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1 Introduction

Applications of fractional differential equation (FDE) in science and engineering are be-
coming vibrant, particularly in the fields of physics, finance, viscoelasticity, chemistry, and
fluid mechanics. For this reason many authors are attracted to knowing the properties of
FDEs (for details, see [2, 13, 15, 16, 18-20, 24, 25, 28]) and vast applications in model-
ing and engineering fields [1, 6, 11, 12]. Also see the literature [3, 5, 21, 23] for further
applications of FDE in different disciplines.

The Fokker—Planck equation (FPE) was studied for the first time by Risken [22]. In ad-
dition, several researchers [4, 17] have worked on fractional Fokker—Planck equations
among mathematical models developed in physical and biological sciences. It results from
a diffusion estimation of certain stochastic processes that have been re-enacted as Marko-
vian and continuous. It is a generalized diffusion equation that governs the evolution of
the probability density in time. In most cases, fractional differential equations (FDEs) can-
not be solved using the exact methods [8—10], that is why the recent research has used
the properties of shifted Chebyshev polynomials [14, 27] and the finite difference method
(FDM) to simplify the fractional initial value problem (IVP) to a set of nonlinear equa-
tions. In this paper, we are limited to the computational solution for the two-variable
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time-fractional Fokker—Planck equation [17] as follows:

9%y " du "< 9%
=|— —Ai ,lf, —Bi )t1 ) 11
a7 |: ; ™ (x, t,u) + Z Z D%, (% M)}M (1.1)

i=1 j=1

where u = u(x, t),« is a parameter that defines the fractional derivative order (0 < & < 1).
Aj(x, t,u) and B;(x, ¢, u) are arbitrary constants and # is an integer such that n #0.

In recent decades, Chebyshev polynomials have been among the most useful approxima-
tions because of their suitability for solving complex problems in science and engineering
that can be expressed in integral equations, ordinary differential equations, and partial
differential equations in integer and fractional orders. In this article, we use the fourth-
kind Chebyshev polynomials with some important properties and their analytical form.
Here, the approximate solution of FFPE is computed with the help of the shifted Cheby-
shev collocation method and the finite difference scheme. The shifted Chebyshev collo-
cation method is used to reduce FFPE into systems of nonlinear differential equations,
while FDM can be used for rewriting these systems into systems of nonlinear equations,
and hence the Newton—Raphson method is used to arrive at the required approximate
solution.

The organization of the paper is as follows. In Sect. 2, we provide the basic properties of
Chebyshev polynomials of the fourth kind. In Sect. 3, the shifted Chebyshev collocation
method and the finite difference method (FDM) are implemented to solve the fractional

Fokker—Planck equation. In Sect. 4, conclusions are provided.

2 Preliminaries
This section discusses mathematical description, fractional derivative notation, and some
essential properties for the fourth-kind Chebyshev polynomials.

Definition 2.1 In the Caputo sense the fractional derivative of f(z) is defined as in [19]:

1 z
D - - _ ym—a—=1,r(m) d , 21
1@ = o [ €9 s @)

(m-a)
wherez>0,meC,andm-1<a < m.

The sequential property of the Caputo fractional derivative emerges analogous to the
integer order differentiation

D (ap(z) + bq(z)) =aD%p(z) + bD*p(z), a,beN. (2.2)

For the Caputo fractional derivative, we have

D*K =K, K isa constant, (2.3)
L(e+l) _e-a
Do) = r(ef;u)zé , fore eNgande > [a], 24)
0, fore e Ngand € > [a],

the notation [«] is used in the sense of a ceiling function which gives an integer smaller
than or equal to .
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We recall from Mason and Handscomb [14] that the fourth-kind Chebyshev polynomi-
als W,,(¢) are orthogonal degree polynomials of # in ¢ based on [-1, 1]. Hence, for ¢ = cos 0
and 0 € [0, 7],

(2.5)

and it can be extracted from the special case f = —« = % of the Jacobi polynomial plF )(t)

explicitly:
2n (;1,1)
Wn(t)z @Pnz 2 (t)’ (26)
where
P,(f’ﬂ)(t) _ Fa+n+1)
I''n+)I'(a+B+n+1)
“An\Ta+B+n+m+1) (t-1\"
, 2.7
XmZ=0<m) M'o+m+1) ( 2 ) @7

and W,(¢) is the orthogonal polynomial on [-1, 1] w.r.t. the inner product as follows:

V/1-t 0, n#m,
(W0, W)= [ 1 Wt W) e - 28)
-1 1+t T, n=m,
where W, (¢) has a weight function %

The Chebyshev polynomials of the fourth kind W, (¢) can be generated using the recur-
rence relation

W1 (£) = 26Win(£) = Wi (£), n=1,2,... (2.9)

starting with the values Wy(¢) = 1, Wi (¢) = 2¢ + 1, Wa(t) = 4% + 2¢ — 1.
The analytical form of the fourth-kind Chebyshev polynomial W, (£) of degree n can be

expressed using (2.6) and the properties of Jacobi polynomial in the following form:

n

~ (-1)ir@n-i+1) i .
Wn(t)—g ST DIty nel” (2.10)

Further, we can define the polynomial of Chebyshev in any finite range of [a, ], but here
it is more convincing to use [0, 1] than [-1, 1] to map the independent variable ¢ € [0, 1] to

w. However, in this paper,

the variable s € [-1, 1] by the linear transformation ¢ =
we are only concerned with the fourth-kind shifted Chebyshev polynomial of degree #

symbolized by W (¢):

W (£) = W, (2t — 1). (2.11)
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These shifted polynomials of the fourth kind are orthogonal at the support interval [0, 1]

under the inner product shown as follows:

1
(W2 (0), W (1)) = /0 ,/?W;(t)W;;(t)dtz 0 n7m, (2.12)

%, n=m.

On the right-hand side of (2.12), ,/=£ is the weight function of W} (¢) and is normalized
by W} (1) = 1. The fourth-kind shifted Chebyshev polynomial is obtained by means of a

recurrence connection:
WL () =22t - DYWHE) - Wr (), n=12,... (2.13)

starting with the values W (¢) = 1, Wy (¢) = 4¢ — 1, W5 (¢) = 16> — 12t + 1. The possible
expression of the analytic form for the fourth-kind shifted Chebyshev polynomials W (¢)

of degree # is shown as follows:

n

(-1)'r2n-i+1) i
2

W () = - t
”( ) 2)2-2n (i + 1) (2n —2i + 1)

, neZ'. (2.14)
i=0

In a spectral method, it is possible to expand g(¢), the square integrable function, in [0, 1]

and define it by an infinite W}¥(¢) expansion as follows:
o0
gt)=>" W), (2.15)
i=0

where ¢; are constants. Now, we can estimate a number of the coefficients c;, and then g(¢)

can be approximated by a finite sum of terms (m + 1) such as

gn®) =) W), (2.16)

i=0

where the coefficients ¢; (i =0, 1,2,...,m) are given by

1 Y /t+1) [1-¢
= — ) — Wit dt 2.17
¢ n/1g< 2 ) 1+t © ( )

or

2 ! -t

3 Main results
The approximate formula for the function g, (¢) given in (2.16) is presented in the following

theorem.
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Theorem 3.1 Let g, (t) be an approximate function in terms of the fourth-kind shifted
Chebyshev polynomials given by (2.16). Suppose that o > 0, we get

m i—[o]

D (gn(0) = D D aVidi e, (3.1)

i=la] k=0

where

Ti-k+1)IQ2i-k+1)
V(ot _ 1 k (2i-2k) . 3.2
e = (=172 IQi-2k+2)Ti—k+1-a)(k+1) (32)

Proof Using the definition of approximated function g,,(¢) given in (2.16) and the Caputo
fractional differentiation properties given in (2.2), we obtain

D*(gm(®)) chD“ (V7 @) (3.3)

Applying equations (2.3) and (2.4), we get

i—[a] . s
ri-k+1)ri-k+1)
(Vi 1)ko2i-26) : 3.4
() kX(;( ) rQi-2k+2)ri-k+1-a)l(k+1) (34)
From (3.3) and (3.4), we obtain the desired result (3.1). a

4 Numerical examples
In this section, we present numerical examples to show the efficacy and validity of the
proposed method and to compare it with the existing method.

Example 4.1 Let us consider the time-fractional Fokker—Planck equation

%y  du d%u

- == 4.1
ot 9x  Ox? (4.1)

with the initial condition
u(x,0) = x. (4.2)

The exact solution to equation (4.1) for the non-fractional case at @ = 1 is u(x,t) = x + ¢.

In order to use the shifted Chebyshev polynomials of the fourth kind, we approximate
u(x, t) with m = 3:

3
us(6,0) = ) () W (0). (43)
i=0
From [26], we have
9%y 3 i-[a]

_ N . (o) pi~k—a
o =D (s, 0) = Y > wlx) Vg e, (4.4)

i=[a] k=0
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where

F'i-k+1)ri-k+1)

(@) _ k ey (2i—2k)
v (—1)k2
w =1 Tk+1)(2i-2k+2)I

Now, we have

m

D*(gn(®) = Y _ aiD*(W; (@),

i

o ;ju,-(x)w, (®),

Pu o

— = i) )W ).
i=0

(i-k+1-a)

(4.5)

(4.6)

W) = 0. (4.7)

For suitable collocation points £,, we use the roots of shifted Chebyshev polynomials of the

fourth kind W, ., ,1(6), p=0,1,2,...
we have W3(t,) = 0, p = 0,1,2. The roots of 64

t; =0.38874, t, = 0.81174.

,m — [a]. For non-fractional case « = 1 and m = 3,
— 802 + 24,

—1 =0 are £ = 0.04952,

From (4.7) and the Chebyshev collocation method, we have

3 i-[a]

2: W) =Y Y wlx)V e, E:uxﬂv* , p=0,12 (4.8)

i=0 i=[a] k=0

i () W§ (8,) + i(x) W1 (t,) + il (x) W3 (t,)

3 i—[a] 3
=YY w@ VLT ww W ). (4.9)
i=[a] k=0 i=0
By the property of shifted Chebyshev polynomials of the fourth kind with W (z,) = 1, we
obtain a nonlinear system of differential equations:
3 i-fo]
tio(x) + Kyiig (x) + Kaiin(x) = Z:Xﬁ@Wk‘“ quwﬂm (4.10)
i=[a] k=0 i=0
3 i-fo]
fio(x) + Hiity (x) + Haily(0) = > Y ui() Vit ™ — Zy@wﬂm, (4.11)
i=[a] k=0 i=0
3 i-fa]
%m+amm+5@m=§:§:umvklk“}:waug (4.12)
i=[a] k=0 i=0

where

Ky = Wi(t) =—0.80192;  F = W(ty) =2.24696;  Hy = Wi (t;) = 0.55496;
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Ky = Wj(to) = 0.45500;  Fp=Wi(t;)=1.80191;  H, = Wi (ty) = —1.24787.

Using the finite difference method to solve the systems of ordinary differentials (4.10)—
(4.12), we use the notations T = Tgna, 0 < t; < T, t; = jAt At = %, j=12,...,N. System
(4.10)—(4.12) is discretized and takes the following form:

uptt = 2ug + up! Wt = 2ul + ul ultt = 2ull + ul !
+ 1<1 + I(Q
At? At? At?
3 i-[a] 3
= 2 D wlVid ) = D) W (o), (4.13)
i=la] k=0 i=0
ugtt = 2up + up ! utt = 2ul + ul! ultt = 2ull + ul !
AP ! AP 2 AP
3 i-[a] 3
=YY w@V Q@) > ww Wi ), (4.14)
i=la] k=0 i=0
ugtt = 2ug + uf Wl =2y ¢yt ultt = 2ull + uly !
+ F +F
Af? At? Af?
3 i—[a] 3
=YY w@ VR =Y w W k), (4.15)
i=[a] k=0 i=0
u(']”l - ui‘*l + ug’” - ug’” =x. (4.16)

Rearranging (4.13)—(4.16) and applying the Newton—Raphson method, we arrive at the
required solution for the problem on (4.1).

Graphs and Table: In Fig. 1, the numerical solutions attained for Example 4.1 using the
shifted Chebyshev collocation method are presented and are compared with the previous
method [7] and with the exact solution as well. And it is easy to observe, the proposed
method has an excellent agreement with the exact solution.

Table 1 presents the numerical results of Example 4.1 at various levels of value of .
The results obtained by our method with & = 0.2, & = 0.4, « = 0.6, and o = 0.8 are given
in the 3rd, 5th, 7th, and 9th columns, respectively. To validate the accuracy of the pro-
posed method, the numerical solution is compared with the previous findings provided

alpha,=0.4
alpha,=0.6 E}

aipha,=0.8

— — —Exact

Figure 1 Comparison between the exact solution and the approximate solution of Example 4.1 for different
values of o
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Table 1 The comparative numerical value of the present method with the method [7] for
Example 4.1

X t a=02 a=04 a=06 a=08 Exact
TSM CPFK TSM CPFK TSM CPFK TSM CPFK

0.2 0.25 1.0254 0.6869 0.8473 0.5540 0.6871 04497 0.5542 04498 045
0.5 1.1481 0.9380 1.0542 0.8163 0.9384 0.6992 0.8167 0.6996 0.7
0.75 1.2282 1.1414 1.2046 1.0526 1.1417 0.9495 1.0529 0.9497 0.95
1 1.2891 1.3185 1.3271 1.2730 13192 1.1985 12737 1.1993 1.2

0.5 0.25 1.2254 0.8867 1.0473 0.7538 0.8871 0.6493 0.7542 0.6496 0.65
0.5 1.3481 1.1381 1.2542 1.0164 1.1384 0.8995 1.0167 0.8997 0.9
0.75 14282 13417 14046 1.2529 13417 1.1500 1.2529 1.1500 1.15
1 1.4891 1.5189 1.5271 14734 15192 13994 14737 1.3997 14

0.6 0.25 14254 1.0863 1.2473 0.9534 1.0871 0.8484 0.9542 0.8492 0.85
0.5 1.5481 1.3377 14542 12160 13384 1.0987 12167 1.0993 1.1
0.75 1.6282 1.5417 1.6046 14529 15417 1.3500 14529 1.3500 1.35
1 1.6891 1.7192 1.7271 1.6737 1.7192 1.6000 16737 1.6000 1.6

in Habenom et al. [7] and the exact solutions, which shows that the present method is
in good agreement with the exact solution. The findings in Table 1 demonstrate that the
accuracy of the method presented is better than that of other methods. In comparison,
the computing expense (CPU time) of the suggested approach tends to be lower than in
other approaches, since we require just a few terms to find an answer with high accuracy.
We provide a comparative study of two methods (TSM = Taylor series method (see [7]);
CPFK = Chebyshev polynomial of the fourth kind (present method)) in the numerical
form as follows.

Example 4.2 Consider the time-fractional Fokker—Planck equation (FFPE) f(x) = 1 + «,
x € R. Let in equation (1.1) n = 1, x; =&, A1 (x,2) = —(1 + ), By (%, £) = e’4? in the form

9%y du 3%u
IR L ) AL 4.17
g~ (LR~ E0) 5 (417)
with the initial condition
u(x,0)=1+x. (4.18)

The exact solution of equation (4.17) is u(x, t) = (x + 1)é".

To use the shifted fourth-type Chebyshev polynomials, we approximate u(x, t) with m =
5 on (2.16) as follows:
5
us(x,0) = ) i) W (o). (4.19)

i=0

From the above theorem, we have

5 i-[a]
0%u o) Lick—a
A CCOEDY wi() Ve, (4.20)
i=[a] k=0
ou > , "
0y = 2 H@W), (4.21)

Page 8 of 16



Habenom and Suthar Advances in Difference Equations (2020) 2020:315

Pu o
5 = D HEEW @), (4.22)
i=0

Putting (4.20), (4.21), and (4.22) into (4.17), we obtain

i—[a]

5 5
Z Z u;(x gk (1 +x)Zu YW (£) — ' lei,»(x)VVi*(t) =0. (4.23)
i=0

i=[a] k=0

For suitable collocation points #,, we use the roots of shifted Chebyshev polynomials of
the fourth kind W, ., ,1(8), p=0,1,2,...,m - [e]. For fractional & with m = 5, we have

Wit () = W5 () =0, p=0,1,2,3,4, (4.24)
1024¢; — 2304t + 1792t — 560¢, + 60, — 1 = 0. (4.25)

The roots of polynomial (4.25) are

ty = 0.0202, t; =0.1726, t, = 0.4288, t3 =0.7077, ty = 0.9206.

From (4.23) and the Chebyshev collocation method, we get

5 i-[a]
Z W*(tp) _ Z Z ;k 1L7k o
i=0 i=la] k=0
5
—(1+2) ) w®Wi(t) (p=0,1,2,3,4). (4.26)
i=0

Of the property of the fourth-kind shifted Chebyshev polynomials, W (t,) = 1. Equation
(4.26) will lead us to a nonlinear system of ODE given below.

etx2 (Mo(x) + Alul(x) + A2u2(x) + Agug(x) + A4u4(x))

o

=

.

=

wi@) V- (1 2) Y ul(x)W (to), (4.27)
k=0 i=0

=|a

-

etx2 (Mo(x) + Blul(x) + Bzuz(x) + Bgﬂg (x) + B4u4(x))

-

o

=

-

wi@)VE — (1 2) Y )W (1), (4.28)
0 i=0

-

o

=
>~
i

etx2 (Mo(x) + Clﬂl (x) + Czlxlz(x) + Cgug(x) + C4u4(x))

-

o

=

-

wi@) VL - (14 2) Y ()W (), (4.29)
0 i=0

-

o

=
>~
i

etxz (uo(x) + D1 ul(x) + Dzl/lz(x) + D3u3(x) + D4u4(x))

-

o

=

5
wi@) VL~ (14 2) Y ()W (2s), (4.30)

0 i=0

i
53
=
>
i
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€tx2 (Lt()(x) + El ﬂl (x) + Ezllz(x) + Egug(x) + E4u4(x))

=

i—[a 5
wi@) V- (1 2) Y () W (). (4.31)
o] k=0 i=0

-

'Mm

i=
From the initial condition (IC) given at (4.18), we have

5

u(x,0) = to(%) — 11 (%) + U (x) — U3 (®) + ua (%) —us(x) = Y (-D'ms(x) =1+x,  (4.32)
i=0

where

Ay = Wity) =-09192; Ay = Wi(to) =0.7641; A = Wi(t) = —0.5473;
Ay = Wi (t) = 0.2863.

By = Wi(h)=-03096;  By=W;()=-059%5  Bs=Wi(t)=1.0882
By = W} (1) = —0.8306.

Ci=Wit) =07152;  Cy= Wi(tp) =—-1.2037;  Cs= Wi(ty) = —0.3724;
Cy = Wi () = 1.3097.

Dy = Wi(t;) = 1.8308; Dy = Wi(ts) =0.5210;  Ds = Wi(ts) = —1.3979;

Dy = W (t5) = —1.6824.

Ey= Wi(ty) =2.68245  Ep= Wi(ts) =3.5129;  E3 = Wi (ty) = 3.2276;

Ey= Wi(ty) = 1.9173.

Applying the concept of finite difference method (FDM) to the system of nonlinear ODEs
(4.27)—(4.32), considering that T = Thna, 0 <t < T, t; = jAL At = [%,] =12,...,N,

c o Ul = 2ul + ul ! Wit —2ul ¢ ul! ulltt —2ull v ulf !
AL AT AR
YAy ulftt = 2ul + ui ! A, wltt = 2ull v ull” 1)
At? At?
5 i-fa]
=YY wwV ) - +x)Zu ®) W (to), (4.33)
i=[a] k=0 i=0
p o Ul = 2ul + ul witt = 2ul + u ultt = 2ull + uly !
e AP ! INE Bz AP
VB, uftt = 2ul + ulf ! 4u2*1 —2uff + ul ™!
At? At?
5 i-[a]
=YY W@V n)" ko‘—(1+x)Zu(x W (), (4.34)

i=la] k=0 i=0

Page 10 of 16
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o (Ut = 2uf +uf ! Cu¥*1—2u1+u;’1 Cug”—2u2+u§’1
ex > + (01 2 ) 2
At At At
c ulitt = 2ul + ulf ! c uftt = 2ul + ulf !
+
’ Nz ' INZ
5 i-[a]
=YY w@ VY (0)" k“—(1+x)Zu(xW(t2) (4.35)
i=la] k=0 i=0
o (U =2ul +ugt b it =2+ u ! o ultt = 2ull + uly !
€ 5 + D1 2 + 1)y 3
At At At
b MZ+1 _ 2”2 + uz—l b M§’+l 2143 + ug 1
+ +
! INZ ’ INZ
5 i-[a]
=Y wwvR e - +x)Zu (X)W (83), (4.36)
i=la] k=0 i=0
s o uett = 2ul + ul uitt = 2ull + ul ult™t = 2uly + uly
e'x 5 +E; 5 +E, 5
At At At
E ittt = 2ult + w7t E wltt = 2ull + ulf!
+ +
’ INZ * INZ

i—fa]

5
ZZul D‘ 2 1+x)2u(x YW (£4), (4.37)

i=la] k=0 i=0
n+l n+l n+l n+l n+1l n+l _
uy” —ulT vuy —ugt ruy —ug =144, (4.38)

Using the points £, t;, ¢, obtained from the roots of (4.25) and collecting like terms of

(4.33)—(4.38), we arrive at the following matrix form:
Ul =A7"'BU" + A'CU" + A7'X; n=1,23,...,

where

1 -09192 0.7641 -0.5473 0.2863
1 -0309 -0.5945 1.0882 -0.8306
1 07152 -1.2037 -0.3724 1.3097
1 1.8308 0.5210 -1.3979 -1.6824
1 26824 35129 32276 19173
1

=1
3

=1
3

o o o o o

22 =
22 =

bui by bz bu bis by
by by by bu by by
bsi b3y b33 b bss bse
by biy bizs bu bis b
bsi bsy bss bsa bss  bse
0 0 0 0 0 0
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where

by = bay = b3y = byy = bs; = 2e'%” + (1 + x)At,

bia = (Vi) A2 - 0.9191(1 + x) At — 1.8384¢'x”

bis = (VA2 + Viti ) AL + 0.7641(1 + x) At + 1.5282¢'4>

b = (VA3 + VI8 + VA=) AP - 0.5473(1 + x) At — 1.0946¢'x>

bis = (Ve + Vi + V32 + Vit ) At +0.2863(1 + x) At
+0.5726¢'x”

b16—( sotg °‘+V51tg °‘+V52t3 "‘+V53t§ °‘+V54té W)ALJ’

by = (VI£-*) A£* - 0.3096(1 + x) At — 0.6192¢'x

5= (VA2 4 VI%H*) AR - 0.5945(1 + x) At — 1.1890¢! x>

o= (VA8 4 VIO 4 VIS ) AL® +1.0882(1 + %) At + 2.1764¢'x
bas = (Ve + VO£ + vEE + Vi) At - 0.8306(1 + x) At

—1.6612¢'x%

Vi%

Vg v s VB 1 v g« v ag,
@
1,0

)AL +0.7152(1 + x) At + 1.4304e"x%,

(v2< 27+ V) AL — 1.2037(1 + x) At — 2.4074e' 4>
4= v§ U4 VR V) A - 0.3724(1 + x) At - 0.7448¢" x>

bas = (Vi e + VI8 + Vi + Vi) AL + 1.3097(1 + %) At
+2.6194€'x”
bss = (V&5 + VIt 1 VB + VI + Véft;""‘)Atz,
2= (V8- "’)At +1.8308(1 + x) At + 3.6616¢'x
= (Vi + v t; "‘)At +0.5210(1 + x) At + 1.0420¢x
bay = (v30 £57 + VA2 4 V) A2~ 1.3979(1 + x) At — 2.7958¢'x”
5= (Vi 4 VOB + V2 4+ V) A - 1.6824(1 + x) At

—3.3648¢ x>
= (VS s Vs s v B s v+ Vg‘ft;-“)mz,
= (Vi) AL® + 2.6824(1 + x) At + 5.3648¢"x

b 54 =

bsz = (VA1 + Vith*) AF> + 3.5129(1 + x) At + 7.0258¢'x
(v;,ga Véj’ftﬁ"’ + 1/3"2 ti‘“)mz +3.2276(1 + X) At + 6.4552¢ x>

+ 3.8346efx2,

bss = (Vit5 + VIt + VI + VI + Vi) ad,
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-1 09122 -0.7641 0.5473 -0.2863

-1 0309 05945 -1.0882 0.8306

-1 -0.7152 1.2037 0.3724 -1.3097

-1 -1.8308 -0.5210 1.3979 1.6824

-1 -2.6824 -3.5129 -3.2276 -1.9173
0 0 0 0 0

0
0
0
0
0
0

Solving the above system with the help of Newton—Raphson method, using the initial
approximations U and U} at n = 1 from the initial condition given on (4.18) yields the
numerical solution of the fractional Fokker—Planck equation (4.17). For m = 3, and the
Chebyshev collocation method and FDM on (4.17), we obtain the following nonlinear sys-
tem of ordinary differential equations:

etxZ(ﬁo(x) + kyiiy (x) + kaiia (x))

3 i-[a] 3
= 2 D wVR T = (1 2) Y w0 W ko), (4.39)
i=[a] k=0 i=0
' (o (%) + ity (x) + haila(x))
3 i-[a] 3
= > Y w@VREE - (L x) Y W), (4.40)
i=[a] k=0 0
e'x? (ito(x) + griy (x) + giia (x))
3 i-[a] 3
=Y 2 wEVRE T -1+ x) Y w0 W (1), (4.41)
i=[a] k=0 0

where

ky = Wi(to) =—-0.8020,  ky= Wj(to) =0.4452,  hy = Wi(t) = 05548,

g1= Wity) =2.2468, gy = Wi(ty) =1.8013,  hy = Wi(t) = —1.2470.

For m = 4, and the Chebyshev collocation method and FDM on (4.17), we obtain the fol-

lowing nonlinear system of ordinary differential equations:

etx2 (M()(?C) + I(l I'/il (x) + I(guz(x) + Kgug(x))

-

o

=

4
wi@) VL - (1 2) Y ulx) W (to), (4.42)
0 i=0

Y.

=
>~
i

i=

-

o

elx? (i (%) + Hyiiy (%) + Haiio(x) + Hsiiz(x))

-

o

=

4
wi@)VLE - (14 2) Y i)W (1), (4.43)
0 i=0

-

Y-

=
>~
i

=\

elx? (iio(x) + Fyiiy (%) + Faiin(x) + Fsiiz(x))

4 i-[a) 4
=Y Y w@VRE - 1) Y u) W (), (4.44)

i=[o] k=0 i=0
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etxz (Lt()(x) + Glﬁl (x) + quz(x) + Ggug(x))

4 i—fo] 4
=YY w@VPE - )Y u) W (t), (4.45)
i=[a] k=0 i=0

where

Ky = Wito) = -0.8792, Ky =Wi(to) =0.6522,  Kj = Wi(to) = —0.3464,
Hy = W(t;) =0.0000,  Hy=W;() =-1.0000  Hs = Wi(t;) = 1.0000,
Fi=Wi(t)=13472, Fy=Wi(t,)=-05322  F3= Wi (t) = -1.5320,

Gy = Wi(ty) =2.5320, Gy = Wj(ty) =2.8790, G = Wi(t,) = 1.8787.

Graphs and Table: The graphical depictions in Fig. 2 show the exact solution and an
approximate solution obtained through the shifted Chebyshev spectral method of FFPE on
Example 4.2. Also, the absolute error of the present method for m = 3,4, and 5 is displayed
in Table 2. As it is expected, accuracy of the method increases, i.e., the absolute error gets
very small upon increasing the value of 1, since the proposed method is based on the idea

of infinite series.

26

24

alpha,=0.4
alpha,=0.6
alpha,=0.8

— — —Exact

Figure 2 Comparison between the exact solution and the approximate solution of Example 4.2 for different
values of ¢

Table 2 The absolute error of u(x, t) for different values of m

X m=3 m=4 m=5

01  7412x10°  4247x107 1643 x 107°
02 3480x10™% 9382x10° 4x107°
03 36x10* 6588 x 10 2553 x 1079
04 1921 x107%  8434x10° 7484 x 107
05 9101 x10% 4486 x10° 356x 107
06 4662x 1073  4112x10° 2584 x 107
07 3814x103 71x10° 1676 x 107"

1

1

1

08 6372x10% 6x107° 3% 107
09 2810x10™* 3254x10° 7809 x 107°
1 2343 x10*% 5918 x 10 6521 x 107
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5 Conclusion

In this paper, to solve a Fokker—Planck time-fractional equation, the Chebyshev collo-
cation method and the finite difference method are applied. Using the properties of the
shifted Chebyshev fourth-kind polynomials, we reduce the time-fractional Fokker—Planck
equation to the system of differential equations. Also, using FDM we reduce such systems
of DEs into nonlinear equations where the Newton—Raphson method can be used to solve
them. As it can be observed from the tabulated values and graphical solutions in Sect. 3,
the behavior of numerical solution for different values of « is presented, which shows that
the proposed method is dominant over the previous study in [7] taking the exact solutions
as reference values. From this we conclude that the shifted Chebyshev polynomial of the
fourth kind gives us better approximation, and we recommend other scholars in this area
to increase the accuracy of such methods even more than this by taking a large value of
the series (2.16).

The advantage of the methods is that the approximation requires only few terms of
fourth-kind Chebyshev polynomials. Also, we compared the present method with the
method in [7] to show that the present method demonstrated the effectiveness and high
accuracy. All the numerical results were obtained with the help of MATLAB 2018a.
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