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Abstract
In this paper, the dynamical behavior of a SEIR epidemic system that takes into
account governmental action and individual reaction is investigated. The
transmission rate takes into account the impact of governmental action modeled as a
step function while the decreasing contacts among individuals responding to the
severity of the pandemic is modeled as a decreasing exponential function. We show
that the proposed model is capable of predicting Hopf bifurcation points for a wide
range of physically realistic parameters for the COVID-19 disease. In this regard, the
model predicts periodic behavior that emanates from one Hopf point. The model also
predicts stable oscillations connecting two Hopf points. The effect of the different
model parameters on the existence of such periodic behavior is numerically
investigated. Useful diagrams are constructed that delineate the range of periodic
behavior predicted by the model.

Keywords: SEIR model; Stability; Bifurcation; Governmental action; Individual
response; Hopf bifurcation

1 Introduction
The spread of infectious diseases is a very complex phenomenon that depends on a large
number of factors. Some of them are social, environmental, or economic, which are linked
to human activities while other factors have to do with the nature of the pathogen causing
the disease. With this complexity, it is not surprising that sometimes simple mathemat-
ical models are often used to understand the dynamics of spread of infectious diseases.
The use of more complex models will necessarily involve very large number of parame-
ters that are difficult to estimate, making the model predictions weak and uncertain. In
this regard, compartmental models are often used to simplify the mathematical modeling
of infectious diseases. In these models, the population is divided into compartments, with
the assumption that every individual in the same compartment has the same character-
istics [1]. The models are usually investigated through deterministic ordinary differential
equations. The SEIR mathematical model is an extensively used compartmental epidemic
model that is based on the division of the population into four basic compartments; an
individual can either be susceptible (S), exposed to the disease but not yet infectious (E),
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infectious (I), or removed (recovered or deceased) (R). The SEIR model has been used
extensively in the literature to model many human infections such as Ebola [2], H1N1 [3],
influenza [4] and MERS-CoV [5]. Despite being an old model, the SEIR model is quite flex-
ible and many variations and improvements on the model are still possible. Right now, the
SEIR model has been applied extensively to analyze the COVID-19 pandemic [6–9]. Each
of these studies includes a variation on the basic SEIR model by either taking into consid-
eration new variables or parameters, ignoring others, selecting different expressions for
the transmission rate, or using different methods for parameter estimation. The stability,
bifurcation and chaotic behavior of SEIR epidemic models have been investigated over
many decades [10–18]. Tools from nonlinear theory were shown to be useful in revealing
conditions for the occurrence of sustained epidemic equilibria. Some early work [10, 11]
analyzed the effect of seasonal fluctuations as well as contact rate periodicity in what be-
comes a forced response problem resulting in harmonic and subharmonic resonances.
Several authors have analyzed the occurrence of periodic solutions in SEIR models due to
the presence of time delays and/or nonlinear incidence rates [12–16]. Chaotic motion has
also been studied in such models [17, 18].

In this paper we examine the bifurcation behavior of a SEIR model when the transmis-
sion rate takes explicitly into account governmental action and population response to
the severity of the pandemic. Although a number of studies have included the effects of
governmental action and individual response in models of COVID-19 [6, 19], there is few
work in the literature on the bifurcation and stability of such models. The recent work of
Kwuimy et al. [19] showed the importance of governmental action and social behavior in
COVID-19 dynamics.

A final note is to be made about the usefulness of such models in the forecast of the
spread of COVID-19 pandemic. Because of the absence of complete data for the disease
in Saudi Arabia, the validation of the model could not be carried out. However, the val-
ues of model parameters that were used in the mathematical analysis were taken from the
literature where a validation of a similar model was carried out for the Wuhan province
in China [6]. This provides the proposed model with some credibility. Also, one of the
objectives of this paper is to carry out a sensitivity analysis for the effect of model pa-
rameters. In this regard, the numerical analysis was carried out for a wide range of values
of model parameters, which should also give some credibility to the different behavior
predicted by the model. Moreover, it is true that some of the behavior predicted by the
proposed model (such as periodic solutions), were not reported so far in the current liter-
ature on the COVID-19 disease. However, it is also true that the pandemic is unfortunately
not yet contained, with the unfortunate possibility of a second wave or more. Given that
the proposed model assumes the disease to be endemic and given the long time period
involved, it is not ruled out that new data would report cases of some type of periodic
behavior.

The rest of this paper is organized as follows. In Sect. 2, we propose the SEIR model
with individual reaction and governmental action. A static analysis is carried out in
Sect. 3, dynamic analysis in Sect. 4, while numerical simulations are carried out in
Sect. 5.
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2 The dimensional model
We consider the following SEIR model:

dS
dt

= b(N – S) –
βSI
N

, (1)

dE
dt

=
βSI
N

– (α + b)E, (2)

dI
dt

= αE – (γ + b)I, (3)

dR
dt

= γ I – bR, (4)

dP
dt

= eγ I – λP, (5)

N = S + E + I + R. (6)

The model equations (Eqs. (1)–(4)) are based on the classical “Susceptible-Exposed-
Infectious-Removed” (SEIR) model for a population of size (N ). The model attempts to
describe what may unfortunately be an endemic disease (which may persist in a popu-
lation for long time). Therefore the vital dynamics (births and natural deaths) have to be
incorporated in the model. The variable (S) is the fraction of susceptible individuals (those
able to contract the disease), (E) the fraction of exposed individuals (those who have been
infected but are not yet infectious), (I) the fraction of infective individuals (those capa-
ble of transmitting the disease) and (R) is the fraction of removed individuals (those who
have recovered or deceased). The model assumes that recovered individuals do not revert
to the susceptible class. It is also assumed that all newborns are susceptible with the birth
rate set equal to the death rate which is assumed not to be related to the infectious disease.

The term βI
N represents the force of infection where β is the effective per capita contact

rate of infected individuals. The incidence rate is therefore βIS
N . The parameter b is the

rate of natural birth, α is the rate at which the exposed individuals become infective, so
1
α

represents the mean latent period. The term 1
γ

represents the mean infectious period.
We have added to the classical SEIR model a new equation (Eq. (5)) and a new variable (P)
that mimics the public perception of the severity of the pandemic. It can be seen that the
dynamics (Eq. (5)) of the public perception of the risk regarding the pandemic is propor-
tional to the number of infected cases (I) with e being the proportion of severe cases and
1
λ

the mean duration of public reaction.
Besides the new variable (P), we adopt in this paper a new expression for the transmis-

sion rate β that reflects the impact of governmental action and the public perception of the
severity of the disease. A number of studies have considered specific forms of the transmis-
sion rate. Lin et al. [6], for instance, adopted the following expression for the transmission
rate which was based on the formulation of He et al. [20]:

β = β0(1 – μ)
(

1 –
D
N

)κ

(7)

where D is a state variable representing social behavioral dynamics. The first term in Eq. (7)
incorporates the impact of governmental action. It is parameterized by μ and represents
all actions, which can be modeled as a step function. The second term in β represents
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the decreasing contacts among individuals reacting to the severity of the pandemic. The
parameter κ represents the intensity of the individual reaction.

Kwuimy et al. [19], on the other hand, proposed the following expression:

(1 – μ)
(
β1SI(1 – D)κ + β2SE

)
. (8)

Similarly to Eq. (7), D represents social behavioral dynamics, μ represents the strength of
the government action and κ is the strength of public response. Both expressions (Eqs. (7)–
(8)) reflect the fact that public reaction would increase when more people get infected, and
would naturally diminish over time. In this paper we assume the following expression for
the transmission rate:

β = β0(1 – μ) exp

(
–κP

N

)
. (9)

While keeping the same formulation for the impact of governmental action (all actions
which can be modeled as a step function), we have opted for an exponential function to
reflect the decreasing contacts among individuals reacting to severity of the disease. Math-
ematically, the expression exp( –κP

N ) can be considered as a good approximation of (1 – P
N )κ

(Eq. (7)), especially if the values of P are very small compared to the total population N ,
as the numerical simulations will show in this paper.

3 Static analysis
The model at steady state has two equilibria: A trivial one (S = N , E = 0, I = 0, R = 0, P = 0)
and a nontrivial one, which satisfies the following transcendental equation:

β(α + b)(b + γ )I + b
(
b(b + γ ) + α(b – β + g)

)
N = 0. (10)

We have

β = β0(1 – μ) exp

(
–κeγ I
λN

)
. (11)

In the absence of governmental action (μ = 0) and public reaction (κ = 0), the transmission
coefficient is constant β = β0, and the nontrivial steady state can be solved readily to yield
explicit relations for the model state variable I :

I =
bN(α(–b + β0 – γ ) – b(b + γ )

(α + b)β0(b + γ )
(12)

The other state variables S, E, R and P can be obtained accordingly.

3.1 Positivity of solution
In the following, we show that the model solutions are positive under non-negative initial
conditions.

Theorem 1 Let S0, E0, I0, R0, P0 ≥ 0. The solution of (1)–(6) with (S(0), E(0), I(0),
R(0, P(0)) = (S0, E0, I0, R0, P0), is non-negative, that is, S(t), E(t), I(t), R(t), P(t) ≥ 0, for t > 0,
and it satisfies S(t) + E(t) + I(t) + R(t) = N , with N constant.
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Proof Let x(t) = (S(t), E(t), I(t), R(t), P(t)) be the solution of system under initial conditions
x0 = (S(0), E(0), I(0), R(0), P(0)) = (S0, E0, I0, R0, P0) ≥ 0.

By continuity of the solution, for all S(t), E(t), I(t), R(t) and P(t) that have a positive initial
value at t = 0, we have the existence of an interval (0, t0) such that S(t), E(t), I(t), R(t), P(t) ≥
0 for 0 < t < t0. We will prove that t0 = ∞.

If S(t1) = 0 for t1 ≥ 0 and other solutions stay positive at t = t1, then

dS
dt

(t = t1) = bN . (13)

This implies that whenever the solution x(t) touches the S-axis, the derivative of S is non-
decreasing and the function S(t) does not cross to negative values. Similarly, when E(t1) = 0
for a t1 > 0 and the other solutions stay positive,

dE
dt

(t = t1) =
βSI
N

≥ 0. (14)

When I(t1) = 0 for a t1 > 0 and the other solutions stay positive,

dI
dt

(t = t1) = αE ≥ 0, (15)

when R(t1) = 0 for a t1 > 0 and the other solutions stay positive,

dR
dt

(t = t1) = γ 1I ≥ 0. (16)

Finally, when P(t1) = 0 for a t1 > 0 and the other solutions stay positive,

dP
dt

(t = t1) = eγ 1I ≥ 0. (17)

Therefore, whenever x(t) touches any of the axes S = 0, E = 0, I = 0, R = 0, P = 0, it never
crosses them. Now, let N(t) = S(t) + E(t) + I(t) + R(t), we can see that

dN
dt

= 0 (18)

so the value of N is constant. �

3.2 Stability of trivial solution
Next, we study the stability of the trivial solution. The Jacobian matrix evaluated at
X0(S, E, I, R, P) = (N , 0, 0, 0, 0) is

J(S, E, I, R, P) =

⎡
⎢⎢⎢⎢⎢⎢⎣

–d 0 –β0(1 – μ) 0 0
0 –α – d β0(1 – μ) 0 0
0 α –γ – d 0 0
0 0 γ –d 0
0 0 eγ 0 –λ

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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The eigenvalues of the Jacobian matrix J(S, E, I, R, P) evaluated at the disease-free equilib-
rium are

λ1 = –λ < 0,

λ2,3 = –b,

λ4 = –[α + 2b + γ +
√

A] < 0,

λ5 = –[α + 2b + γ –
√

A], (19)

where

A = α2 +
[
4[1 – μ]β0 – 2γ

]
α + γ 2.

It follows that the eigenvalues element (Eq. (19)) are negative if

β0 <
(γ + b)(α + b)

α(1 – μ)
. (20)

Lemma 1 The disease-free equilibrium X0(S, E, I, R, P) = (N , 0, 0, 0, 0) is locally asymptot-
ically stable provided the condition of Eq. (20) is satisfied.

It should be noted that the results of Eq. (20) can also be derived by obtaining the ex-
pression of the basic reproduction number R0, which is an important parameter for the
monitoring of the spread of the disease but also for the stability of the disease-fee solution.
It is known that values of R0 > 1 indicate an unstable equilibrium [21]. The derivation of
the expression for R0 is carried out in the appendix and yields

R0 =
αβ0(1 – μ)

(α + b)(b + γ )
. (21)

The disease-free equilibrium is stable provided that R0 < 1, which is equivalent to Eq. (20).

4 Dynamic analysis
In this section we study the conditions of the occurrence of Hopf points in our five-
dimensional model. We recall the conditions for a five-dimensional system to exhibit Hopf
points [22]. We address the following characteristic equation:

p(χ ) = χ5 + b1χ
4 + b2χ

3 + b3χ
2 + b4χ + b5 = 0. (22)

This polynomial has exactly one pair of imaginary roots, χ1,2 = ±√
θ , if and only if one of

the following sets of conditions is satisfied:

(C1) 	 = (b3 – b1b2)(b5b2 – b3b4) – (b5 – b1b4)2 = 0,

with θ =
(b5 – b1b4)
(b3 – b1b2)

> 0, (23)

(C2) b5 = b1b4, b3 = b1b2, and b4 < 0,
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with θ =
1
2
(
b2 +

√
b2

2 – 4b4
)

> 0, (24)

(C3) b5 = b1b4, b3 = b1b2, and b4 = 0, b2 > 0 with θ = b2 > 0. (25)

The Jacobean J of the model is given by

J(S, E, I, R, P) =

⎡
⎢⎢⎢⎢⎢⎢⎣

–[b + a5] 0 –a1 0 –a2

a5 –a3 a1 0 a2

0 α –a4 0 0
0 0 γ –b 0
0 0 eγ 0 –λ

⎤
⎥⎥⎥⎥⎥⎥⎦

(26)

where

a0 =
β0(1 – μ)

N
, a1 = a0Se

κP
N , a2 =

bκ(N – S)
N

,

a3 = α + b, a4 = γ + b,

a5 = a0Ie
κP
N .

The coefficients of the characteristic equation of Eq. (22) can be shown to be

b1 = Iay + a3 + a4 + 2b + λ,

b2 = Iay[a3 + a4 + b + λ] + [a3 + a4][λ + 2b] + 2λb + b2, (27)

b3 = –ϒb + ayI
(
a3a4 + [b + λ][a3 + a4] + bλ

)
+ b

(
[b + 2λ][a3 + a4] + bλ

)
,

b4 = –2ϒb2 + λ(a3 + a4)b2 + ayI
(
a3a4[b + λ] + bλ[a3 + a4]

)
, (28)

b5 = –ϒb3 + Iyaa3a4λb,

with

y = exp

(
–κP

N

)
and ϒ =

eγ κ(Naαy – a3a4)
Nay

. (29)

The term 	 in the first Hopf condition C1 (Eq. (23)) can be shown to be

	 = (b3 – b1b2)(b5b2 – b3b4) –
(
(b5 – b1b4)2)

= f (a, a3, a4, I, b, y)κ + c1c2c3c4, with (30)

c1 = ayI[a4 + b][a3 + b] + 2b2[a3 + a4 + b],

c2 = (ayI)2[a3 + a4] + ayI
(
a2

3 + [aa3 + a4][a4 + 2b]
)

+ a3b[a3 + 2a4 + b] + a4b[a4 + b],

c3 = ayI[a4 + λ][a3 + λ] + λ[b + λ][a3 + a4 + λ],

c4 = (b + λ). (31)

The obtained expressions for bi (i = 1, 5) and 	 are quite complicated and are not amenable
to analytical manipulation; therefore numerical simulations will be carried out in the next
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section. However, we can obtain an important result for the case when public reaction is
absent (κ = 0). In this case it can be seen from Eq. (28) that ϒ = 0 and therefore b4 > 0 (28),
which contradicts the Hopf conditions of C2 and C3 (Eqs. (24)–(25)). As to the first Hopf
condition C1 (Eq. (23)), it can be seen that for (κ = 0) the term 	 (Eq. (30)) is reduced to
c1c2c3c4 which is always strictly positive, which contradicts the Hopf condition.

5 Numerical simulations
The numerical analysis of the model is carried out using standard bifurcation techniques
[23] with the help of the software AUTO [24]. The nominal values of the model parameters
are listed in Table 1. These parameters correspond to physically realistic values pertinent
to COVID-19 disease. Figure 1(a) shows a typical behavior using the transmission rate
β0 as the main bifurcation parameter. There are two static solutions in the diagram: the

Table 1 Values of model parameters ([6])

Parameter Notation Value

Birth rate b 0.018
Proportion of sever cases e 0.2
Mean latent period 1

α
1

0.33
Transmission rate β0 1.68
Mean infectious period 1

γ
1
0.2

Intensity of responds κ 1117
Mean duration of public reaction 1

λ
1
0.1

Strength of government action μ 0.1

Figure 1 (a) Bifurcation diagram when β0 is the
main bifurcation parameter: (a) Enlargement of (a).
(solid) Stable branch; (dash) unstable branch; (filled
circle) stable periodic branch; (square) Hopf point
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Figure 2 Limit cycle corresponding to Fig. 1 for a
value of β0 = 70

horizontal trivial solution (I = 0), and the nontrivial static branch (Eqs. (10)–(11)). The
enlargement of the figure shown in Fig. 1(b) indicates that only values of β0 greater than
the value of Eq. (20) will lead to nontrivial solution. The diagram (Fig. 1(a)) is also charac-
terized by the existence of one Hopf point. The periodic branch emanating from the Hopf
point can be seen to terminate as it collides with the static branch. For β0 larger than the
value of Eq. (20) and up to the HB point the system will settle on the nontrivial solution,
but for β0 larger than the HB point, periodic behavior is expected in the model for a wide
range of β0. An example of a limit cycle is shown in Fig. 2 for β0 = 70. At this point, it is
useful to show the effect of the different model parameters on the existence of periodic
behavior. Each curve of Fig. 3 shows the locus of the Hopf point. Figure 3(a) shows the
effect of governmental action. It can be seen that the model cannot exhibit a Hopf point
in the absence of governmental action (i.e. μ = 0). Moreover, an increase in the strength
of the governmental action (i.e. increase in the value of μ), decreases the range of periodic
behavior, as the Hopf point moves to larger values of β0. The effect of the public response
(κ) on the Hopf point is shown in Fig. 3(b). An increase in the strength of the public reac-
tion (larger κ) increases the range of periodic behavior as the Hopf point occurs at small
values of β0.

The rest of the graphs of Fig. 3 shows that the range of periodic behavior decreases with
smaller values of the latent period of the disease (i.e. larger α) or smaller values of the
mean duration of public reaction (i.e. larger λ). On the other hand, the periodic behavior
increases with the increase in the birth rate (larger b) or we have an increase in the rate of
recovery (larger γ ).

Another type of bifurcation behavior predicted by the model can be shown in Fig. 4
where α (the inverse of the mean latent period) is chosen to be the main bifurcation pa-
rameter with the rest of model parameters set at their values of Table 1 with β0 = 50. In
the diagram the appearance of two Hopf points can be seen that are connected by a stable
periodic branch. Unlike the case of Fig. 1, the periodic behavior in this case is confined
to a range of values of α. Figure 5 shows an example of limit cycle for α = 0.25. The effect
of the different model parameters on the existence of such periodic behavior is shown in
Fig. 6 where the two curves show the loci of the two Hopf points. It can be seen that an
increase in the strength of the government action (μ) decreases the range between the
two Hopf points and therefore decreases periodic behavior. The Hopf points will not exist
beyond a critical point. On the contrary, increasing the strength of the public reaction (κ)
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Figure 3 Two parameter continuity diagrams showing the locus of the Hopf point of Fig. 1

Figure 4 (a) Bifurcation diagram when α is the main
bifurcation parameter. (solid) Stable branch; (dash)
unstable branch; (filled circle) stable periodic branch;
(square) Hopf point

increases the range of periodic behavior which will disappear if the strength falls below a
critical point. The rest of the curves in Fig. 6 shows that an increase in the basic transmis-
sion rate (β0) would increase the range of periodic behavior, and no periodic behavior can
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Figure 5 Limit cycle corresponding to Fig. 4 for a
value of α = 0.25

Figure 6 Two parameter continuity diagrams showing the locus of Hopf point of Fig. 4

be found below a critical value of β0. The effect of the mean duration of public reaction
shows a closed loop, which means that periodic behavior is confined within two critical
values of λ. The same can be said about the effect of the birth rate b. Periodic behavior
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is expected only within a specific range of birth rate. Finally, when γ increases (i.e. the
mean infection periodic decreases) the range of periodic behavior increases. The periodic
behavior cannot exist if γ falls below a critical value.

6 Conclusions
This paper has proposed and analyzed the stability of a SEIR model structured upon sus-
ceptible, exposed, infected and removed cases, in addition to a new social behavior vari-
able that mimics the public perception of risk regarding the severity of the pandemic.
We also proposed a new expression of the transmission rate that modeled the impact of
governmental action as a step function, and the individual reaction as a decreasing expo-
nential function. The model was shown to predict one and two Hopf points. There is a
fundamental difference between the two predicted periodic behaviors. While the former
would exist for a wide range of model parameters, the latter is generally confined between
some critical values. Regardless of the type of periodic behavior (emanating from one or
two Hopf points) it was found that periodic behavior will increase in range if the disease
has a large latent period, or if the mean duration of the public reaction increases, or the
birth rate is high or the rate of recovery increases. Both the governmental action and pub-
lic reaction have strong effects on the periodic behavior. A periodic behavior would not
exist if no governmental action is taken or if there is no individual reaction. The range
of periodic behavior would increase with a decrease in the strength of the governmental
action or an increase in the strength of the public reaction.

Appendix: Determination of basic reproduction number
The computation of the basic reproduction [21] number starts by identifying the infected
compartments, i.e. E and I ,

F =

(
βSI
N
0

)
, (32)

V =

(
(α + b)E

–αE + (γ + b)I

)
, (33)

where F denotes the rate of appearance of new infections and V denotes the rate of trans-
fer of individuals between compartments.

Calculating the derivative of F and V with respect to x = (E, I), respectively, then sub-
stituting for initial values (S0, E0, I0, R0, P0) yields

F =

(
0 βSI

N
0 0

)
, (34)

V =

(
α + b 0
–α γ + b

)
. (35)

R0 is the largest eigenvalue of matrix FV –1 i.e. R0 = ρ(FV –1). Substituting for β = β0(1 –
μ) exp( –κP

N ) yields

R0 =
S0αβ0(1 – μ) exp( –κP0

N )
N(α + b)(b + γ )

. (36)
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Without loss of generality we can take N = 1. The initial values are S0 = 1 and P0 = 1 for
the disease-free equilibrium. This yields

R0 =
αβ0(1 – μ)

(α + b)(b + γ )
. (37)
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