∣

Hess(ψ) +
λ1

n
ψI

∣

∣

∣

∣

2

dV

+
p
λ1

∫

B×{q}

∣

∣Hess(ψ)
∣

∣

2 dV +
∫

B×{q}
ε + 3

4

(

p + 1 +
p – 1

q

)

dV .

As we considered that the Ricci curvature is bounded (i.e., Ric(X) ≥ K for some K > 0),
the preceding equation implies that

∫

B×{q}

∣

∣

∣

∣

Hess(ψ) +
λ1

p
ψI

∣

∣

∣

∣

2

dV
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≤ n2λ1

4pq

∫

B×{q}
|H|2 dV +

∫

�n

∣

∣Hess(ψ)
∣

∣

2 dV –
λ1

pq

∫

B×{q}
K dV

+
λ1

p

∫

B×{q}
ε + 3

4

(

p + 1 +
p – 1

q

)

dV ,

which is equivalent to the following:

∫

B×{q}

∣

∣

∣

∣

Hess(ψ) +
λ1

p
ψI

∣

∣

∣

∣

2

dV

≤
∫

B×{q}

∣

∣Hess(ψ)
∣

∣

2 dV

+
λ1

p

∫

B×{q}

{

n2

4q
|H|2 +

(ε + 3)
4

(

p + 1 +
p – 1

q

)

–
K
q

}

dV . (24)

This gives us the following inequality:

∫

B×{q}

∣

∣

∣

∣

Hess(ψ) +
λ1

p
ψI

∣

∣

∣

∣

2

dV

≤
∫

B×{q}

{

λ1

p

(

n2

4q
|H|2 +

(ε + 3)
4

(

p + 1 +
p – 1

q

)

–
K
q

)

+
∣

∣Hess(ψ)
∣

∣

2
}

dV . (25)

Our assumption is satisfied, that is,

n2|H|2 +
4pq
λ1

∣

∣Hess(ψ)
∣

∣

2 =
4pq
λ1

(

(ε + 3)
4q

(1 – pq – n) +
K
q

)

. (26)

Combining (25) and (26), we get

∣

∣

∣

∣

Hess(ψ) +
λ1

p
ψI

∣

∣

∣

∣

2

≤ 0.

The above equation gives us

Hess(ψ) +
λ1

p
ψI = 0. (27)

Taking the trace of the preceding equation, we can derive

�ψ + λ1ψ = 0. (28)

According to [21], the base B is isometric to the connected components of a hyperbolic
space if (∇ψ)x = 0. However, (∇ψ)x = 0 leads to a contradiction, as �n is a nontrivial
warped product. Hence, B is isometric to a warped product of the type R ×θ N , where
N is a complete Riemannian manifold and R is the Euclidean line. Moreover, the warping
function θ satisfies the following differential equation:

d2θ

dt2 + λ1θ = 0.

Thus, the proof is completed.
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Remark 3.1 It is well-known that R2m+1(–3) and S
2m+1(1), considering standard Sasakian

structures, may be seen as classical examples of Sasakian space forms with constant sec-
tional curvature ε = –3 and ε = 1, respectively [25, 27].

We produce a striking application of Theorem 1.1 and Remark 3.1 by selecting ε = 1 (see
[2]):

Corollary 3.1 Suppose � : �n = B ×f F → S
2m+1(1) is a C-totally real isometric immer-

sion of a complete WPS �n into the SSF S
2m+1(1) with Ricci curvature bounded below by a

positive constant K > 0 and the base B is minimal in S
2m+1(1). Then, B is isometric to the

Euclidean space Rp if the following equality holds:

(λ1 + q)K = λ1

{

qλ1

p
+

n2

4
‖H‖2 + (pq + n – 1)

}

. (29)

For the minimal case (i.e., ‖H‖2 = 0), we give the following corollary:

Corollary 3.2 Let � : �n = B ×f F → S
2m+1(1) be a C-totally real minimal isometric

immersion of a complete WPS �n into the SSF S
2m+1(1) such that the Ricci curvature is

bounded below by a positive constant K > 0 satisfying the condition

(λ1 + q)K = λ1

{

qλ1

p
+ (pq + n – 1)

}

. (30)

Then, B is isometric to a Euclidean space Rp.

Following Theorem 1.2, we give the following corollary:

Corollary 3.3 Assume that � : �n = B ×f F → S
2m+1(1) is a C-totally real isometric im-

mersion of the complete WPS �n into the SSF S
2m+1(1) such that Ricci curvature is bounded

below by a positive constant K > 0 and the base B is minimal in S
2m+1(1), satisfying the as-

sumption

n2|H|2 +
4pq
λ1

∣

∣Hess(ψ)
∣

∣

2 =
4p
λ1

{

(1 – pq – n) + K
}

. (31)

Then, B is isometric to a warped product of the form R×θ N with the warping function θ

satisfying the following differential equation:

d2θ

dt2 + λ1θ = 0.

Corollary 3.4 Let � : �n = B ×f F → S
2m+1(1) be a C-totally real minimal isometric im-

mersion of a complete WPS �n into the SSF S
2m+1(1) such that Ricci curvature is bounded

below by a positive constant K > 0 satisfying the assumption

q
∣

∣Hess(ψ)
∣

∣

2 =
{

(1 – pq – n) + K
}

. (32)

Then, B is isometric to a warped product of the form R ×θ N with warping function θ

satisfying the differential equation (2).
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Substituting the constant sectional curvature ε = –3 into Theorems 1.1 and 1.2, we can
directly derive the following:

Corollary 3.5 Let � : �n = B ×f F → R
2m+1(–3) be a C-totally real isometric immersion

for the complete WPS �n into the SSFR
2m+1(–3) such that Ricci curvature is bounded below

by a positive constant K > 0.
(i) If the base B is minimal in R

2m+1(–3), then B is isometric to the Euclidean space Rp

if the following equality holds:

(λ1 + q)K = λ1

{

qλ1

p
+

n2

4
‖H‖2

}

. (33)

(ii) If � is a minimal isometric immersion in R
2m+1(–3) and p(λ1 + q)K = qλ2

1 is
satisfied, then B is isometric to the Euclidean space Rp.

Using Theorem 1.2, we obtain the following:

Corollary 3.6 Under the same assumptions of Corollary 3.5, we have the following:
(i) If the base B is minimal in R

2m+1(–3) and the following equality holds:

λ1n2|H|2 + 4pq
∣

∣Hess(ψ)
∣

∣

2 = 4pK , (34)

then B is isometric to a warped product of the form R×θ N with warping function θ

satisfying the differential equation (2).
(ii) If � is the minimal isometric immersion in R

2m+1(–3) and |Hess(ψ)|2 = K
q is

satisfied, then B is isometric to the warped product of R×θ N with the warping
function θ satisfying the differential equation (2).

Classifying the Dirichlet energy of smooth functions is treated as an integral procedure
in the fields of physics and engineering. Moreover, the Dirichlet energy is formulated as
an equivalent of kinetic energy. Let ψ be any real-valued smooth function on a compact
manifold. Then, the Dirichlet energy of ψ is defined by

E (ψ) =
1
2

∫

‖∇ψ‖2 dV . (35)

Using the above formula and Lemma 1.1, we obtain the following theorem:

Theorem 3.1 Suppose ˜M2m+1(ε) is a Sasakian space form and let � : �n = B ×f F →
˜M2m+1(ε) be a C-totally real immersion of the warped product submanifold �n into
˜M2m+1(ε) such that the base B is minimal. Then, the Dirichlet energy inequality is given
by

∫

B×{q}
Ric(X) dV ≤ n2

4

∫

B×{q}
‖H‖2 dV + 2qE (ψ) +

{

pq + n – 1
}

∫

B×{q}
ε + 3

4
dV ,

(36)

for every unit vector X ∈ Tx�
n, where p = dimB and q = dimF.



Ali et al. Advances in Difference Equations         (2021) 2021:69 Page 10 of 11

Proof Taking the integral of Eq. (4) and using the Green lemma, we get the required result
(36). This completes the proof of the theorem. �
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