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Abstract
This paper provides a numerical approach for solving the time-fractional
Fokker–Planck equation (FFPE). The authors use the shifted Chebyshev collocation
method and the finite difference method (FDM) to present the fractional
Fokker–Planck equation into systems of nonlinear equations; the Newton–Raphson
method is used to produce approximate results for the nonlinear systems. The results
obtained from the FFPE demonstrate the simplicity and efficiency of the proposed
method.
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1 Introduction
Applications of fractional differential equation (FDE) in science and engineering are be-
coming vibrant, particularly in the fields of physics, finance, viscoelasticity, chemistry, and
fluid mechanics. For this reason many authors are attracted to knowing the properties of
FDEs (for details, see [2, 13, 15, 16, 18–20, 24, 25, 28]) and vast applications in model-
ing and engineering fields [1, 6, 11, 12]. Also see the literature [3, 5, 21, 23] for further
applications of FDE in different disciplines.

The Fokker–Planck equation (FPE) was studied for the first time by Risken [22]. In ad-
dition, several researchers [4, 17] have worked on fractional Fokker–Planck equations
among mathematical models developed in physical and biological sciences. It results from
a diffusion estimation of certain stochastic processes that have been re-enacted as Marko-
vian and continuous. It is a generalized diffusion equation that governs the evolution of
the probability density in time. In most cases, fractional differential equations (FDEs) can-
not be solved using the exact methods [8–10], that is why the recent research has used
the properties of shifted Chebyshev polynomials [14, 27] and the finite difference method
(FDM) to simplify the fractional initial value problem (IVP) to a set of nonlinear equa-
tions. In this paper, we are limited to the computational solution for the two-variable
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time-fractional Fokker–Planck equation [17] as follows:

∂αu
∂tα

=

[
–

n∑
i=1

∂u
∂xi

Ai(x, t, u) +
n∑

i=1

n∑
j=1

∂2u
∂xi∂xj

Bi(x, t, u)

]
u, (1.1)

where u = u(x, t),α is a parameter that defines the fractional derivative order (0 < α ≤ 1).
Ai(x, t, u) and Bi(x, t, u) are arbitrary constants and n is an integer such that n �= 0.

In recent decades, Chebyshev polynomials have been among the most useful approxima-
tions because of their suitability for solving complex problems in science and engineering
that can be expressed in integral equations, ordinary differential equations, and partial
differential equations in integer and fractional orders. In this article, we use the fourth-
kind Chebyshev polynomials with some important properties and their analytical form.
Here, the approximate solution of FFPE is computed with the help of the shifted Cheby-
shev collocation method and the finite difference scheme. The shifted Chebyshev collo-
cation method is used to reduce FFPE into systems of nonlinear differential equations,
while FDM can be used for rewriting these systems into systems of nonlinear equations,
and hence the Newton–Raphson method is used to arrive at the required approximate
solution.

The organization of the paper is as follows. In Sect. 2, we provide the basic properties of
Chebyshev polynomials of the fourth kind. In Sect. 3, the shifted Chebyshev collocation
method and the finite difference method (FDM) are implemented to solve the fractional
Fokker–Planck equation. In Sect. 4, conclusions are provided.

2 Preliminaries
This section discusses mathematical description, fractional derivative notation, and some
essential properties for the fourth-kind Chebyshev polynomials.

Definition 2.1 In the Caputo sense the fractional derivative of f (z) is defined as in [19]:

Dαf (z) =
1

Γ (m – α)

∫ z

0
(z – s)m–α–1f (m)(s) ds, (2.1)

where z > 0, m ∈C, and m – 1 < α < m.

The sequential property of the Caputo fractional derivative emerges analogous to the
integer order differentiation

Dα
(
ap(z) + bq(z)

)
= aDαp(z) + bDαp(z), a, b ∈ �. (2.2)

For the Caputo fractional derivative, we have

DαK = K , K is a constant, (2.3)

Dα(z)ε =

⎧⎨
⎩

Γ (ε+1)
Γ (ε–α+1) zε–α , for ε ∈N0 and ε ≥ �α�,

0, for ε ∈N0 and ε ≥ �α�,
(2.4)

the notation �α� is used in the sense of a ceiling function which gives an integer smaller
than or equal to α.
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We recall from Mason and Handscomb [14] that the fourth-kind Chebyshev polynomi-
als Wn(t) are orthogonal degree polynomials of n in t based on [–1, 1]. Hence, for t = cos θ

and θ ∈ [0,π ],

Wn(t) =
sin(n + 1

2 )θ
sin θ

2
, (2.5)

and it can be extracted from the special case β = –α = 1
2 of the Jacobi polynomial P(α,β)

n (t)
explicitly:

Wn(t) =
22n(2n

n
)P( –1

2 , 1
2 )

n (t), (2.6)

where

P(α,β)
n (t) =

Γ (α + n + 1)
Γ (n + 1)Γ (α + β + n + 1)

×
n∑

m=0

(
n
m

)
Γ (α + β + n + m + 1)

Γ (α + m + 1)

(
t – 1

2

)m

, (2.7)

and Wn(t) is the orthogonal polynomial on [–1, 1] w.r.t. the inner product as follows:

〈
Wn(t), Wm(t)

〉
=

∫ 1

–1

√
1 – t
1 + t

Wn(t)Wm(t) dt =

⎧⎨
⎩0, n �= m,

π , n = m,
(2.8)

where Wn(t) has a weight function
√

1–t
1+t .

The Chebyshev polynomials of the fourth kind Wn(t) can be generated using the recur-
rence relation

Wn+1(t) = 2tWn(t) – Wn–1(t), n = 1, 2, . . . (2.9)

starting with the values W0(t) = 1, W1(t) = 2t + 1, W2(t) = 4t2 + 2t – 1.
The analytical form of the fourth-kind Chebyshev polynomial Wn(t) of degree n can be

expressed using (2.6) and the properties of Jacobi polynomial in the following form:

Wn(t) =
n∑

i=0

(–1)iΓ (2n – i + 1)
(2)i–nΓ (i + 1)Γ (2n – 2i + 1)

(t + 1)n–i, n ∈ Z
+. (2.10)

Further, we can define the polynomial of Chebyshev in any finite range of [a, b], but here
it is more convincing to use [0, 1] than [–1, 1] to map the independent variable t ∈ [0, 1] to
the variable s ∈ [–1, 1] by the linear transformation t = s(b–a)+(a+b)

2 . However, in this paper,
we are only concerned with the fourth-kind shifted Chebyshev polynomial of degree n
symbolized by W ∗

n (t):

W ∗
n (t) = Wn(2t – 1). (2.11)
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These shifted polynomials of the fourth kind are orthogonal at the support interval [0, 1]
under the inner product shown as follows:

〈
W ∗

n (t), W ∗
m(t)

〉
=

∫ 1

0

√
1 – t

t
W ∗

n (t)W ∗
m(t) dt =

⎧⎨
⎩0, n �= m,

π
2 , n = m.

(2.12)

On the right-hand side of (2.12),
√

1–t
t is the weight function of W ∗

n (t) and is normalized
by W ∗

n (1) = 1. The fourth-kind shifted Chebyshev polynomial is obtained by means of a
recurrence connection:

W ∗
n+1(t) = 2(2t – 1)W ∗

n (t) – W ∗
n–1(t), n = 1, 2, . . . (2.13)

starting with the values W ∗
0 (t) = 1, W ∗

1 (t) = 4t – 1, W ∗
2 (t) = 16t2 – 12t + 1. The possible

expression of the analytic form for the fourth-kind shifted Chebyshev polynomials W ∗
n (t)

of degree n is shown as follows:

W ∗
n (t) =

n∑
i=0

(–1)iΓ (2n – i + 1)
(2)2i–2nΓ (i + 1)Γ (2n – 2i + 1)

tn–i, n ∈ Z
+. (2.14)

In a spectral method, it is possible to expand g(t), the square integrable function, in [0, 1]
and define it by an infinite W ∗

n (t) expansion as follows:

g(t) =
∞∑
i=0

ciW ∗
i (t), (2.15)

where ci are constants. Now, we can estimate a number of the coefficients ci, and then g(t)
can be approximated by a finite sum of terms (m + 1) such as

gm(t) =
m∑

i=0

ciW ∗
i (t), (2.16)

where the coefficients ci (i = 0, 1, 2, . . . , m) are given by

ci =
1
π

∫ 1

–1
g
(

t + 1
2

)√
1 – t
1 + t

Wi(t) dt (2.17)

or

ci =
2
π

∫ 1

0
g(t)

√
1 – t

t
W ∗

t (t) dt. (2.18)

3 Main results
The approximate formula for the function gm(t) given in (2.16) is presented in the following
theorem.
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Theorem 3.1 Let gm(t) be an approximate function in terms of the fourth-kind shifted
Chebyshev polynomials given by (2.16). Suppose that α > 0, we get

Dα
(
gm(t)

)
=

m∑
i=�α�

i–�α�∑
k=0

ciV (α)
i,k ti–k–α , (3.1)

where

V (α)
i,k = (–1)k2(2i–2k) Γ (i – k + 1)Γ (2i – k + 1)

Γ (2i – 2k + 2)Γ (i – k + 1 – α)Γ (k + 1)
. (3.2)

Proof Using the definition of approximated function gm(t) given in (2.16) and the Caputo
fractional differentiation properties given in (2.2), we obtain

Dα
(
gm(t)

)
=

m∑
0

ciDα
(
V ∗

i (t)
)
. (3.3)

Applying equations (2.3) and (2.4), we get

Dα
(
V ∗

i (t)
)

=
i–�α�∑
k=0

(–1)k2(2i–2k) Γ (i – k + 1)Γ (2i – k + 1)
Γ (2i – 2k + 2)Γ (i – k + 1 – α)Γ (k + 1)

. (3.4)

From (3.3) and (3.4), we obtain the desired result (3.1). �

4 Numerical examples
In this section, we present numerical examples to show the efficacy and validity of the
proposed method and to compare it with the existing method.

Example 4.1 Let us consider the time-fractional Fokker–Planck equation

∂αu
∂tα

–
∂u
∂x

–
∂2u
∂x2 = 0 (4.1)

with the initial condition

u(x, 0) = x. (4.2)

The exact solution to equation (4.1) for the non-fractional case at α = 1 is u(x, t) = x + t.

In order to use the shifted Chebyshev polynomials of the fourth kind, we approximate
u(x, t) with m = 3:

u3(x, t) =
3∑

i=0

ui(x)W ∗
i (t). (4.3)

From [26], we have

∂αu
∂tα

= Dα
(
u3(x, t)

)
=

3∑
i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k ti–k–α , (4.4)
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where

V (α)
i,k = (–1)k2(2i–2k) Γ (2i – k + 1)Γ (i – k + 1)

Γ (k + 1)Γ (2i – 2k + 2)Γ (i – k + 1 – α)
.

Now, we have

Dα
(
gm(t)

)
=

m∑
i=�α�

ciDα
(
W ∗

i (t)
)
,

∂u
∂x

=
3∑

i=0

u′
i(x)W ∗

i (t), (4.5)

∂2u
∂x2 =

3∑
i=0

üi(x)(x)W ∗
i (t). (4.6)

Substituting (4.4), (4.5), and (4.6) into (4.1), we get

3∑
i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k ti–k–α –

3∑
i=0

u′
i(x)W ∗

i (t) –
3∑

i=0

üi(x)W ∗
i (t) = 0. (4.7)

For suitable collocation points tp, we use the roots of shifted Chebyshev polynomials of the
fourth kind W ∗

m+1–�α�(t), p = 0, 1, 2, . . . , m – �α�. For non-fractional case α = 1 and m = 3,
we have W ∗

3 (tp) = 0, p = 0, 1, 2. The roots of 64t3
p – 80t2

p + 24tp – 1 = 0 are t0 = 0.04952,
t1 = 0.38874, t2 = 0.81174.

From (4.7) and the Chebyshev collocation method, we have

3∑
i=0

üi(x)W ∗
i (tp) =

3∑
i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k tp

i–k–α –
3∑

i=0

u′
i(x)W ∗

i (tp), p = 0, 1, 2, (4.8)

ü0(x)W ∗
0 (tp) + ü(x)W ∗

1 (tp) + ü2(x)W ∗
2 (tp)

=
3∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k tp

i–k–α –
3∑

i=0

u′
i(x)W ∗

i (tp). (4.9)

By the property of shifted Chebyshev polynomials of the fourth kind with W ∗
0 (tp) = 1, we

obtain a nonlinear system of differential equations:

ü0(x) + K1ü1(x) + K2ü2(x) =
3∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k t0

i–k–α –
3∑

i=0

u′
i(x)W ∗

i (t0), (4.10)

ü0(x) + H1ü1(x) + H2ü2(x) =
3∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k t1

i–k–α –
3∑

i=0

u′
i(x)W ∗

i (t1), (4.11)

ü0(x) + F1ü1(x) + F2ü2(x) =
3∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k t2

i–k–α –
3∑

i=0

u′
i(x)W ∗

i (t2), (4.12)

where

K1 = W ∗
1 (t0) = –0.80192; F1 = W ∗

1 (t2) = 2.24696; H1 = W ∗
1 (t1) = 0.55496;
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K2 = W ∗
2 (t0) = 0.45500; F2 = W ∗

2 (t2) = 1.80191; H2 = W ∗
2 (t1) = –1.24787.

Using the finite difference method to solve the systems of ordinary differentials (4.10)–
(4.12), we use the notations T = Tfinal, 0 < tj ≤ T , tj = j	t 	t = T

N , j = 1, 2, . . . , N . System
(4.10)–(4.12) is discretized and takes the following form:

un+1
0 – 2un

0 + un–1
0

	t2 + K1
un+1

1 – 2un
1 + un–1

1
	t2 + K2

un+1
2 – 2un

2 + un–1
2

	t2

=
3∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k (t0)i–k–α –

3∑
i=0

u′
i(x)W ∗

i (t0), (4.13)

un+1
0 – 2un

0 + un–1
0

	t2 + H1
un+1

1 – 2un
1 + un–1

1
	t2 + H2

un+1
2 – 2un

2 + un–1
2

	t2

=
3∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k (t1)i–k–α –

3∑
i=0

u′
i(x)W ∗

i (t1), (4.14)

un+1
0 – 2un

0 + un–1
0

	t2 + F1
un+1

1 – 2un
1 + un–1

1
	t2 + F2

un+1
2 – 2un

2 + un–1
2

	t2

=
3∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k (t2)i–k–α –

3∑
i=0

u′
i(x)W ∗

i (t2), (4.15)

un+1
0 – un+1

1 + un+1
2 – un+1

3 = x. (4.16)

Rearranging (4.13)–(4.16) and applying the Newton–Raphson method, we arrive at the
required solution for the problem on (4.1).

Graphs and Table: In Fig. 1, the numerical solutions attained for Example 4.1 using the
shifted Chebyshev collocation method are presented and are compared with the previous
method [7] and with the exact solution as well. And it is easy to observe, the proposed
method has an excellent agreement with the exact solution.

Table 1 presents the numerical results of Example 4.1 at various levels of value of α.
The results obtained by our method with α = 0.2, α = 0.4, α = 0.6, and α = 0.8 are given
in the 3rd, 5th, 7th, and 9th columns, respectively. To validate the accuracy of the pro-
posed method, the numerical solution is compared with the previous findings provided

Figure 1 Comparison between the exact solution and the approximate solution of Example 4.1 for different
values of α
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Table 1 The comparative numerical value of the present method with the method [7] for
Example 4.1

x t α = 0.2 α = 0.4 α = 0.6 α = 0.8 Exact

TSM CPFK TSM CPFK TSM CPFK TSM CPFK

0.2 0.25 1.0254 0.6869 0.8473 0.5540 0.6871 0.4497 0.5542 0.4498 0.45
0.5 1.1481 0.9380 1.0542 0.8163 0.9384 0.6992 0.8167 0.6996 0.7
0.75 1.2282 1.1414 1.2046 1.0526 1.1417 0.9495 1.0529 0.9497 0.95
1 1.2891 1.3185 1.3271 1.2730 1.3192 1.1985 1.2737 1.1993 1.2

0.5 0.25 1.2254 0.8867 1.0473 0.7538 0.8871 0.6493 0.7542 0.6496 0.65
0.5 1.3481 1.1381 1.2542 1.0164 1.1384 0.8995 1.0167 0.8997 0.9
0.75 1.4282 1.3417 1.4046 1.2529 1.3417 1.1500 1.2529 1.1500 1.15
1 1.4891 1.5189 1.5271 1.4734 1.5192 1.3994 1.4737 1.3997 1.4

0.6 0.25 1.4254 1.0863 1.2473 0.9534 1.0871 0.8484 0.9542 0.8492 0.85
0.5 1.5481 1.3377 1.4542 1.2160 1.3384 1.0987 1.2167 1.0993 1.1
0.75 1.6282 1.5417 1.6046 1.4529 1.5417 1.3500 1.4529 1.3500 1.35
1 1.6891 1.7192 1.7271 1.6737 1.7192 1.6000 1.6737 1.6000 1.6

in Habenom et al. [7] and the exact solutions, which shows that the present method is
in good agreement with the exact solution. The findings in Table 1 demonstrate that the
accuracy of the method presented is better than that of other methods. In comparison,
the computing expense (CPU time) of the suggested approach tends to be lower than in
other approaches, since we require just a few terms to find an answer with high accuracy.
We provide a comparative study of two methods (TSM = Taylor series method (see [7]);
CPFK = Chebyshev polynomial of the fourth kind (present method)) in the numerical
form as follows.

Example 4.2 Consider the time-fractional Fokker–Planck equation (FFPE) f (x) = 1 + x,
x ∈R. Let in equation (1.1) n = 1, x1 = x, A1(x, t) = –(1 + x), B1(x, t) = etx2 in the form

∂αu
∂tα

– (1 + x)
∂u
∂x

–
(
etx2)∂2u

∂x
= 0, (4.17)

with the initial condition

u(x, 0) = 1 + x. (4.18)

The exact solution of equation (4.17) is u(x, t) = (x + 1)et .

To use the shifted fourth-type Chebyshev polynomials, we approximate u(x, t) with m =
5 on (2.16) as follows:

u5(x, t) =
5∑

i=0

ui(x)W ∗
i (t). (4.19)

From the above theorem, we have

∂αu
∂tα

= Dα
(
u5(x, t)

)
=

5∑
i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k ti–k–α , (4.20)

∂u
∂x

=
5∑

i=0

u′
i(x)W ∗

i (t), (4.21)
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∂2u
∂x2 =

5∑
i=0

üi(x)(x)W ∗
i (t). (4.22)

Putting (4.20), (4.21), and (4.22) into (4.17), we obtain

5∑
i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k ti–k–α – (1 + x)

5∑
i=0

u′
i(x)W ∗

i (t) – etx2
5∑

i=0

üi(x)W ∗
i (t) = 0. (4.23)

For suitable collocation points tp, we use the roots of shifted Chebyshev polynomials of
the fourth kind W ∗

m+1–�α�(t), p = 0, 1, 2, . . . , m – �α�. For fractional α with m = 5, we have

W ∗
m+1–�α�(tp) = W ∗

5 (tp) = 0, p = 0, 1, 2, 3, 4, (4.24)

1024t5
p – 2304t4

p + 1792t3
p – 560t2

p + 60tp – 1 = 0. (4.25)

The roots of polynomial (4.25) are

t0 = 0.0202, t1 = 0.1726, t2 = 0.4288, t3 = 0.7077, t4 = 0.9206.

From (4.23) and the Chebyshev collocation method, we get

etx2
5∑

i=0

üi(x)W ∗
i (tp) =

5∑
i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k ti–k–α

p

– (1 + x)
5∑

i=0

u′
i(x)W ∗

i (tp) (p = 0, 1, 2, 3, 4). (4.26)

Of the property of the fourth-kind shifted Chebyshev polynomials, W ∗
0 (tp) = 1. Equation

(4.26) will lead us to a nonlinear system of ODE given below.

etx2(ü0(x) + A1ü1(x) + A2ü2(x) + A3ü3(x) + A4ü4(x)
)

=
5∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k ti–k–α

0 – (1 + x)
5∑

i=0

u′
i(x)W ∗

i (t0), (4.27)

etx2(ü0(x) + B1ü1(x) + B2ü2(x) + B3ü3(x) + B4ü4(x)
)

=
5∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k ti–k–α

1 – (1 + x)
5∑

i=0

u′
i(x)W ∗

i (t1), (4.28)

etx2(ü0(x) + C1ü1(x) + C2ü2(x) + C3ü3(x) + C4ü4(x)
)

=
5∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k ti–k–α

2 – (1 + x)
5∑

i=0

u′
i(x)W ∗

i (t2), (4.29)

etx2(ü0(x) + D1ü1(x) + D2ü2(x) + D3ü3(x) + D4ü4(x)
)

=
5∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k ti–k–α

3 – (1 + x)
5∑

i=0

u′
i(x)W ∗

i (t3), (4.30)
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etx2(ü0(x) + E1ü1(x) + E2ü2(x) + E3ü3(x) + E4ü4(x)
)

=
5∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k ti–k–α

4 – (1 + x)
5∑

i=0

u′
i(x)W ∗

i (t4). (4.31)

From the initial condition (IC) given at (4.18), we have

u(x, 0) = u0(x) – u1(x) + u2(x) – u3(x) + u4(x) – u5(x) =
5∑

i=0

(–1)iui(x) = 1 + x, (4.32)

where

A1 = W ∗
1 (t0) = –0.9192; A2 = W ∗

2 (t0) = 0.7641; A3 = W ∗
3 (t0) = –0.5473;

A4 = W ∗
4 (t0) = 0.2863.

B1 = W ∗
1 (t1) = –0.3096; B2 = W ∗

2 (t1) = –0.5945; B3 = W ∗
3 (t1) = 1.0882;

B4 = W ∗
4 (t1) = –0.8306.

C1 = W ∗
1 (t2) = 0.7152; C2 = W ∗

2 (t2) = –1.2037; C3 = W ∗
3 (t2) = –0.3724;

C4 = W ∗
4 (t2) = 1.3097.

D1 = W ∗
1 (t3) = 1.8308; D2 = W ∗

2 (t3) = 0.5210; D3 = W ∗
3 (t3) = –1.3979;

D4 = W ∗
4 (t3) = –1.6824.

E1 = W ∗
1 (t4) = 2.6824; E2 = W ∗

2 (t4) = 3.5129; E3 = W ∗
3 (t4) = 3.2276;

E4 = W ∗
4 (t4) = 1.9173.

Applying the concept of finite difference method (FDM) to the system of nonlinear ODEs
(4.27)–(4.32), considering that T = Tfinal, 0 < tj ≤ T , tj = j	t 	t = T

N , j = 1, 2, . . . , N ,

etx2
(

un+1
0 – 2un

0 + un–1
0

	t2 + A1
un+1

1 – 2un
1 + un–1

1
	t2 + A2

un+1
2 – 2un

2 + un–1
2

	t2

+ A3
un+1

3 – 2un
3 + un–1

3
	t2 + A4

un+1
4 – 2un

4 + un–1
4

	t2

)

=
5∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k (t0)i–k–α – (1 + x)

5∑
i=0

u′
i(x)W ∗

i (t0), (4.33)

etx2
(

un+1
0 – 2un

0 + un–1
0

	t2 + B1
un+1

1 – 2un
1 + un–1

1
	t2 + B2

un+1
2 – 2un

2 + un–1
2

	t2

+ B3
un+1

3 – 2un
3 + un–1

3
	t2 + B4

un+1
4 – 2un

4 + un–1
4

	t2

)

=
5∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k (t1)i–k–α – (1 + x)

5∑
i=0

u′
i(x)W ∗

i (t1), (4.34)
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etx2
(

un+1
0 – 2un

0 + un–1
0

	t2 + C1
un+1

1 – 2un
1 + un–1

1
	t2 + C2

un+1
2 – 2un

2 + un–1
2

	t2

+ C3
un+1

3 – 2un
3 + un–1

3
	t2 + C4

un+1
4 – 2un

4 + un–1
4

	t2

)

=
5∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k (t2)i–k–α – (1 + x)

5∑
i=0

u′
i(x)W ∗

i (t2), (4.35)

etx2
(

un+1
0 – 2un

0 + un–1
0

	t2 + D1
un+1

1 – 2un
1 + un–1

1
	t2 + D2

un+1
2 – 2un

2 + un–1
2

	t2

+ D4
un+1

4 – 2un
4 + un–1

4
	t2 + D3

un+1
3 – 2un

3 + un–1
3

	t2

)

=
5∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k (t3)i–k–α – (1 + x)

5∑
i=0

u′
i(x)W ∗

i (t3), (4.36)

etx2
(

un+1
0 – 2un

0 + un–1
0

	t2 + E1
un+1

1 – 2un
1 + un–1

1
	t2 + E2

un+1
2 – 2un

2 + un–1
2

	t2

+ E3
un+1

3 – 2un
3 + un–1

3
	t2 + E4

un+1
4 – 2un

4 + un–1
4

	t2

)

=
5∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k (t4)i–k–α – (1 + x)

5∑
i=0

u′
i(x)W ∗

i (t4), (4.37)

un+1
0 – un+1

1 + un+1
2 – un+1

3 + un+1
4 – un+1

5 = 1 + x. (4.38)

Using the points t0, t1, t2 obtained from the roots of (4.25) and collecting like terms of
(4.33)–(4.38), we arrive at the following matrix form:

Un+1 = A–1BUn + A–1CUn–1 + A–1X; n = 1, 2, 3, . . . ,

where

A = �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 –0.9192 0.7641 –0.5473 0.2863 0
1 –0.3096 –0.5945 1.0882 –0.8306 0
1 0.7152 –1.2037 –0.3724 1.3097 0
1 1.8308 0.5210 –1.3979 –1.6824 0
1 2.6824 3.5129 3.2276 1.9173 0
1
�

–1
�

1
�

–1
�

1
�

–1
�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where � = etx2 + (1 + x)	t.

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 b12 b13 b14 b15 b16

b21 b22 b23 b24 b25 b26

b31 b32 b33 b34 b35 b36

b41 b42 b43 b44 b45 b46

b51 b52 b53 b54 b55 b56

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where

b11 = b21 = b31 = b41 = b51 = 2etx2 + (1 + x)	t,

b12 =
(
V (α)

1,0 t1–α
0

)
	t2 – 0.9191(1 + x)	t – 1.8384etx2,

b13 =
(
V (α)

2,0 t2–α
0 + V (α)

2,1 t1–α
0

)
	t2 + 0.7641(1 + x)	t + 1.5282etx2,

b14 =
(
V (α)

3,0 t3–α
0 + V (α)

3,1 t2–α
0 + V (α)

3,2 t1–α
0

)
	t2 – 0.5473(1 + x)	t – 1.0946etx2,

b15 =
(
V (α)

4,0 t4–α
0 + V (α)

4,1 t3–α
0 + V (α)

4,2 t2–α
0 + V (α)

4,3 t1–α
0

)
	t2 + 0.2863(1 + x)	t

+ 0.5726etx2,

b16 =
(
V (α)

5,0 t5–α
0 + V (α)

5,1 t4–α
0 + V (α)

5,2 t3–α
0 + V (α)

5,3 t2–α
0 + V (α)

5,4 t1–α
0

)
	t2,

b22 =
(
V (α)

1,0 t1–α
1

)
	t2 – 0.3096(1 + x)	t – 0.6192etx2,

b23 =
(
V (α)

2,0 t2–α
1 + V (α)

2,1 t1–α
1

)
	t2 – 0.5945(1 + x)	t – 1.1890etx2,

b24 =
(
V (α)

3,0 t3–α
1 + V (α)

3,1 t2–α
1 + V (α)

3,2 t1–α
1

)
	t2 + 1.0882(1 + x)	t + 2.1764etx2,

b25 =
(
V (α)

4,0 t4–α
1 + V (α)

4,1 t3–α
1 + V (α)

4,2 t2–α
1 + V (α)

4,3 t1–α
1

)
	t2 – 0.8306(1 + x)	t

– 1.6612etx2,

b26 =
(
V (α)

5,0 t5–α
1 + V (α)

5,1 t4–α
1 + V (α)

5,2 t3–α
1 + V (α)

5,3 t2–α
1 + V (α)

5,4 t1–α
1

)
	t2,

b32 =
(
V (α)

1,0 t1–α
2

)
	t2 + 0.7152(1 + x)	t + 1.4304etx2,

b33 =
(
V (α)

2,0 t2–α
2 + V (α)

2,1 t1–α
2

)
	t2 – 1.2037(1 + x)	t – 2.4074etx2,

b34 =
(
V (α)

3,0 t3–α
2 + V (α)

3,1 t2–α
2 + V (α)

3,2 t1–α
2

)
	t2 – 0.3724(1 + x)	t – 0.7448etx2,

b35 =
(
V (α)

4,0 t4–α
2 + V (α)

4,1 t3–α
2 + V (α)

4,2 t2–α
2 + V (α)

4,3 t1–α
2

)
	t2 + 1.3097(1 + x)	t

+ 2.6194etx2,

b36 =
(
V (α)

5,0 t5–α
2 + V (α)

5,1 t4–α
2 + V (α)

5,2 t3–α
2 + V (α)

5,3 t2–α
2 + V (α)

5,4 t1–α
2

)
	t2,

b42 =
(
V (α)

1,0 t1–α
3

)
	t2 + 1.8308(1 + x)	t + 3.6616etx2,

b43 =
(
V (α)

2,0 t2–α
3 + V (α)

2,1 t1–α
3

)
	t2 + 0.5210(1 + x)	t + 1.0420etx2,

b44 =
(
V (α)

3,0 t3–α
3 + V (α)

3,1 t2–α
3 + V (α)

3,2 t1–α
3

)
	t2 – 1.3979(1 + x)	t – 2.7958etx2,

b45 =
(
V (α)

4,0 t4–α
3 + V (α)

4,1 t3–α
3 + V (α)

4,2 t2–α
3 + V (α)

4,3 t1–α
3

)
	t2 – 1.6824(1 + x)	t

– 3.3648etx2,

b46 =
(
V (α)

5,0 t5–α
3 + V (α)

5,1 t4–α
3 + V (α)

5,2 t3–α
3 + V (α)

5,3 t2–α
3 + V (α)

5,4 t1–α
3

)
	t2,

b52 =
(
V (α)

1,0 t1–α
4

)
	t2 + 2.6824(1 + x)	t + 5.3648etx2,

b53 =
(
V (α)

2,0 t2–α
4 + V (α)

2,1 t1–α
4

)
	t2 + 3.5129(1 + x)	t + 7.0258etx2,

b54 =
(
V (α)

3,0 t3–α
4 + V (α)

3,1 t2–α
4 + V (α)

3,2 t1–α
4

)
	t2 + 3.2276(1 + x)	t + 6.4552etx2,

b55 =
(
V (α)

4,0 t4–α
4 + V (α)

4,1 t3–α
4 + V (α)

4,2 t2–α
4 + V (α)

4,3 t1–α
4

)
	t2 + 1.9173(1 + x)	t

+ 3.8346etx2,

b56 =
(
V (α)

5,0 t5–α
4 + V (α)

5,1 t4–α
4 + V (α)

5,2 t3–α
4 + V (α)

5,3 t2–α
4 + V (α)

5,4 t1–α
4

)
	t2,
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C = etx2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

–1 0.9122 –0.7641 0.5473 –0.2863 0
–1 0.3096 0.5945 –1.0882 0.8306 0
–1 –0.7152 1.2037 0.3724 –1.3097 0
–1 –1.8308 –0.5210 1.3979 1.6824 0
–1 –2.6824 –3.5129 –3.2276 –1.9173 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Solving the above system with the help of Newton–Raphson method, using the initial
approximations U0

i and U1
i at n = 1 from the initial condition given on (4.18) yields the

numerical solution of the fractional Fokker–Planck equation (4.17). For m = 3, and the
Chebyshev collocation method and FDM on (4.17), we obtain the following nonlinear sys-
tem of ordinary differential equations:

etx2(ü0(x) + k1ü1(x) + k2ü2(x)
)

=
3∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k ti–k–α

0 – (1 + x)
3∑

i=0

u′
i(x)W ∗

i (t0), (4.39)

etx2(ü0(x) + h1ü1(x) + h2ü2(x)
)

=
3∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k ti–k–α

1 – (1 + x)
3∑

i=0

u′
i(x)W ∗

i (t1), (4.40)

etx2(ü0(x) + g1ü1(x) + g2ü2(x)
)

=
3∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k ti–k–α

2 – (1 + x)
3∑

i=0

u′
i(x)W ∗

i (t2), (4.41)

where

k1 = W ∗
1 (t0) = –0.8020, k2 = W ∗

2 (t0) = 0.4452, h1 = W ∗
1 (t1) = 0.5548,

g1 = W ∗
1 (t2) = 2.2468, g2 = W ∗

2 (t2) = 1.8013, h2 = W ∗
2 (t1) = –1.2470.

For m = 4, and the Chebyshev collocation method and FDM on (4.17), we obtain the fol-
lowing nonlinear system of ordinary differential equations:

etx2(ü0(x) + K1ü1(x) + K2ü2(x) + K3ü3(x)
)

=
4∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k ti–k–α

0 – (1 + x)
4∑

i=0

u′
i(x)W ∗

i (t0), (4.42)

etx2(ü0(x) + H1ü1(x) + H2ü2(x) + H3ü3(x)
)

=
4∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k ti–k–α

1 – (1 + x)
4∑

i=0

u′
i(x)W ∗

i (t1), (4.43)

etx2(ü0(x) + F1ü1(x) + F2ü2(x) + F3ü3(x)
)

=
4∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k ti–k–α

2 – (1 + x)
4∑

i=0

u′
i(x)W ∗

i (t2), (4.44)
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etx2(ü0(x) + G1ü1(x) + G2ü2(x) + G3ü3(x)
)

=
4∑

i=�α�

i–�α�∑
k=0

ui(x)V (α)
i,k ti–k–α

3 – (1 + x)
4∑

i=0

u′
i(x)W ∗

i (t3), (4.45)

where

K1 = W ∗
1 (t0) = –0.8792, K2 = W ∗

2 (t0) = 0.6522, K3 = W ∗
3 (t0) = –0.3464,

H1 = W ∗
1 (t1) = 0.0000, H2 = W ∗

2 (t1) = –1.0000 H3 = W ∗
3 (t1) = 1.0000,

F1 = W ∗
1 (t2) = 1.3472, F2 = W ∗

2 (t2) = –0.5322 F3 = W ∗
3 (t2) = –1.5320,

G1 = W ∗
1 (t2) = 2.5320, G2 = W ∗

2 (t2) = 2.8790, G3 = W ∗
3 (t2) = 1.8787.

Graphs and Table: The graphical depictions in Fig. 2 show the exact solution and an
approximate solution obtained through the shifted Chebyshev spectral method of FFPE on
Example 4.2. Also, the absolute error of the present method for m = 3, 4, and 5 is displayed
in Table 2. As it is expected, accuracy of the method increases, i.e., the absolute error gets
very small upon increasing the value of m, since the proposed method is based on the idea
of infinite series.

Figure 2 Comparison between the exact solution and the approximate solution of Example 4.2 for different
values of α

Table 2 The absolute error of u(x, t) for different values ofm

x m = 3 m = 4 m = 5

0.1 7.412× 10–5 4.247× 10–7 1.643× 10–9

0.2 3.480× 10–4 9.382× 10–6 4× 10–9

0.3 3.6× 10–4 6.588× 10–6 2.553× 10–9

0.4 1.921× 10–4 8.434× 10–6 7.484× 10–9

0.5 9.101× 10–4 4.486× 10–6 3.56× 10–9

0.6 4.662× 10–3 4.112× 10–6 2.584× 10–9

0.7 3.814× 10–3 7.1× 10–6 1.676× 10–11

0.8 6.372× 10–4 6× 10–6 3× 10–9

0.9 2.810× 10–4 3.254× 10–6 7.809× 10–9

1 2.343× 10–4 5.918× 10–6 6.521× 10–9
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5 Conclusion
In this paper, to solve a Fokker–Planck time-fractional equation, the Chebyshev collo-
cation method and the finite difference method are applied. Using the properties of the
shifted Chebyshev fourth-kind polynomials, we reduce the time-fractional Fokker–Planck
equation to the system of differential equations. Also, using FDM we reduce such systems
of DEs into nonlinear equations where the Newton–Raphson method can be used to solve
them. As it can be observed from the tabulated values and graphical solutions in Sect. 3,
the behavior of numerical solution for different values of α is presented, which shows that
the proposed method is dominant over the previous study in [7] taking the exact solutions
as reference values. From this we conclude that the shifted Chebyshev polynomial of the
fourth kind gives us better approximation, and we recommend other scholars in this area
to increase the accuracy of such methods even more than this by taking a large value of
the series (2.16).

The advantage of the methods is that the approximation requires only few terms of
fourth-kind Chebyshev polynomials. Also, we compared the present method with the
method in [7] to show that the present method demonstrated the effectiveness and high
accuracy. All the numerical results were obtained with the help of MATLAB 2018a.
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