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Abstract
The purpose of this article is to discuss the dynamics of the spread of Ebola virus
disease (EVD), a kind of fever commonly known as Ebola hemorrhagic fever. It is rare
but severe and is considered to be extremely dangerous. Ebola virus transmits to
people through domestic and wild animals, called transmitting agents, and then
spreads into the human population through close and direct contact among
individuals. To study the dynamics and to illustrate the stability pattern of Ebola virus
in human population, we have developed an SEIR type model consisting of coupled
nonlinear differential equations. These equations provide a good tool to discuss the
mode of impact of Ebola virus on the human population through domestic and wild
animals. We first formulate the proposed model and obtain the value of threshold
parameterR0 for the model. We then determine both the disease-free equilibrium
(DFE) and endemic equilibrium (EE) and discuss the stability of the model. We show
that both the equilibrium states are locally asymptotically stable. Employing
Lyapunov functions theory, global stabilities at both the levels are carried out. We use
the Runge–Kutta method of order 4 (RK4) and a non-standard finite difference (NSFD)
scheme for the susceptible–exposed–infected–recovered (SEIR) model. In contrast to
RK4, which fails for large time step size, it is found that the NSFD scheme preserves
the dynamics of the proposed model for any step size used. Numerical results along
with the comparison, using different values of step size h, are provided.
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Steady-state; Stability; Reliable; Competitive; Numerical analysis

1 Introduction
Six species of Ebola virus have been discovered till now, out of which four cause Ebola virus
disease in humans. Bundibugyo Ebola virus, Ebola-Zaire virus, Tai Forest Ebola virus, and
Sudan Ebola virus account for large flare-ups or outbreaks in Africa. Ebola virus is per-
ilous, often causes a serious, acute, and even lethal illness in humans whenever left un-
treated. On average, its case fatality rate is around 50%. However, in the past flare-ups,
the case fatality rates varied from 25% (Uganda, 2007) to 90% (Congo, 2003) as reported
by World Health Organization (WHO) [1].

Ebola virus was first discovered in 1976 during the two consecutive outbreaks of haem-
orrhagic fever simultaneously emerging in various regions of Central Africa. The term
‘Ebola virus’ was introduced by one of the investigation teams during the first outbreak of
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1976, as the virus was detected in a village, in the vicinity of the Ebola River of the Demo-
cratic Republic of Congo (DRC). The first outbreak was one of the most deadly outbreaks
in history having case fatality rate of 88% with 318 exposed cases and 280 deaths. This
year, the second outbreak occurred approximately 850 kilometers away in South Sudan,
having case fatality rate of 53% with 284 exposed cases and 151 confirmed deaths. It is re-
markable that almost 25 more Ebola outbreaks have occurred after 1976 in a multitude of
countries around the world including the Democratic Republic of Congo, where it origi-
nated, Liberia, South Africa, Sierra Leone, Gabon, Uganda, Sudan, Guinea, Spain, and the
United States of America and decimated many people [1–6].

It is detected that a significant source of virus transmission is a contact with infected
animals like fruit bats, porcupines, and non-human primates such as apes and monkeys,
considered to be a natural lake for the Ebola virus. Ebola virus initially transmits to people
from domestic and wild animals, potentially affecting an oversized range of individuals,
and then spreads into the population through transmission among individuals via close
physical contact with an infected human or with their bodily fluids like blood, saliva, mu-
cus, tears (eye fluid), bile, secretions, breast milk, spinal column fluid, urine, and semen.
It can also be transmitted to others while handling contaminated materials used by the
patient like bedding and cloth. Moreover, some women may get infected in the process
of breastfeeding, and therefore the virus might stay in breast milk. Aid employees and
healthcare staff can also get infected during the treatment of infected patients in health
centers [2, 4]. Therefore, it is inevitable to take a great precaution.

Usually, symptoms of EVD include fever, muscle pain, loss of appetite, stomach pain,
severe headache, sore throat, fatigue, etc., followed by vomiting, rash, bloody diarrhoea,
impaired liver and kidney function, both internal and external uncontrollable bleeding,
low white blood cell, increase in platelet counts, and elevated liver enzymes. Normally
after an average of three days, the patient faces a rapid progression to death. Symptoms
may appear anywhere, and the time interval from infection with the Ebola virus to the
appearance of symptoms is called the incubation period, which normally is from 2 to 21
days [1–4]. An infected human may not lead to the spread in the host population until he
shows the said symptoms of the viral disease (EVD).

The most severe, deadliest, and the largest outbreak of EVD was reported in March
2014 in Guinea which then moved to Liberia, Mali, Senegal, the United States of America,
Nigeria, Spain, and across land borders. On December 2014, World Health Organization
has reported overall 17,942 probable and confirmed cases in Africa which included 6388
deaths with a case fatality rate of 36%. A large number of human deaths were caused by
Ebola virus in 2014–2016, where most of the infected people were foreign travelers as they
traveled to the affected regions, got exposed to the virus, and showed symptoms of Ebola
virus fever after they returned back to their homeland. Only in West Africa, after the first
case was discovered in 2014, the EVD outbreak ended by 2016 with 113,10 confirmed
deaths and nearly 286,16 suspected deaths with fatality rate of 39% (2014–2016 Ebola
Outbreak in West Africa reported by CDC) officially recorded in June 2016 as discussed
in [7–12] and [2–4].

Another outbreak of Ebola virus disease in North Kivu Province began on 1 August 2018
reported by the Ministry of Health of the DRC. The outbreak continues with moderate
intensity in the eastern DRC. Almost twenty-four health zones of Ituri and North Kivu
provinces of the DRC have confirmed many probable cases. On 11 June 2019, the Ugandan
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Ministry of Health confirmed their first and afterwards two additional imported cases
from the DRC into Uganda, and the number of infectious kept quickly increasing day by
day [13–15]. Behind the West Africa outbreak of 2014–2016, overall world’s second largest
outbreak of Ebola virus ever recorded was that of 2018–2019. It is the 10th and the largest
Ebola outbreak ever recorded in the DRC. Guinea having about 2500 deaths due to EVD
by May 2018 is one among the three hardest hit countries of West Africa. There were 2763
cases with 1841 confirmed deaths recorded from North Ituri and Kivu provinces by the
DRC Ministry of Health on 4 August 2019 [16].

Clinically, it may be more troublesome to handle Ebola epidemic malady as compared to
other infectious diseases in the world. Recently, a study carried out in 2016 determined the
immunogen of VSV-EBOV that is 70–100% effective to shield the patient against Ebola
infection. It is thought to be the first primary vaccine for the patient to fight against Ebola
virus sickness. However, the United States FDA has not approved any vaccine to be used
in humans. During the 2018–2019 Ebola eruption in the DRC, the first-ever multi-drug
irregular management trial was conducted under an ethical framework developed in con-
sultation with specialists within the field and by the DRC, simply to judge the safety and
effectiveness of drugs employed in the treatment of Ebola patients. Today, CDC is as-
sisting the Uganda government and the DRC, the eruption infected bordering countries,
native and international partners like WHO to coordinate the activities and supply techni-
cal steering associated with surveillance, contact tracing, infection control management,
risk communication, laboratory testing, vaccination, data management, health screening
at the border, and health education. A key to successfully controlling outbreaks of EVD
is community engagement, control practices, and protective measures. To scale back the
possibilities of transmission, we should introduce a vaccination or other antiviral drugs
that people will take, and also raise awareness to reduce the risk factors for Ebola infec-
tion due to human transmission. For example, we should try to avoid contact with infected
human beings and infected wild animals such as infected fruit bats, porcupines, monkeys,
and apes. Infected people should be treated in a very protective way especially when han-
dling body fluids. It is very important to wash our hands after caring after patients at
home or on visiting the hospital. We should treat animals only with gloves or other proper
clothing on and carefully treat their blood and meat. In the affected countries, infection of
Ebola virus can occur through touching the dead bodies of infected humans. To control
the propagation of EVD, dead bodies of patients should be handled and kept for a mini-
mum time and burial should be done by a group of trained people, those who have better
information to conduct safe and dignified burial.

In this study, we concentrate on Ebola virus to assess the dynamics of EVD for the direct
and indirect environmental transmission. For this purpose, we present an SEIR mathe-
matical model in which the primary emanator of Ebola infection is the infected wild and
domestic animals, from which the virus is transmitted slowly to household and subse-
quently reaches the rehabilitation places such as health care centers and hospitals, thereby
taking on the medical staff. Henceforth, if not capped, the virus may transform into a wide
scale epidemic, threatening the human beings at large. The important fact is that proper
precautions must be used if one needs to treat infected patients or animals. The study,
moreover, features a general assessment of, and different considerations with regards to,
the multi-pronged and multi-faceted rampage mechanisms of Ebola virus disease pertain-
ing to the environment and the linkage of the same to the disease broadly. Some compre-
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hensive mathematical techniques are used to analyze the proposed SEIR epidemic model
mathematically in a reliable way.

It is always necessary to discretize the continuous model for practical purposes. The
obtained discrete SEIR model should possibly contain all important dynamical properties
of the corresponding continuous model. For example, most of the standard finite differ-
ence schemes, such as Runge–Kutta and Euler method and many other standard methods,
when implemented to a dynamical system, can lead to major issues such as negative solu-
tions, converging to wrong equilibrium point or wrong periodic cycle, and sometimes give
numerical instabilities [2, 17–19] for the proposed model by increasing the time step size.
In this situation, these numerical schemes become unbounded and divergent. We propose
a numerical scheme to solve the proposed model by implementing a non-standard finite
difference (NSFD) scheme [20]. The presented NSFD scheme is used to perform a reliable
mathematical analysis of the SEIR model [2] which is available in the existing literature.
Therefore, we perform a numerical analysis of the continuous SEIR model along with some
comparisons with RK4 scheme for different parameter values involved to investigate the
dynamic consistency of the developed NSFD scheme.

The study has been divided into various segments. Section 2 lays down a brief descrip-
tion of the mathematical SEIR model of Ebola virus which consists of coupled nonlin-
ear differential equations. Equilibrium points and the reproductive number R0 are de-
termined in Sects. 3 and 4, respectively. Section 5 portrays the elements of scope and
prospects such as positivity and boundedness of the prescribed solutions of the model.
Complementarily, we shed light on local and global behaviors of SEIR model at equilib-
rium points in Sect. 6. Section 7 is devoted to numerical analysis and discussions. We
conclude the research article in Sect. 8.

2 Model description and formulation
Recently, Tahir et al. [2] considered a compartmental SEIR mathematical model of Ebola
virus with a closed population to describe the epidemiology and natural history of Ebola.
On a careful reading of [2], we have observed some flaws and gaps in the mathematical
analysis dealing with SEIR. In this paper, we not only address the problems in [2], but also
include other aspects of qualitative analysis of the model. We summarize our findings as
follows:

1. It is worth mentioning that in the formulation of the model in [2] the term β3IR
appearing in the model has no explicit interpretation. Indeed, infected individuals
can move to the recovered class in the presence of different measures which are
missing here. Hence we have modified this term by replacing β3IR with β3I .

2. They have not discussed the positivity of variables of the epidemic problem, which
is an essential property of population dynamics.

3. Disease-free and endemic equilibrium points do not satisfy the steady state
epidemic model qualitatively and quantitatively. Moreover, it is observed that if the
parameters used in [2] are considered, then both I and R in epidemic equilibria EE
become negative, which is contrary to the positivity of solutions.

4. As there are some calculation problems in the evaluation of equilibrium points
mentioned before, eigenvalues of the Jacobian at DFE and EE are misleading in
connection with the stability of the model.
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5. Global stability of the model at DFE is wrongly settled because without the
involvement of reproductive number R0, we reduce the beauty of the semi-negative
property of the Lyapunov function.

6. The analytic study of equilibrium points is not compatible with graphic
representation.

7. We use the NSFD scheme instead of RK4. It is worth mentioning that RK4 is not
always convergent and hence not appropriate to analyze the quantitative behavior
of an SEIR epidemic model [2]. However, our scheme is more reliable and hence the
title of our paper.

We will rectify all of the above mistakes and give a true analysis of the epidemic
model [2].

The infection of Ebola virus might be transmitted from both domestic and wild animals.
The modified SEIR model divides the total population into four epidemiological classes.
Susceptible humans at time instant t, that is, humans which are not yet infected but can
get infected by Ebola virus, are placed in class I (say). The number of elements in class I is
denoted by S. Susceptible individuals that may become exposed after an effective contact
with any of Ebola infected human are placed in class II (say) which consists of exposed
humans at time instant t, that is, those who still demonstrate no side effects of Ebola in-
fection. The number of elements in class II is denoted by E. The infected humans at time
instant t are included in epidemic class III. The number of elements in class III is denoted
by I . Ebola infected humans that finally recovered, acquired long immunity in life, and
may solely die naturally are placed in the fourth class of Ebola mathematical model. The
number of elements in this class is represented by R. Thus S, E, I , and R are the variables
for epidemic model (1)–(5). Compartment to compartment transmission flow of Ebola
virus in SEIR model (1)–(5) is shown in Fig. 1.

The simplified model equations representing the flow of Ebola virus are thus obtained
as follows:

dS
dt

= λ – μS – (β1 + β4 + β6)SE – (β5 + β7)SI, (1)

dE
dt

= (β1 + β4 + β6)SE – β2EI – (μ1 + μ2)E, (2)

Figure 1 Compartment to compartment transmission of Ebola virus in mathematical model (1)–(5)
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Table 1 Summary of constant parameters and their numerical values appearing in the epidemic
model

Notation Parameter with description Value Source

λ Rate of increase (recruitment rate) of susceptible humans 0.6321 [2, 4]
μ Natural mortality rate of susceptible humans 0.9704 [2, 4]
β1 Rate of infection from susceptible to exposed humans 0.2877 [2, 4]
β2 Rate of infection from exposed to infected humans 0.7613 [2, 4]
β3 Rate of infection from infected to recovered humans 0.4389 [2, 4]
β4 Rate of infection due to wild animals from susceptible to exposed humans 0.1234 [2, 4]
β5 Rate of infection due to wild animals from susceptible to infected humans 0.2431 [2, 4]
β6 Rate of infection due to domestic animals from susceptible to exposed humans 0.4000 [2, 4]
β7 Rate of infection due to domestic animals from susceptible to infected humans 0.3000 [2, 4]
μ1 Natural mortality rate of exposed humans 0.0432 [2, 4]
μ2 Disease induced mortality rate of exposed humans 0.2006 [2, 4]
μ3 Natural mortality rate of infected humans 0.0656 [2, 4]
μ4 Disease induced mortality rate of infected humans 0.9764 [2, 4]
μ5 Natural mortality rate of recovered humans 0.6704 [2, 4]

dI
dt

= β2EI + (β5 + β7)SI – (β3 + μ3 + μ4)I, (3)

dR
dt

= β3I – μ5R, (4)

and the initial conditions are

S(t = 0) ≥ 0, E(t = 0) ≥ 0, I(t = 0) ≥ 0, R(t = 0) ≥ 0. (5)

The other constant parameters used in epidemic model (1)–(5) are listed in Table 1.

3 Equilibrium points
SEIR model (1)–(5) admits two equilibrium points in the feasible region (7). A disease-free
equilibrium (DFE)

F0 =
(
S0, E0, I0, R0) = (λ/μ, 0, 0, 0),

of the proposed model (1)–(5) will occur if R0 < 1. At this stage, there is no infection in
the entire population, that is, I = 0. This implies that all the Ebola infected classes will
diminish, and finally human population incorporates Ebola free/susceptible humans only.
However, system (1)–(5) has a unique endemic equilibrium (EE)

F1 =
(
S1, E1, I1, R1),

where

S1 =
λ

π + μ
,

E1 =
(β3 + μ3 + μ4)(π + μ) – λ(β5 + β7)

β2(π + μ)
,

I1 =
λ(β1 + β4 + β6) – (μ1 + μ2)(π + μ)

β2(π + μ)
,

R1 =
λβ3(β1 + β4 + β6) – β3(μ1 + μ2)(π + μ)

μ5β2(π + μ)
,
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along with

π =
1
β2

[
(β1 + β4 + β6)(β3 + μ3 + μ4) – (μ1 + μ2)(β5 + β7)

]
.

If R0 > 1, then we have a stage when the disease will spread in the host population.

4 The basic reproduction number R0

A threshold parameter R0 is very important as it is used to assess the prospects or dy-
namics of any disease. Epidemic will exist when an infected appears into a completely
susceptible host population. The basic reproductive number R0 therefore gives the av-
erage measure of new infections produced by a primary infection. The fate of EVD and
the dynamical behavior of model (1)–(5) are determined and controlled by R0. There will
be no epidemic in the human population if R0 < 1, and it occurs when R0 > 1. Thus, we
require a pack of control strategies if the disease becomes epidemic.

Several research articles [21–26] are devoted to calculating the basic reproductive num-
ber R0 for different epidemic models. In this section, we determine R0 for the proposed
model and calculate it by the next-generation matrix approach [2, 21, 22]. For the proposed
model (1)–(5), the next-generation approach is performed as follows:

F =

(
(β1 + β4 + β6)SE – β2EI

β2EI + (β5 + β7)SI

)

, V =

(
(μ1 + μ2)E

(β3 + μ3 + μ4)I

)

.

The Jacobian of F and V is given by

F̄ =

(
(β1 + β4 + β6)S 0

0 (β5 + β7)S

)

, V̄ =

(
μ1 + μ2 0

0 β3 + μ3 + μ4

)

.

The dominant eigenvalue of the product matrix F̄V̄ –1 denoted by

R0 =
λ(β1 + β4 + β6)

μ(μ1 + μ2)

is the required value of threshold parameter for the proposed model (1)–(5).

5 Positivity and boundedness of solutions
As we are dealing with human populations, all associated parameters used in model (1)–
(5) must be nonnegative. To make Ebola transmission model (1)–(5) epidemiologically
meaningful, we will show that the state variables are nonnegative. Thus solutions obtained
remain positive for all time t ≥ 0 and bounded [27] in a feasible region

B =
{

(S, E, I, R) ∈R4
+, Z(t) ≤ λ

μ

}
.

5.1 Positivity of solutions
The solutions S, E, I , R of system (1)–(5) are positive for all t ≥ 0 with nonnegative initial
conditions, when they exist.
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Theorem 1 Consider the initial conditions as given in Eq. (5). Then the solutions (S, E, I, R)
of system (1)–(5) are positive for all time t > 0.

Proof Let

t̄ = sup
{

t > 0 : S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0
}

.

Then clearly t̄ > 0. Suppose that S(0) ≥ 0. Equation (1) leads to

dS
dt

= λ – μS – (β1 + β4 + β6)SE – (β5 + β7)SI

= λ –
[
μ + (β1 + β4 + β6)E – (β5 + β7)I

]
S.

Put f (t) = (β1 + β4 + β6)E – (β5 + β7)I . Multiplying both sides by exp(μt +
∫ t

0 f (t) dt) > 0, the
above equation becomes

d
dt

[
S × exp

(
μt +

∫ t

0
f (t) dt

)]
= λ × exp

(
μt +

∫ t

0
f (t) dt

)
.

Integrating both sides from t = 0 to t = t̄, we obtain

S(t̄) × exp

(
μt̄ +

∫ t̄

0
f (t) dt

)
– S(0) = λ ×

∫ t̄

0
exp

(
μy +

∫ y

0
f (x) dx

)
dy.

We multiply both sides by exp(–μt̄ –
∫ t̄

0 f (t) dt) > 0 to get

S(t̄) = S(0) × exp

(
–μt̄ –

∫ t̄

0
f (t) dt

)

+ λ × exp

(
–μt̄ –

∫ t̄

0
f (t) dt

)
×

∫ t̄

0
exp

(
μy +

∫ y

0
f (x) dx

)
dy.

As S(0) ≥ 0, the sum of the positive terms S is positive. Similarly, we can prove that the
quantities S, E, I are positive for all t > 0. Moreover, any solution (S(t), E(t), I(t), R(t)) of
model (1)–(5) satisfies the implication

S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0

⇒ S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0,

which completes the proof. �

5.2 Boundedness of the solutions
Theorem 2 All the solutions (S, E, I, R) of system (1)–(5) are bounded.

Proof The total population is represented by Z and is defined as

Z(t) = S(t) + E(t) + I(t) + R(t).
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Differentiating the above equation with respect to t, we obtain that

dZ(t)
dt

=
dS(t)

dt
+

dE(t)
dt

+
dI(t)

dt
+

dR(t)
dt

.

Using Eqs. (1)–(4), we get that

dZ
dt

= λ – μS – (μ3 + μ4)I – (μ1 + μ2)E – μ5R. (6)

Suppose, for any initial condition, Z(0) ≤ λ
μ

where Z(0) = S(0)+E(0)+ I(0)+R(0). We claim
that

Z(t) ≤ λ

μ
for all t ≥ 0.

It follows from Eq. (6) that

dZ
dt

≤ λ – μS.

By Gronwall’s inequality, we have

Z(t) ≤ λ

μ
+

(
Z(0) –

λ

μ

)
e–μt ,

and hence Z(t) ≤ λ
μ

for all t ≥ 0 whenever Z(0) ≤ λ
μ

. Clearly,

lim
t→+∞ sup Z ≤ λ

μ
.

This shows that Z(t) and all other variables S, E, I , R of model (1)–(5) are bounded. There-
fore, SEIR epidemic model (1)–(5) will be analyzed in a biologically feasible region

B =
{

(S, E, I, R) ∈R4
+, Z(t) ≤ λ

μ
, S(t) ≥ 0, E(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0

}
. (7)

The differential equation (6) for Z shows that the solution of Eqs. (1)–(4) exists in the
positive orthan R4

+, eventually enters and remains in the attracting subset B (since the set
B attracts all solutions in R4

+). Thus the set B contains a local as well as global attractor of
dynamical system (1)–(5). Moreover, the set B ⊂ R4

+ is compact and positively invariant
with respect to model (1)–(5) with nonnegative initial conditions in R4

+. �

6 Stability analysis
In this section, stability analysis of epidemic SEIR model (1)–(5) at both DFE and EE is
discussed to check the local and global dynamical behavior [28–41] of EVD. This analysis
is performed in the following subsections.
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6.1 Behavior of the model at disease-free equilibrium in local sense
The local stability analysis of system (1)–(5) at point F0 = (S0, E0, I0, R0) = (λ/μ, 0, 0, 0) is
discussed in this subsection. The Jacobian matrix for system (1)–(5) at F0 is obtained as
follows:

J(F0) =

⎛

⎜
⎜⎜⎜
⎝

–μ – λ
μ

(β1 + β4 + β6) – λ
μ

(β5 + β7) 0
0 λ

μ
(β1 + β4 + β6) – (μ1 + μ2) 0 0

0 0 λ
μ

(β5 + β7) – (β3 + μ3 + μ4) 0
0 0 β3 –μ5

⎞

⎟
⎟⎟⎟
⎠

.

We now prove the following important result for local stability analysis of the epidemic
model at disease-free equilibrium.

Theorem 3 The proposed system (1)–(5) is said to be locally asymptotically stable (LAS)
at disease-free equilibrium F0 which is contained in set B if R0 < 1, whereas if R0 > 1, the
system is unstable.

Proof Using MAPLE, the following eigenvalues of Jacobian matrix J(F0) are obtained:

λ1 = –μ, (8)

λ2 =
λ

μ
(β1 + β4 + β6) – (μ1 + μ2), (9)

λ3 =
λ

μ
(β5 + β7) – (β3 + μ3 + μ4), (10)

λ4 = –μ5. (11)

From Eq. (8), we have λ1 = –μ < 0 since μ > 0. By Eq. (9), λ2 = (μ1 + μ2)(R0 – 1) implies
that λ2 < 0 if and only if R0 < 1. Now we consider Eq. (10), that is, λ3 = (β5 + β7) λ

μ
– (β3 +

μ3 + μ4). Clearly, λ3 < 0 ⇔ (β5 + β7) λ
μ

< β3 + μ3 + μ4. Using Eq. (11), we have λ4 < 0 since
μ5 > 0. If R0 < 1, all eigenvalues are negative, therefore the disease-free equilibrium point
(λ/μ, 0, 0, 0) of system (1)–(5) is LAS. The human population is free of EVD since the num-
ber of infected humans is 0. Overall human population is healthy, and no one is infected
in the host population. Moreover, if R0 > 1, that is,

λ(β1 + β4 + β6)
μ(μ1 + μ2)

> 1 ⇒ μ1 + μ2 <
λ

μ
(β1 + β4 + β6)

⇒ –(μ1 + μ2) +
λ

μ
(β1 + β4 + β6) > 0,

then λ2 > 0. Hence F0 is unstable if R0 > 1. �

6.2 Behavior of the model at endemic equilibrium in local sense
The Jacobian matrix at F1 = (S1, E1, I1, R1) is evaluated as follows:

J(F1) =

⎛

⎜
⎜⎜
⎜
⎝

E1
–λ(β1+β4+β6)

π+μ

–λ(β5+β7)
π+μ

0
E2 0 – (β3+μ3+μ4)(π+μ)+λ(β5+β7)

π+μ
0

E3
λ(β1+β4+β6)–(π+μ)(μ1+μ2)

π+μ
0 0

0 0 β3 –μ5

⎞

⎟
⎟⎟
⎟
⎠

,
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where

E1 = –
1
β2

[
μβ2 + (β1 + β4 + β6)(β3 + μ3 + μ4) + (β5 + β7)(μ1 + μ2)

]
,

E2 =
1

β2(π + μ)
[
(β1 + β4 + β6)(β3 + μ3 + μ4)(π + μ) – λ(β5 + β7)(β1 + β4 + β6)

]
,

E3 =
–1

β2(π + μ)
[
–λ(β5 + β7)(β1 + β4 + β6) + (β5 + β7)(μ1 + μ2)

]
.

For local stability analysis of the given model at F1, we will prove the following well-known
result.

Theorem 4 If R0 > 1, the proposed system (1)–(5) on set B is locally asymptotically stable
(LAS) at endemic equilibrium F1,whereas the system will be unstable if R0 < 1.

Proof Using MAPLE, eigenvalues of the Jacobian matrix J(F1) are given by

λ1 = –μ5, (12)

λ2 =
–1
β2

[
μβ2 + (β3 + μ3 + μ4)(β1 + β4 + β6) + (β5 + β7)(μ1 + μ2)

]
, (13)

λ3 =
–λ(β1 + β4 + β6)2[(π + μ)(β3 + μ3 + μ4) – λ(β5 + β7)]

[μβ2 + (β5 + β7)(μ1 + μ2) + (β3 + μ3 + μ4)(β1 + β4 + β6)](π + μ)2 , (14)

λ4 =
1

λ(β1 + β4 + β6)2 (X – λY ), (15)

where

X = (π + μ)
[
(β5 + β7)(μ1 + μ2)2 + (μ1 + μ2)(β1 + β4 + β6)(β3 + μ3 + μ4)

+ μβ2(μ1 + μ2)
]
,

Y = λ(β1 + β4 + β6)
[
(β3 + μ3 + μ4)(β1 + β4 + β6) + μβ2 + (μ1 + μ2)(β5 + β7)

]
.

Clearly, from Eq. (12), λ1 = –μ5 < 0. From Eq. (13),

λ2 =
–1
β2

[
μβ2 + (β5 + β7)(μ1 + μ2) + (β3 + μ3 + μ4)(β1 + β4 + β6)

]
,

we have λ2 < 0. From Eq. (14), we have λ3 < 0 if and only if –λ(β1 + β4 + β6)2[(π + μ)(β3 +
μ3 + μ4) – λ(β5 + β7)] < [μβ2 + (β5 + β7)(μ1 + μ2) + (β3 + μ3 + μ4)(β1 + β4 + β6)](π + μ)2,
which is true. Hence, λ3 < 0. From Eq. (15), it is clear that λ4 < 0 ⇔ X < λY . As all the
eigenvalues of the Jacobian matrix J(F1) are negative, so F1 = (S1, E1, I1, R1) is LAS. On the
other hand, F1 will be unstable if R0 > 1 as we have performed in Theorem 3. �

6.3 Behavior of the model in global sense
In this subsection, Lyapunov function theory is used for the global stability analysis [42–
56] of the proposed system at both equilibrium points. We have the following important
results.
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Theorem 5 The disease-free equilibrium (λ/μ, 0, 0, 0) of model (1)–(5) is globally asymp-
totically stable (GAS) on B whenever R0 < 1 and is unstable for R0 > 1.

Proof Let S0 = λ/μ. To show the global stability of system (1)–(5) at F0, we have considered
a Volterra-type Lyapunov function U : B →R [34] as a candidate given by

U = S – S0 ln S + E + I.

Along the solution of the proposed system (1)–(5), the time derivative of U is given by

U̇ =
(

1 –
S0

S

)
Ṡ + Ė + İ

= –
μ

S
(
S – S0)2 +

[
λ

μ
(β5 + β7) – (β3 + μ3 + μ4)

]
I + (μ1 + μ2)(R0 – 1)E.

Since λ
μ

(β5 +β7) < β3 +μ3 +μ4 (see Theorem 3), it follows that U̇ ≤ 0 for R0 < 1. Moreover,
if R0 < 1 then U̇ = 0 ⇔ S = S0, E = 0, I = 0, whereas U̇ < 0 for all (S, E, I, R) 
= (S0, 0, 0, 0)
in B. This implies that U̇ is negative semi-definite in a small neighborhood around F0 =
(S0, 0, 0, 0). So, U is indeed a Lyapunov function on B.

Since the equality U̇ = 0 holds if and only if (S, E, I, R) = (S0, E0, I0, R0) = F0. Hence, the
disease-free equilibrium F0 is the largest invariant subset contained in the set

ε0 =
{

(S, E, I, R) ∈ B : U̇ = 0
}

.

In this case, each solution trajectory which starts in the feasible region B with some initial
condition approaches F0 as t → +∞. As a result, Ebola virus disease (EVD) eventually dis-
appears from the host population. Thus by La Salle’s invariance principle [57], we conclude
that F0 is GAS on B. �

Theorem 6 For R0 > 1, the endemic equilibrium point F1 of system (1)–(5) is GAS on B if
S = S1, E = E1, I = I1, and for R0 < 1, the system is unstable.

Proof The following Lyapunov function V : B → R [34] is considered as a candidate to
show the global stability of system (1)–(5) at endemic equilibrium F1, defined by the rela-
tion

V = K1
[
S – S1 ln S

]
+ K2

[
E – E1 ln E

]
+ K3

[
I – I1 ln I

]
,

where K1, K2, and K3 are positive constants to be chosen latter.
Along the solution of the proposed system (1)–(5), time derivative of V is computed to

give

V̇ = K1
(
S – S1)

[
λ

S
– μ – (β1 + β4 + β6)E – (β5 + β7)I

]

+ K2
(
E – E1)[(β1 + β4 + β6)S – β2I – (μ1 + μ2)

]

+ K3
(
I – I1)[β2E + (β5 + β7)S – (μ3 + μ4 + β3)

]
.



Rafiq et al. Advances in Difference Equations        (2020) 2020:540 Page 13 of 24

Since F1 = (S1, E1, I1, R1) in an endemic equilibrium point, so from system (1)–(5),

dS1

dt
=

dE1

dt
=

dI1

dt
= 0,

gives

μ =
λ

S1 – (β1 + β4 + β6)E1 – (β5 + β7)I1,

μ1 + μ2 = (β1 + β4 + β6)S1 – β2I1,

μ3 + μ4 + β3 = β2E1 + (β5 + β7)S1.

Substituting these values in the above equation and grouping, we get

V̇ = λK1
(S – S1)2

SS1 + (K2 – K1)(β1 + β4 + β6)
(
S – S1)(E – E1)

+ (K3 – K1)(β5 + β7)
(
S – S1)(I – I1)

+ (K3 – K2)β2
(
E – E1)(I – I1).

For K1 = K2 = K3 = 1, we have

V̇ = –λ
(S – S1)2

SS1 ≤ 0.

Thus, V is indeed a Lyapunov function.
Furthermore, the equality V̇ = 0 holds ⇔ (S, E, I, R) = (S1, E1, I1, R1) = F1. Therefore, F1

is the largest invariant subset contained in the set

ε1 =
{

(S, E, I, R) ∈ B : V̇ = 0
}

.

This means that each solution trajectory, which starts in the feasible region B, approaches
F1 as t → +∞ implies that Ebola virus disease (EVD) spreads in the host population. Thus
by La Salle’s invariance principle [57], it is concluded that F1 is GAS on B. �

7 Numerical analysis
This section is devoted to the numerical interpretation of SEIR model (1)–(5) using RK4
and NSFD method coded with Matlab. Different parameters and their numerical values
have been taken from [2, 4] as given in Table 1. First, we develop both the numerical
schemes for the epidemic model, then numerical simulations are provided by the graphs to
observe the dynamical behavior of EVD over time t. We also discuss the numerical results.

7.1 RK4 scheme
To develop an explicit numerical scheme of the RK4 method [2–4, 58–60], we need to
make the following assumptions S(t) ≈ Sn, E(t) ≈ En, I(t) ≈ In, R(t) ≈ Rn:

k1 = h
[
λ – μSn – (β1 + β4 + β6)SnEn – (β5 + β7)SnIn],

w1 = h
[
(β1 + β4 + β6)SnEn – β2EnIn – (μ1 + μ2)En],
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m1 = h
[
β2EnIn + (β5 + β7)SnIn – (β3 + μ3 + μ4)In],

n1 = h
[
β3In – μ5Rn],

k2 = h
[
λ – μ

(
Sn +

k1

2

)
– (β1 + β4 + β6)

(
Sn +

k1

2

)(
En +

w1

2

)

– (β5 + β7)
(

Sn +
k1

2

)(
In +

m1

2

)]
,

w2 = h
[

(β1 + β4 + β6)
(

Sn +
k1

2

)(
En +

w1

2

)
– β2

(
En +

w1

2

)(
In +

m1

2

)

– (μ1 + μ2)
(

En +
w1

2

)]
,

m2 = h
[
β2

(
En +

w1

2

)(
In +

m1

2

)
+ (β5 + β7)

(
Sn +

k1

2

)(
In +

m1

2

)

– (β3 + μ3 + μ4)
(

In +
m1

2

)]
,

n2 = h
[
β3

(
In +

m1

2

)
– μ5

(
Rn +

n1

2

)]
,

k3 = h
[
λ – μ

(
Sn +

k2

2

)
– (β1 + β4 + β6)

(
Sn +

k2

2

)(
En +

w2

2

)

– (β5 + β7)
(

Sn +
k2

2

)(
In +

m2

2

)]
,

w3 = h
[

(β1 + β4 + β6)
(

Sn +
k2

2

)(
En +

w2

2

)
– β2

(
En +

w2

2

)(
In +

m2

2

)

– (μ1 + μ2)
(

En +
w2

2

)]
,

m3 = h
[
β2

(
En +

w2

2

)(
In +

m2

2

)
+ (β5 + β7)

(
Sn +

k2

2

)(
In +

m2

2

)

– (β3 + μ3 + μ4)
(

In +
m2

2

)]
,

n3 = h
[
β3

(
In +

m2

2

)
– μ5

(
Rn +

n2

2

)]
,

k4 = h
[
λ – μ

(
Sn + k3

)
– (β1 + β4 + β6)

(
Sn + k3

)(
En + w3

)

– (β5 + β7)
(
Sn + k3

)(
In + m3

)]
,

w4 = h
[
(β1 + β4 + β6)

(
Sn + k3

)(
En + w3

)
– β2

(
En + w3

)(
In + m3

)

– (μ1 + μ2)
(
En + w3

)]
,

m4 = h
[
β2

(
En + w3

)(
In + m3

)
+ (β5 + β7)

(
Sn + k3

)(
In + m3

)

– (β3 + μ3 + μ4)
(
In + m3

)]
,

n4 = h
[
β3

(
In + m3

)
– μ5

(
Rn + n3

)]
.
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Hence

Sn+1 = Sn +
1
6

[k1 + 2k2 + 2k3 + k4], (16)

En+1 = En +
1
6

[w1 + 2w2 + 2w3 + w4], (17)

In+1 = In +
1
6

[m1 + 2m2 + 2m3 + m4], (18)

Rn+1 = Rn +
1
6

[n1 + 2n2 + 2n3 + n4]. (19)

7.2 NSFD scheme
In this subsection, we present a reliable numerical technique that is non-standard finite
difference (NSFD) scheme initiated by Mickens [20]. This scheme has several applications
in the study of many concrete problems of practical nature that arise in mathematical and
engineering sciences. For applications of the NSFD method in different fields of applied
mathematics, we refer to [61–68]. To develop an explicit numerical scheme of the NSFD
method, we need to make the following assumptions in system (1)–(5): For the first equa-
tion, let

dS
dt

=
Sn+1 – Sn

h
, S(t) ≈ Sn+1, S(t)E(t) ≈ Sn+1En, S(t)I(t) ≈ Sn+1In.

For the second equation, let

dE
dt

=
En+1 – En

h
, E(t) ≈ En+1, S(t)E(t) ≈ Sn+1En, E(t)I(t) ≈ En+1In.

For the third equation, let

dI
dt

=
In+1 – In

h
, I(t) ≈ In+1, E(t)I(t) ≈ En+1In, S(t)I(t) ≈ Sn+1In.

For the fourth equation, let

dR
dt

=
Rn+1 – Rn

h
, I(t) ≈ In+1, R(t) ≈ Rn+1.

Using the above assumptions, the first four equations of model (1)–(5) become

Sn+1 – Sn

h
= λ – μSn+1 – (β1 + β4 + β6)Sn+1En – (β5 + β7)Sn+1In,

Sn+1 = Sn + h
[
λ – μSn+1 – (β1 + β4 + β6)Sn+1En – (β5 + β7)Sn+1In],

Sn + hλ = Sn+1 + h
[
μSn+1 + (β1 + β4 + β6)Sn+1En + (β5 + β7)Sn+1In]

= Sn+1[1 + h
{
μ + (β1 + β4 + β6)En + (β5 + β7)In}],

En+1 – En

h
= (β1 + β4 + β6)Sn+1En – β2En+1In – (μ1 + μ2)En+1,

En+1 = En + h
[
(β1 + β4 + β6)Sn+1En – β2En+1In – (μ1 + μ2)En+1],

En + h(β1 + β4 + β6)Sn+1En = En+1 + h
[
β2En+1In + (μ1 + μ2)En+1],
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En[1 + h(β1 + β4 + β6)Sn+1] = En+1[1 + h
(
β2In + μ1 + μ2

)]
,

In+1 – In

h
= β2En+1In + (β5 + β7)Sn+1In – (β3 + μ3 + μ4)In+1,

In+1 = In + h
[
β2En+1In + (β5 + β7)Sn+1In – (β3 + μ3 + μ4)In+1],

In + hβ2En+1In + h(β5 + β7)Sn+1In = In+1 + h(β3 + μ3 + μ4)In+1,

In[1 + h
{
β2En+1 + (β5 + β7)

}
Sn+1] = In+1[1 + h(β3 + μ3 + μ4)

]
,

Rn+1 – Rn

h
= β3In+1 – μ5Rn+1,

Rn+1 = Rn + h
[
β3In+1 – μ5Rn+1],

Rn+1(1 + hμ5) = Rn + hβ3In+1.

Thus

Sn+1 =
Sn + hλ

1 + h[μ + (β1 + β4 + β6)En + (β5 + β7)In]
, (20)

En+1 =
En[1 + h(β1 + β4 + β6)Sn+1]

1 + h(β2In + μ1 + μ2)
, (21)

In+1 =
In[1 + h{β2En+1 + (β5 + β7)}Sn+1]

1 + h(β3 + μ3 + μ4)
, (22)

Rn+1 =
Rn + hβ3In+1

1 + hμ5
. (23)

Theorem 7 The discrete scheme (20)–(23) preserves the equilibrium points (F0 and F1

resp.) of the continuous model (1). That is, the only fixed points of scheme (20)–(23) are
either the disease-free equilibrium point or an endemic equilibrium of the continuous model
(1)–(5). Also, the stability properties of the fixed points of NSFD scheme are the same as the
equilibrium points.

Theorem 8 The disease-free fixed point of NSFD scheme (20)–(23) for model (1)–(5) is
GAS whenever R0 < 1, and the endemic fixed point is GAS whenever R0 > 1.

Proof The proof of this theorem follows similar lines as in [34]. �

7.3 Numerical results
This section includes numerical interpretation of system (1)–(5) using RK4 (16)–(19) and
NSFD method (20)–(23) coded with Matlab. At the start, we compare both RK4 and NSFD
schemes for the discretization step size h = 1.0. It is observed that both the numerical
schemes are respectively convergent and converge numerically to the true steady states
(F0 and F1) of the continuous model (1)–(5) as shown in Figs. 2–3. Moreover, for h = 1.0,
RK4 and NSFD exhibit positive solutions in the basic feasible region B.

Critically, if we take h = 1.5, the RK4 method converges to the true steady state of F0 for
R0 < 1 and gives positive solutions, but does not converge to F1 forR0 > 1 and moves away
from the true steady state, and hence gives unexpected negative solutions which are never
contained in set B. On the other hand, the NSFD scheme converges to F0 (when R0 < 1)
as well as F1 (when R0 > 1) and gives positive solutions (see Figs. 4 and 5 for comparison).
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Figure 2 Comparison of solutions obtained by NSFD and RK4 numerical schemes for F0 with an initial
condition (S(0), E(0), I(0),R(0)) = (0.1, 0.1, 0.1, 0.1) and step size h = 1.0. Both the schemes converge to the true
steady state of F0 withR0 = 0.2167 < 1

Figure 3 Comparison of solutions obtained by NSFD and RK4 numerical schemes for F1 with an initial
condition (S(0), E(0), I(0),R(0)) = (0.1, 0.1, 0.1, 0.1) and step size h = 1.0. Both the schemes converge to the true
steady state of F1 withR0 = 7.0735 > 1
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Figure 4 Comparison of solutions obtained by NSFD and RK4 numerical schemes for F0 with an initial
condition (S(0), E(0), I(0),R(0)) = (0.1, 0.1, 0.1, 0.1) and step size h = 1.5. Both the schemes converge to the true
steady state of F0 withR0 = 0.2167 < 1

Figure 5 Comparison of solutions obtained by NSFD and RK4 numerical schemes for F1 with an initial
condition (S(0), E(0), I(0),R(0)) = (0.1, 0.1, 0.1, 0.1) and step size h = 1.5 withR0 = 7.0735 > 1. The comparison
shows that the RK4 scheme fails to converge. However, the NSFD scheme improves the result obtained by
RK4 and it is seen to be convergent dynamically to the correct endemic equilibrium F1
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Figure 6 Comparison of solutions obtained by NSFD and RK4 numerical schemes for F0 with an initial
condition (S(0), E(0), I(0),R(0)) = (0.1, 0.1, 0.1, 0.1) and step size h = 2.0. The NSFD scheme converges to the true
steady state of F0 withR0 = 0.2167 < 1, whereas the RK4 scheme is seen to be divergent

Figure 7 Comparison of solutions obtained by NSFD and RK4 numerical schemes for F1 with an initial
condition (S(0), E(0), I(0),R(0)) = (0.1, 0.1, 0.1, 0.1) and step size h = 2.0 withR0 = 7.0735 > 1. The comparison
shows that the RK4 scheme fails to converge, whereas the NSFD scheme improves the result obtained by RK4
and it is seen to be convergent dynamically to the correct endemic equilibrium F1
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Figure 8 Comparison of solutions obtained by NSFD and RK4 numerical schemes for F0 with an initial
condition (S(0), E(0), I(0),R(0)) = (0.1, 0.1, 0.1, 0.1) and step size h = 2.5 withR0 = 0.2167 < 1. Again, RK4 fails to
converge but NSFD converges to the true steady state of F0

Figure 9 Comparison of solutions obtained by NSFD and RK4 numerical schemes for F1 with an initial
condition (S(0), E(0), I(0),R(0)) = (0.1, 0.1, 0.1, 0.1) and step size h = 2.5 withR0 = 7.0735 > 1. The comparison
shows that the RK4 scheme fails to converge, whereas the NSFD scheme improves the result obtained by RK4
and it is seen to be convergent dynamically to the correct endemic equilibrium F1
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Table 2 Comparison of RK4 and NSFD numerical schemes

h RK4 NSFD

1.0 Convergent Convergent
1.5 Divergent Convergent
2.0 Divergent Convergent
2.5 Divergent Convergent

As the last trial, if we compare both schemes for the step size h = 2.0 and h = 2.5, RK4
exhibits negative solutions and does not converge to both F0 and F1, respectively, gives
negative solutions again, but NSFD preserves positivity and gives convergence of the so-
lutions, as shown in Figs. 6–9.

The above discussion shows that the RK4 scheme is not always convergent rather condi-
tionally convergent and depends upon the value of step size h, and fails for large step size,
whereas Figs. 2–9 illustrate the power of an unconditionally convergent NSFD scheme to
produce the converged and positive solutions of model (1)–(5) for any value of the step
size h. Moreover, the proposed NSFD scheme is numerically stable (by Theorems 7 and 8)
and easy to implement. Using different values of parameter h, numerical experiments are
performed, and then the obtained results are compared for both RK4 and NSFD schemes.
For both numerical schemes, the effect of different time step h is shown in Table 2.

8 Conclusions
In this paper, we have considered an SEIR epidemic model of Ebola virus affected by wild
and domestic animals, which spread the infection within the human population at any
time t. We have studied the dynamical behavior of the proposed model and the dynamics
is determined by the basic reproduction number R0 that acts virtually in controlling the
infection of Ebola virus. We have proved the boundedness and nonnegativity of solutions
and then well-posedness of the model. Both the disease-free and endemic equilibrium
points for the epidemic model were presented and further analyzed for stability. It was
proved that the disease-free equilibrium is locally and globally asymptotically stable for
system (1)–(5) whenR0 < 1, which shows that EVD will die out at time instant t. Moreover,
the endemic equilibrium is stable locally and globally when R0 > 1 by using the theory of
Lyapunov functions, which implies that Ebola virus will persist in the host population
and will eventually lead to epidemic. Finally, we have developed the numerical schemes of
RK4 and NSFD methods for the proposed model (1)–(5) to acquire numerical solutions
of the SEIR model. It was observed that the NSFD numerical scheme is more reliable than
RK4. The RK4 scheme is a non-preserving numerical scheme, gives negative solutions,
whereas the NSFD method preserves the nonnegativity and boundedness of all solutions
for different values of step size h. Graphs of the state variables against time are presented
for numerical analysis of the disease.
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