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Abstract
Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered
coronavirus. This paper provides a numerical solution for the mathematical model of
the novel coronavirus by the application of alternative Legendre polynomials to find
the transmissibility of COVID-19. The mathematical model of the present problem is a
system of differential equations. The goal is to convert this system to an algebraic
system by use of the useful property of alternative Legendre polynomials and
collocation method that can be solved easily. We compare the results of this method
with those of the Runge–Kutta method to show the efficiency of the proposed
method.
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1 Introduction
An outbreak of the 2019 novel coronavirus disease (COVID-19) in Wuhan, China has
spread quickly nationwide. The COVID-19 epidemic has spread very quickly from China
to all the world [1, 2]. Countries continue to battle the novel coronavirus as it has infected
more than 28 million around the world [3].

In [4] the COVID-19 mathematical model has been derived as follows, where Sp(t) is
susceptible people, Ep(t) is exposed people, Ip(t) is symptomatic infected people, Ap(t) is
asymptomatic infected people, Rp(t) is recovered and dead people, and W (t) is COVID-19
in reservoir in time t. The parameters needed are defined in Table 1 and �p = np × Np,
where Np refers to the total number of people:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSp
dt = �p – mpSp – βpSp(Ip + kAp) – βW SpW ,

dEp
dt = βpSp(Ip + kAp) + βW SpW – (1 – δp)ωpEp – δpω

′
pEp – mpEp,

dIp
dt = (1 – δp)ωpEp – (γp + mp)Ip,

dAp
dt = δpω

′
pEp – (γ ′

p + mp)Ap,
dRp
dt = γpIp + γ ′

pAp – mpRp,
dW
dt = μpIp + μ′

pAp – εW .

(1)
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Table 1 Definition of the parameters in the COVID-19 model

Variables and parameters Descriptions

np The birth rate of people
mp The death rate of people
1

ωp
The incubation period of people

1
ω′
p

The latent period of people

1
γp

The infectious period of symptomatic infection in people

1
γ ′
p

The infectious period of asymptomatic infection in people

μp The shedding coefficients from IP toW
μ′

p The shedding coefficients from Ap toW
δp The proportion of asymptomatic infection rate of people
βp The transmission rate from Ip to Sp
βW The transmission rate fromW to Sp
k The multiple of the transmissibility of Ap to that of Ip
1
ε The lifetime of the virus inW
c The relative shedding rate of Ap compared to Ip

This paper aims to find the transmissibility of the COVID-19 by finding the unknowns Sp,
Ep, Ip, Ap, Rp, and W . In medical sciences, the computation of these variables is vital to
measure the progression of disease and to get a better cure.

In this paper, for finding these variables, we use alternative Legendre polynomials and
their operational matrix of derivative. The proposed method results are compared to those
of Runge–Kutta method, which shows the reliability of the proposed method.

There exist some related papers on this topic that have solved the coronavirus model
or some differential equation system that appears in the disease model, so we refer the
readers to them to see some similar methods on this topic [5–8].

The remainder of the article is organized as follows. In Sect. 2, we review the properties
of alternative Legendre polynomials and approximation of a function with them. Then we
present the operational matrix of derivatives of these polynomials. In Sect. 3, we imple-
ment the alternative Legendre polynomials method on the coronavirus model. Section 4
shows the applicability of the proposed method through a test problem, also the results are
compared with Runge–Kutta method results that confirm the reliability of the proposed
method. Then Sect. 5 concludes the paper.

2 Some basic concepts of alternative Legendre polynomials (ALPs)
2.1 Properties of ALPs
The set Pn = {Pnk : k = 0, 1, . . . , n} of alternative Legendre polynomials of degree n is defined
by an explicit formula on the interval [0, 1] (see [9]) as follows:

Pnk(t) =
n–k∑

j=0

(–1)j

(
n – k

j

)(
n + k + j + 1

n – k

)

tk+j, k = 0, 1, . . . , n. (2)

They are orthogonal on the interval [0, 1] with the weight function w(t) = 1. The ALPs
satisfy the orthogonality relationships

∫ 1

0
Pnk(t)Pnl(t) dt =

⎧
⎨

⎩

1
k+l+1 , k = l,

0, k �= l,
k, l = 0, 1, . . . , n. (3)
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Figure 1 Plot of the ALPs with n = 3 on the interval [0, 1]

We can reproduce Eq. (2) with Rodrigues’s type as follows:

Pnk(t) =
1

(n – k)!
1

tk+1
dn–k

dtn–k

(
tn+k+1(1 – t)n–k),

k = 0, 1, . . . , n.
(4)

So, we have

∫ 1

0
Pnk(t) dt =

∫ 1

0
tn dt =

1
n + 1

, k = 0, 1, . . . , n. (5)

Here, we note that each element of the set Pn = {Pnk}n
k=0 is the polynomial of other n. For

example, in the following we introduce the alternative Legendre polynomials P3 = {Pnk}3
k=0

(n = 3).

P30(t) = 4 – 30t + 60t2 – 35t3, P31(t) = 10t – 30t2 + 21t3,

P32(t) = 6t2 – 7t3, P33(t) = t3.

In Fig. 1, we display the 4 set of ALPs with n = 3 over the interval [0, 1].

2.2 Function approximation
Consider Pn = {Pnk}n

k=0 ⊂ H = L2[0, 1] to be a set of ALPs and suppose that Y = Span{Pnk(t) :
k = 0, 1, . . . , n}. So, Y is a finite dimensional subspace of H . Suppose, f to be an arbitrary
function in H . Therefore, based on the Weierstrass theorem, every continuous function
f (t) on the interval [a, b] can be uniformly approximated by a polynomial function [9]. So,
f has a unique best approximation in Y that we call f ∗(t). We have

∥
∥f (t) – f ∗(t)

∥
∥

2 ≤ ∥
∥f (t) – y(t)

∥
∥

2 : ∀y(t) ∈ Y . (6)
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Then this implies that

〈
y, f – f ∗〉 = 0 : ∀y(t) ∈ Y , (7)

where 〈·, ·〉 denotes an inner product. Therefore, any arbitrary function f ∈ H = L2[0, 1]
may be approximated in terms of ALPs. So, there exists a set of unique coefficients {ck :
k = 0, 1, . . . , n} such that

f (t) ≈ f ∗(t) =
n∑

k=0

ckPnk(t), (8)

coefficient ck can be obtained in the following form:

ck =
〈f , Pnk〉

〈Pnk , Pnk〉 = (2k + 1)〈f , Pnk〉, k = 0, 1, . . . , n, (9)

and

〈f , f 〉 =
∫ 1

0
f 2(t) dt. (10)

Also, Eq. (8) can be written in a matrix form as follows:

f (t) �
n∑

k=0

ckPnk(t) = CT�(t), (11)

where

C = [c0, c1, . . . , cn] (12)

and

�(t) =
[
Pn0(t), Pn1(t), . . . , Pnn(t)

]T . (13)

Let a(n)
kj = (–1)j(n–k

j
)(n+k+j+1

n–k
)
, then Eq. (2) can be written as

Pnk(t) =
n–k∑

j=0

a(n)
kj tk+j, k = 0, 1, . . . , n. (14)
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By using Eq. (14), for k = 0, 1, . . . , n now, we can write

�(t) =

⎡

⎢
⎢
⎢
⎢
⎣

Pn0(t)
Pn1(t)

...
Pnn(t)

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

∑n
j=0 a(n)

0j tj
∑n–1

j=0 a(n)
1j tj+1

...
∑n–n

j=0 a(n)
nj tj+n

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

a(n)
00 + a(n)

01 t + a(n)
02 t2 + · · · + a(n)

0n tn

a(n)
01 t + a(n)

02 t2 + · · · + a(n)
0(n–1)t

n

...
0

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

a(n)
00 a(n)

01 · · · a(n)
0n

0 a(n)
01 · · · a(n)

0(n–1)
...

...
. . .

...
0 0 · · · a(n)

nn

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

1
t
...

tn

⎤

⎥
⎥
⎥
⎥
⎦

= �Xt .

(15)

Therefore Eq. (13) can be written in the following form:

�(t) = �Xt , (16)

where

Xt =
[
1, t, t2, . . . , tn]T , (17)

and � is the upper triangular matrix defined by [10]

� = [qkj], k, j = 0, 1, . . . , n,

qkj =

⎧
⎨

⎩

0, 0 ≤ j < k,

(–1)j–k(n–k
j–k

)(n+j+1
n–k

)
, k ≤ j ≤ n.

(18)

Definition The tensor product of two vectors fm̂ = [fi] and gm̂ = [gi] is defined as

f ⊗ g = (fi × gi)m̂. (19)

Similarly, for two matrices A = [ai,j] and B = [bi,j] of m̂ × m̂,

A ⊗ B = (ai,j × bi,j)m̂×m̂. (20)

The lemma below will be needed in Sect. 3.

Lemma Let the functions f (t), g(t) ∈ L2[0, 1] be expanded into ALPs, that is, f (t) = f T�(t)
and g(t) = gT�(t). Then

f (t)g(t) =
(
f T ⊗ gT)

�(t). (21)

Proof

f (t)g(t) = f T�(t)�T (t)g = f1g1pn0(t) + f2g2pn1(t) + · · · + fngnpnn(t) =
(
f T ⊗ gT)

�(t). �
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2.3 Operational matrix of derivative

In this section, we derive the operational matrix of derivative of the ALPs that plays an
important role in simplifying a system of differential equations and implementation of the
proposed method.

To compute this operational matrix, we need to introduce the following properties of
ALPs that can easily be deduced from the given definitions. Let Pni(t) =

∑n
r=0 p(i)

r tr , Pnj(t) =
∑n

r=0 p(j)
r tr , and Pnk(t) =

∑n
r=0 p(k)

r tr be ith, jth, and kth of ALPs, respectively. Therefore, we
have

•
∫ 1

0
trPnk(t) dt =

n–k∑

l=0

(–1)l(n–k
l

)(n+k+l+1
n–k

)

k + l + r + 1
, k = 0, 1, . . . , n. (22)

• Pnk(t)Pnj(t) =
2n∑

r=0

q(k,j)
r tr , q(k,j)

r =

⎧
⎨

⎩

∑r
l=0 p(k)

l p(j)
r–l, r ≤ n,

∑n
l=r–n p(k)

l p(j)
r–l, r > n,

(23)

•
∫ 1

0
Pni(t)Pnj(t)Pnk(t) dt =

2n∑

r=0

q(k,j)
r

n–i∑

l=0

(–1)l(n–i
l
)(n+i+l+1

n–i
)

i + l + r + 1
. (24)

The derivative of the vector �(t) can be expressed by

d�(t)
dt

= D(1)�(t). (25)

Here, D(1) is the (n + 1) × (n + 1) operational matrix of derivative.
So, by applying the differential operator with respect to t, we can write Dt = d

dt (see[11]).
By applying the polynomial Pnk(t), we obtain

Dtpnk(t) = Dt

n–k∑

j=0

(–1)j

(
n – k

j

)(
n + k + j + 1

n – k

)

tk+j

=
n–k∑

j=0

(–1)j

(
n – k

j

)(
n + k + j + 1

n – k

)

Dttk+j

=
n–k∑

j=0

(–1)j(k + j)

(
n – k

j

)(
n + k + j + 1

n – k

)

tk+j–1,

k = 0, 1, . . . , n.

(26)

Here, by using Eq. (11), one can approximate tk+j–1 in terms of ALPs as follows:

tk+j–1 �
n∑

r=0

b(k,j)
r pnr(t). (27)
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The approximation coefficients b(k,j)
r are obtained using Eq. (9) as follows:

b(k,j)
r = (2r + 1)

∫ 1

0
y(t)Pnr dt

= (2r + 1)
∫ 1

0
tk+j–1

n–r∑

l=0

(–1)l

(
n – r

l

)(
n + r + l + 1

n – r

)

tr+l dt

= (2r + 1)
n–r∑

l=0

(–1)l(n–r
l
)(n+r+l+1

n–r
)

k + j + r + l
, r = 0, 1, . . . , n.

(28)

Substituting (27) into (26), we have

Dtpnk(t) =
n–k∑

j=0

(–1)j

(
n – k

j

)(
n + k + j + 1

n – k

)
	(k + j + 1)

	(k + j + α + 1)

n∑

r=0

b(k,j)
r pnr(t),

k = 0, 1, . . . , n.

(29)

Then, using Eqs. (26) and (27), we have

Dtpnk(t)

=
n∑

r=0

(2r + 1)

×
⎡

⎣
n–k∑

j=0

(–1)j(k + j)

(
n – k

j

)(
n + k + j + 1

n – k

) n–r∑

l=0

(–1)l(n–r
l
)(n+r+l+1

n–r
)

k + j + r + l

⎤

⎦pnr(t)

=
n∑

r=0

θ
(1)
kr pnr(t)

(30)

hence

θ
(1)
kr = (2r + 1)

⎡

⎣
n–k∑

j=0

(–1)j(k + j)

(
n – k

j

)(
n + k + j + 1

n – k

) n–r∑

l=0

(–1)l(n–r
l
)(n+r+l+1

n–r
)

k + j + r + l

⎤

⎦ . (31)

Therefore, for the vector �(t) defined by (13), we get

d�(t)
dt

= Dt�(t) = D(1)�(t), (32)

where D(1) is the (n + 1) × (n + 1) operational matrix of derivative based on the ALPs as
follows:

D(1) =
[
θ

(1)
kr

]
, k, r = 0, 1, . . . , n. (33)
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3 Implementation of an alternative Legendre polynomials method on the
novel coronavirus (COVID-19) problem

Firstly, note that the variable of system (1) becomes normalized as follows [4]:

sp =
Sp

Np
, ep =

Ep

Np
, ip =

Ip

Np
, ap =

Ap

Np
, rp =

Rp

Np
, w =

εW
μpNp

,

μ′
p = cμp, bp = βpNp, bW =

μpβW Np

ε
.

So, the normalized model is changed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dsp
dt = np – mpsp – bpsp(ip + kap) – bW spw,

dep
dt = bpsp(ip + kap) + bW spw – (1 – δp)ωpep – δpω

′
pep – mpep,

dip
dt = (1 – δp)ωpep – (γp + mp)ip,
dap
dt = δpω

′
pep – (γ ′

p + mp)ap,
drp
dt = γpip + γ ′

pap – mprp,
dw
dt = ε(ip + cap – w)

(34)

with the initial conditions

sp(0) = s0, ep(0) = e0, ip(0) = i0, ap(0) = a0, rp(0) = r0, w(0) = w0.

The main objective of this paper is to implement ALPs approach on the system of dif-
ferential Eqs. (34) with the above initial conditions to find the numerical solution of this
system. From Eq. (11), we can approximate our unknown functions as follows:

sp = CT
1 �(t), ep = CT

2 �(t), ip = CT
3 �(t),

ap = CT
4 �(t), rp = CT

5 �(t), w = CT
6 �(t),

(35)

where coefficient vectors Ci : i = 1, . . . , 6 that were defined in Eq. (29) are as follows:

C1 = [c0, . . . , cn]T , C2 = [cn+1, . . . , c2n+1]T , C3 = [c2n+2, . . . , c3n+2]T ,

C4 = [c3n+3, . . . , c4n+3]T , C5 = [c4n+4, . . . , c5n+4]T , C6 = [c5n+5, . . . , c6n+5]T .
(36)

By using Eqs. (34) and (32), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dsp
dt = CT

1 �′(t) = CT
1 D(1)�(t),

dep
dt = CT

2 �′(t) = CT
2 D(1)�(t),

dip
dt = CT

3 �′(t) = CT
3 D(1)�(t),

dap
dt = CT

4 �′(t) = CT
4 D(1)�(t),

drp
dt = CT

5 �′(t) = CT
5 D(1)�(t),

dw
dt = CT

6 �′(t) = CT
6 D(1)�(t).

(37)
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By substituting Eqs. (37) and (35) into the system of differential Eqs. (1), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CT
1 D(1)�(t) = np – mpCT

1 �(t) – bpCT
1 ⊗ CT

3 �(t)

– kbpCT
1 ⊗ CT

4 �(t) – bW CT
1 ⊗ CT

6 �(t),

CT
2 D(1)�(t) = bpCT

1 ⊗ CT
3 �(t) + kbpCT

1 ⊗ CT
4 �(t) + bW CT

1 ⊗ CT
6 �(t)

– (1 – δp)ωpCT
2 �(t) – δpω

′
pCT

2 �(t) – mpCT
2 �(t),

CT
3 D(1)�(t) = (1 – δp)ωpCT

2 �(t) – (γp + mp)CT
3 �(t),

CT
4 D(1)�(t) = δpω

′
pCT

2 �(t) – (γ ′
p + mp)CT

4 �(t),

CT
5 D(1)�(t) = γpCT

3 �(t) + γ ′
pCT

4 �(t) – mpCT
5 �(t),

CT
6 D(1)�(t) = ε(CT

3 �(t) + cCT
4 �(t) – CT

6 �(t)).

(38)

Also, by considering the initial conditions for main problem (1) and Eq. (35), we have

CT
1 �(0) = s0, CT

2 �(0) = e0, CT
3 �(0) = i0,

CT
4 �(0) = a0, CT

5 �(0) = r0, CT
6 �(0) = w0.

(39)

Equation (39) gives six linear equations.
Since the total unknowns for vectors Ci : i = 1, . . . , 6 are (6n + 5), we collocate Eq. (38) in

the set of (6n – 1) nodal points tl of the Guass–Chelyshkov [10] as follows:

Qn =
{

tl|Pn+1,0(tl) = 0, l = 0, 1, . . . , n
}

. (40)

Now, by replacing the nodes tl in Eq. (38),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CT
1 D(1)�(ti) = np – mpCT

1 �(ti) – bpCT
1 ⊗ CT

3 �(ti)

– kbpCT
1 ⊗ CT�(ti)

4 – bW CT
1 ⊗ CT

6 �(ti),

CT
2 D(1)�(ti) = bpCT

1 ⊗ CT
3 �(ti) + kbpCT

1 ⊗ CT
4 �(ti + bW CT

1 ⊗ CT
6 �(ti)

– (1 – δp)ωpCT
2 �(ti) – δpω

′
pCT

2 �(ti) – mpCT
2 �(ti),

CT
3 D(1)�(ti) = (1 – δp)ωpCT

2 �(ti) – (γp + mp)CT
3 �(ti),

CT
4 D(1)�(ti) = δpω

′
pCT

2 �(ti) – (γ ′
p + mp)CT

4 �(ti),

CT
5 D(1)�(ti) = γpCT

3 �(ti) + γ ′
pCT

4 �(ti) – mpCT
5 �(ti),

CT
6 D(1)�(ti) = ε(CT

3 �(ti) + cCT
4 �(ti) – CT

6 �(ti))

(41)

for i = 0, . . . , 6n – 1, we can solve this system of 6n equations that resulted from Eqs. (39)
and (41) by using Newton’s iteration scheme [12–16] for calculating the unknown vectors
Ci : i = 1, . . . , 6.

For existence and stability of the proposed method with ALPs, we can refer to paper [9].
In our implementation, the calculations are done in Mathematica 11 software, on a per-

sonal computer with Core-i5 processor, 2.67 GHZ frequency, and 4 GB memory.

4 Numerical example
In this section a test problem of the coronavirus model is solved by our proposed method.
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Figure 2 Comparison of the computed and RK4 solutions for functions sp(t), ep(t), ip(t), ap(t), rp(t), w(t) with
n = 16 on the interval [0, 1], where the dash shows the RK4 solution and the line shows the ALPs solution

The values of the initial conditions and parameters are given as [4]:

Np = 1,000,000,000, δp = k = βp = βw = μp = γ ′
p = c = 0.5, np = mp = 0.0018,

ε = 0.1, wp = w′
p = 0.1923, γp = 0.1724.

Also, we get the initial values of unknown parameters as follows:

sp(0) = 2, ep(0) = 4, ip(0) = 3, ap(0) = 4, rp(0) = 2, w(0) = 3.5.

We solve this problem by n = 16 in ALPs. The results of proposed method are compared
with the results of Runge–Kutta method. Figure 2 and Tables 2–7 show the comparison
between them.

5 Conclusion
The World Health Organization declared the coronavirus (COVID-19) a pandemic on
March 11, 2020. This virus spread quickly in more than 200 countries, and up to now
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Table 2 Numerical comparison for sp(t) with n = 16 on the interval [0, 1]

t RK4 Present method

0.0 2.000000000 2.00000000
0.2 1.59905E–13 0.03002862
0.4 1.59871E–13 –0.02923894
0.6 1.59898E–13 –0.03456393
0.8 1.59982E–13 –0.01139075
1 1.60124E–13 1.12482514

Table 3 Numerical comparison for ep(t) with n = 16 on the interval [0, 1]

t RK4 Present method

0.0 4 4
0.2 5.77189614477 5.74277771538
0.4 5.55247760052 5.58266126424
0.6 5.34141367556 5.37685723359
0.8 5.13838625205 5.15034353745
1 4.94308933537 3.80689507404

Table 4 Numerical comparison for ip(t) with n = 16 on the interval [0, 1]

t RK4 Present method

0.0 3 3
0.2 3.00849107875 3.00849108363
0.4 3.01246360734 3.01246360563
0.6 3.01223326389 3.01223326126
0.8 3.00809881420 3.00809880689
1 3.00034288194 3.00034287358

Table 5 Numerical comparison for ap(t) with n = 16 on the interval [0, 1]

t RK4 Present method

0.0 4 4
0.2 3.72569099766 3.725275447302
0.4 3.47348293584 3.473083082484
0.6 3.24142145708 3.241082166196
0.8 3.02773254616 3.027574786909
1 2.83080613397 2.836696723317

Table 6 Numerical comparison for rp(t) with n = 16 on the interval [0, 1]

t RK4 Present method

0.0 2 2
0.2 2.48888268589 2.48882899953
0.4 2.95149948421 2.95140029238
0.6 3.38981976531 3.38968102039
0.8 3.80563689580 3.80546221628
1 4.20058431510 4.20029857270

Table 7 Numerical comparison for w(t) with n = 16 on the interval [0, 1]

t RK4 Present method

0.0 3.5 3.5
0.2 3.52841252047 3.52840049359
0.4 3.55378078473 3.55375851466
0.6 3.57628769500 3.57625646333
0.8 3.59610020735 3.59606081175
1 3.61337096445 3.61330663649
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more than 28 million around the world have been infected. This paper aims to solve the
mathematical model of coronavirus that can show the transmissibility of this virus that is
vital to measure the progression of the disease and to get a better cure. By use of alternative
Legendre polynomials and their operational matrix of derivative, we convert the system of
coronavirus model to an algebraic model. We compare the results of the present method
with those of the Runge–Kutta method, which confirmed the reliability of the proposed
method results.
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