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1 Introduction
This work is devoted to the study of a family of singularly perturbed partial differential
equations in the complex domain of the form

Q(az)u(tlr t21 zZ, 6) = P(t/flJrlatl: t2; 8t2; az; Z, 6) +f(t1y t2; z, 6); (1)

under initial data u(0,%,z,¢) = u(t,0,z,¢) = 0, with Q(X) € C[X] and P(T1, T>1, T2,
Z,z,€) being a polynomial in (71, T91, T2, Z) with holomorphic coefficients w.r.t. (z,€) on
Hp x D(0, €y). Here, Hg and D(0, €) stand for the horizontal strip {z € C: |Im(z)| < 8} and
the disc at the origin and radius €, for some 8 > 0, €y > 0, respectively. The forcing term
f(t1,t2,2,€) is holomorphic on C* x D(0, /") x Hg x &, for any open sector £ centered at 0
and contained in D(0, €y), for some /' > 0, and remains close to a polynomial in #;, analytic
in t, on D(0, /') and in z on Hy, as € becomes close to the origin in C. The variable € acts
as a small complex parameter. The concrete assumptions on the elements involved in the
main problem (1) are to be described and analyzed in detail throughout the work.

The study of a problem of such form is motivated by the recent research [12] of the
second and third authors. The main aim in the preceding work was related to the descrip-
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tion of the asymptotic behavior of the analytic solutions, with respect to the perturbation
parameter, near the origin, of singularly perturbed equations

Q@)ultr, tr,z,€) = P61 04y, 152" 8y, 0, 2,€) + b1, 12,2, €), )

with P(Ty, Ts, Z, €) being a polynomial in (71, T3, Z, z,€) with holomorphic coefficients
w.r.t. (z,€) on Hg x D(0, €p).

Two main novelties are considered here with respect to it. On the one hand, the irregu-
lar singular operators related to the second time variable stay rigid in (2), as a polynomial
function of the operator t’;”l d,. In the present study, the irregular operators in this vari-
able fit a more general scheme within the problem, under certain technical assumptions
(see (5) and (6)). This, at first sight slight, variation on the form of the main problem varies
its underlying geometry radically. On the other hand, the appearance of different types of
solutions observed in [12], known as inner and outer solutions, which describe boundary
layer expansions do not appear in the present situation, since we study local solutions in
time #;, £, near the origin in the complex domain. It is worth mentioning that, despite the
fact that the form of the main equation under study resembles that of [12], the nature of
the singularities appearing in the problem require one to appeal different approaches and
apply novel techniques, to be briefly described below.

This work continues a line of research on the study of the asymptotic behavior of solu-
tions of singularly perturbed PDEs in the complex domain, under the action of two time
variables: dealing with a symmetric factorized (resp. asymmetric) leading term [11] (resp.
[8]), the mentioned work [12], and the corresponding g-analog [10] in the framework of
q-difference—differential equations.

In order to illustrate the origin of the family of equations under study in this work, we
provide a simple equation of the form (1). More precisely, the change of variable x; = 1/¢;,
xy = 1/¢t, applied to the equation

(1 + eztfatl tgatz)u(tly Ly, Z’G) =f(t1) t21Z76)
determines the second order PDE
(1 + €20y, 3, )V(%1,%2, 2, €) = f (1121, 1/, 2, €),

where v(1/t1,1/ty,z,€) := u(t1, t2,z,€). Moreover, if x1, x5, € are assumed to be real vari-
ables, with € #0, the previous PDE is of hyperbolic type. These kinds of equations are of
great importance in mathematical modeling of wave propagation such as sound or elec-
tromagnetic waves.

The technique developed in the present work consists on searching for solutions of the
main problem (see (8) for its precise expression) in the form of a Fourier, truncated Laplace
and Laplace transform of certain function, for every fixed value of the perturbation param-
eter e:

1 o0
M(t,Z,G) = W[m /Ll /;2 w(”l:”Zrm!E)

. ©N\ adusd
X exp<—<ﬂ> - <ﬂ> >e’””£ﬂ. (3)
€l €Ly u; U
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The integration path L; . stands for the segment [O,hl(e)eﬁgl], for some holomorphic
function € — /1;(€) on the domain of definition of the perturbation parameter, approach-
ing to infinity when € tends to 0, and some 0; € R which does not depend on €. The inte-
gration with respect to the path L, stands for a usual Laplace transform along certain half
line [0, 00)eY~1%2, for some d, € R, whereas the function w belongs to a certain Banach
space which depends on the choice of the perturbation parameter.

In previous work [11] and [8], we have searched for solutions of the form of a double
Laplace transform, and Fourier integral.

This construction through a truncated Laplace transform is proposed in order that the
solutions (3) remain close, as € tends to 0, to a double usual Laplace transform in both vari-
ables ¢4, t;. For such a complete double Laplace representable solution, a direct analysis
of the asymptotic behavior w.r.t. € is unfortunately not possible (as shown in our previ-
ous work [12]). However, such study turns achievable within the new approach regarding
truncated Laplace transform solutions.

Given a finite family of finite sectors £ = (€,)o<p<,—1 Which conform a good covering (see
Definition 3), the first main result in the work, Theorem 1, states the existence of a solu-
tion of the main problem in the form (3) for every 0 < p < - 1, remaining holomorphic
in a domain 71 x T, x Hg x &,, where 71, T, are finite sectors with vertex at the origin.
Moreover, the exponential decrease of the difference of two solutions associated to con-
secutive sectors in £ enables the application of the classical Ramis—Sibuya theorem (RS)
in order to achieve the second main result of our study, namely the asymptotic relation of
the analytic solutions and the formal solution of the main problem in powers of ¢, with
coefficients in some complex Banach space (see Theorem 3).

In recent years, several steps have been taken to contribute to the knowledge of the
asymptotic behavior of analytic solutions of singularly perturbed partial differential equa-
tions in the complex domain. We first refer to the recent work [21, 22], by Yamazawa and
Yoshino, and Yoshino resp., in which the parametric Borel summability of semilinear sys-
tems of PDEs is studied, first in the case of fuchsian operators, and second combining both
irregular and fuchsian operators. We refer to [2, 16] as introductory texts on the classical
theory of summability of formal solutions of differential equations in the complex domain.

The appearance of truncated Laplace transform is closely related to the classical the-
ory of asymptotic approximation of analytic functions (examples of this situation is the
classical proof of Ritt’s theorem for Gevrey asymptotics; see [2] Proposition 10, and also
Lemma 1.3.2in [16]). Truncated Laplace transform also appears as a recent object of study
in the literature, related to differential operators [14, 15], but also from the numerical point
of view [13]. We also refer to [20], where the authors study fractional impulsive differen-
tial equations. In [1], variable-order fractional difference equations are studied by means
of results on Laplace transform. Other references are [18] on related results in the ther-
modynamic theory of porous elastic bodies, and [3] on a numerical study on the effects of
heat transfer and Hall current on the sinusoidal motion of solid particles through a planar
channel. The choice of an integration path for Laplace transform which depends on each
fixed value of the perturbation parameter € has been inspired from [5, 17].

Throughout the work, we use bold letters to indicate a vector of two variables: we write
T for the pair (11, 72), U for (i1, uy), T for (T1, T,), etc.

The paper is organized as follows.
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In Sect. 2.1, we recall some properties on Fourier transform which allow one to trans-
form the main problem, stated in Sect. 2.2, in the form a convolution problem, described
in Sect. 2.3. The geometry of the problem is an important matter in this work, which needs
to be explained in detail. Section 3 is focused on this issue. The Banach spaces involved in
the construction of the analytic solution of the auxiliary problem, and some of their main
properties, are stated in Sect. 4. Such function is constructed in Sect. 5. The analytic solu-
tion of the main problem is obtained in Sect. 6 (Theorem 1), and the work concludes with
the description of the parametric Gevrey asymptotic expansions of the analytic solution,
obtained in Sect. 7 (Theorem 3).

2 Layout of the main and auxiliary problems

In this initial section, we describe in detail the main problem under study (8) (Sect. 2.2),
and the conditions on the elements involved in it. The solution of this problem is reduced
to a convolution auxiliary problem in the Borel plane (17) when inspecting solutions in the
particular form of a triple Fourier, Laplace and truncated Laplace transform (see Sect. 2.3).
We first give some words about inverse Fourier transform on certain Banach spaces which
act on the transformation of the problem (Sect. 2.1).

2.1 Inverse Fourier transform on certain function spaces
The transformation of the main problem with respect to variable z requires recalling some
basic facts about inverse Fourier transform when acting on certain Banach spaces of real

functions of exponential decrease at infinity.

Definition1 Let 8, u € R. We write Eg ,) for the set of all continuous functions2: R — C
such that

| 72(rm) ”(ﬂ,u) = su%(l +|m|)" exp(Blml)|h(m)| < co.

The pair (Eg ., || - lls,1)) is @ Banach space.

The next result will be needed in our reasoning. We refer to [6], Proposition 7, for its
proof.

Proposition 1 Let 8 >0 and p > 1. The inverse Fourier transform

1
(27)12

FU)) = / " fom)explim) dm, x <R,

satisfies the following properties acting on every f € Eg ,.):
o The function F1(f) is well defined in R and can be analytically extended to the set

Hg := {ze(C:‘Im(z)’</3}. (4)
o Let ¢(m) := imf (m). Then, ¢ € Eg,-1) and 9, F () (z) = F 1) (z) for z € Hp.

o Let g € Eg ) and let Y (m) = sz * g(m) be the convolution product of f and g, for
allm e R. Then, € Eg,,) and we have

FHAO@)F H2) = F'(¥)(2), ze€Hs.
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2.2 Statement of the main problem

Let k; and k, and D, D, > 2 be positive integers. Let §;, (resp. 542) be a nonnegative integer
for every 1 < ¢; <D (resp. every 1 < ¢, < D,). We also fix nonnegative integers Ay, ¢,,
dp, forall1 <€y <D;-1land1<¥; <D, -1.

We assume that

ADIDZ = k18D1 + kZSDz (5)
and
k28p, 8 . op,8y, _x 1
Afllz > kl(sfl + %’ d@z > Sﬁz(kZ + 1)’ DZ—ll > 512 + k_) (6)
D Dy 2

foreveryl <¢; <Dj—-land1<¥¢; <D,-1.
Let Q(X), Rp,p,(X) and Ry ¢,(X) forall1 <¢; <D;-1and 1 <¥¢; <D, -1 belong to
C[X]. We assume that

deg(RDlDz) = deg(Rilez)v RD1D2 (lm) #O; (7)
forevery0 <¢; <D;—-1and0<4¥; <Dy-1,and allm e R.

Remark In Sect. 3 we assume further geometric conditions on these polynomials. In par-
ticular, observe that condition (18) implies that deg(Q) > deg(Rp,p,).

We choose u € R with

u> max deg(Ryy,) + 1.
0<¢1<D;-1
0<lo<Dy-1

The main aim in this work is to study the following initial value problem:

Q(az)u(tb b,z E)

= 6AD1D2 (t11q+18t1)5D1 (t]2(2+18t2)5D2RD1D2 (8z)u(t1! bz, E)

X Sy, dps 8
+ €12 ¢ Ce105\Z, €)Kg 0, (07)Ull1, 82,2, €
Do et (610,) 1620, ey (5, €)Rey iy (0)ultr, 1, 2,€)

1<¢1<D;-1
1<lp<Dy-1

+f(t1r ty,z, 6)’ (8)

for the initial conditions u(¢1,0,z,€) = u(0,t,z,€¢) = 0. Let us describe the form of the
elements involved in the problem.

Leteg>0and f>0.Forall1 <¢; <D;—1and1<{; <D, -1, theterm cy,(z,€) are
holomorphic functions on Hg x D(0, €p). We recall that Hg stands for the horizontal strip
(4). The function ¢, is defined by

oo

1 )
CK1Z2(Z; 6) = ]:_1 (m = C@lgz(m,é))(z) = W / Céllz(l’ﬂ,é)elzm dm,
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where m = Cy,¢,(m,€) is continuous for m € R and is subject to uniform exponentially
flat upper bounds with respect to € € D(0, €), i.e. there exists C, > 0 such that

sup |Cy, ¢, (m,€)| < —— exp(-Blm|), meR. 9)
eem&)}' ealom O = o exp(=p)

Observe that m — Cy, ¢, (m, €) belongs to Eg ) with

sup H CKIZZ("E)H(‘@,M) = CC!
€€D(0,e9)
forall0<¥¢; <D;—1and0<4{, <Dy —1.

The forcing term f(t;,£2, 7, €) is a holomorphic function in C* x D(0,/4) x Hp x &, for
any given open sector £ centered at 0, and contained in D(0, €p) \ {0}, for some positive
number /. The forcing term is constructed as follows. Let Ny > 0 and F,, ., (m,€) € Eg 1)
under uniform bounds with respect to € in the disc D(0, €p). More precisely, assume that

1

eelsal(l(io)Han (m, €) H B = KO( To

ny
) , 0<m <Nij,n; >0,
for some Ky, Ty > 0. We consider

ny k2.(2n2
1 nyy?
)

Ny
Y(t,me)i=Y > Fuulm ekt

n1=0n2>0

which turns out to be a holomorphic function on C? with respect to the first two variables,
with coefficients in Eg ). We write

N V=167 \ k1
I 1
F(T,z,e) = Z Z Fl(m— me,z(m,e))Tfly(Z—l, (%) )T;z, (10)
1 1

n1=0n2>0

where i/ (€) is a holomorphic function on any open sector centered at 0 in the punctured
disc D(0, €g) \ {0} (see (20)), 6; is a real number to be determined and y (7, z) stands for the
incomplete Gamma function

z
y(n,z):/ W le ™ du,
0

which is an entire function w.r.t. z, when 7 is a fixed positive real number. Observe that
the forcing term F depends in particular on the choice of 0;.

The following property related to the lower incomplete Gamma function will be crucial
in the construction of the auxiliary equation of the problem. Namely,

ichy(€)eV =101 k ™ I “16,)\
/0 unlexp<_<;> >du: 7;/(%,(" 1(6)eXTp(x/_ 1)) > )

We recall that the infinite Laplace transform satisfies

o0 u\* " (n
./o u”%xp(—(;) )du=7F<%), (12)

for every positive natural numbers #, k.

Page 6 of 31
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This property will be used with respect to the second time variable, whereas a truncated
Laplace transform depending on each value of the perturbation parameter near the origin
is applied on the first variable. Both (11) and (12) give rise to adequate algebraic properties
which allow one to reduce the main equation in the form of an auxiliary problem.

Regarding (10), F is holomorphic w.r.t. T; on C*, T on the disc D(0, T/2) and on Hg
w.r.t. z. Furthermore, according to (11), (12), we observe that

m (K@ m
v kl’ Tl kl ’

as € tends to 0, for (well chosen) fixed T'. Therefore, F is getting closer to a polynomial in
T, as € tends to 0. The function f defined by

f(t,z,€) = F(et1,€tr,2,€)

is holomorphic on C* x D(0,/') x Hg x &, for any given open sector £ centered at 0 and
contained in D(0, €y) \ {0}, with /' > 0 such that 0 < /'€y < To/2. From the remark above,
we check in particular that f becomes close to a polynomial in #; as € becomes closer to
the origin.

2.3 Auxiliary problems
We search for solutions of (8) in the form of an inverse Fourier transform

uti, tr,z,€) = F - (m > Ulety, by, 2, €)).

We make the change of variable T7 = €#; and T, = €t; in (8). The classical properties of
the inverse Fourier transform (see Proposition 1), together with (5), lead to an auxiliary
functional equation satisfied by the expression U(T1, T, m, €), namely

Q(lm)u(Tl! T21 m, 6)
8 § ,
= (T{(1+18T1) D1 (T§2+18T2) DZRDlDz(lWl)U(Tl, TQ,WI,G)

Ay, —k18¢, —dyp +35 k1+1 521 dﬁz 562

+ E ettty 17%; 2(T1 8T1) T, "oy,
1<¢1<D;-1
1<l3<Dy-1

1 o0
X W/ Coye,(m —my, €)Ry, g, (im )U(T1, Ty, my, €) drmy
—00

+ F(Ty, Ty, m, €). (13)

Let 0 < k <1 and 0;,d; € R. Let € — h;(€) be a holomorphic function defined on the
domain of definition of the perturbation parameter, to be detailed afterwards. For every
fixed value of the perturbation parameter €, we search for solutions of (13) written as
the Laplace transform with respect to T, along direction d, and the truncated Laplace
transform with respect to T along direction 6; — )\.kZSDZ arg(e) applied to a second auxiliary
function. More precisely, we search for solutions of (13) of the form

k1 ko dus d
Ugya,(T,m,€) = / w(u,m,e)exp(—(ﬂ) - <2> )ﬂﬂ, (14)
Lay e Y Ldy Ty T, uy U
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where d; = d;(¢€) := arg(h;(€)) + 61 and Ly, . stands for the segment [O,Khl(e)eﬁel]; Ly,
consists of the half-line with endpoint at the origin and direction d,. The domain of defi-
nition of w and Uy, 4, will be discussed in the subsequent sections.

Lemma 1 ((8.7), [19]) For every m,k € N one has

P k+l t,k+lat Z A k+la )

1<t<m-1

for some constants Ay, 1 <€ <m-1.
The assumption (6) guarantees the existence of dy,k, € N such that
dey =80,k + 1) + dpypyy 1<Ly<Dp—1. (15)

The following result states a one-to-one correspondence between the solution of (13)

and (17). Its proof, which is omitted, can be adapted with minor modifications from [8],
Lemma 1.

Lemma 2 Let Uy, 4,(T1, T>, m, €) be defined by (14). Then we have

ki _(42yk duoy du
T Or;Uaya, (Th, To, m, €) = / (k/u,- Joo(uy, uy, m, €)e )y n 2

Ly e Y La, Uy Uy

forj=1,2.

2_ ds
T3 Ugy 4, (T, To, m, €) = / / —sz ! (ul,sé/kz,m,e)—z

Lay e Ld2 82

ki_ (42 vk dity du
xe(Tl)l( i 1, my € N. (16)

Uy uj

Lemma 1, (15) together with the shape of the solution in (14), the assumptions on the
coeflicients ¢ ¢, and the forcing term f, and Lemma 2 entail w being a solution of the
following auxiliary convolution equation in the Borel plane:

(Q(im) = Rp, p, (im)(klrlkl)aD‘ (kzrzkz)SD2 Jo(T,m,€)

ks — 5 1 *© )
- Bty kb ~dey +oe, (k tk‘) a Coye,(m — my, €)Ry, g, (imy)
1<t1<D;-1 212 J oo
=t1=M1—

1<ly<Dy-1

ko 2 Ay, k
. S Yok 5 1k ds»
X [#/ (7 =52) 2 (kos2) 2 00(10,5, 2 ) s dy

r(%) Jo 2

k -~
2 gy ky +k2 8¢y —p2)

+ Z A%P—Zaszrz (Tkz s)ﬁ_l(ks)m
(542—172)) 0 2 2 2%

d[ k +k2
~ 2K2
1=py<dyy-1 ' ( T

d.
X w(rl,sé/kz,ml,e) a5 dml] + (T, m,e). 17)
$2

Page 8 of 31
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So far, the solution is of symbolic nature. The geometry of the problem, detailed in the
following section, together with Sect. 4 provide convergence and growth estimates of such
solution.

3 On the geometry of the problem
In this section, we preserve the objects and assumptions detailed in Sect. 2.2 on the el-
ements involved in the construction of the main problem under study (8), giving rise to
the auxiliary problem (17). This section is devoted to the study of the geometry of the
problem, which is crucial in the asymptotic approximation of the solution.

We define for every m € R the polynomial

Pyu(t) = QUim) — R, p, (im) (ky 7)1 (yrf2) 2.

In the case that t; # 0 one can factorize P,, in the form

kZSDZ_l

. Sp, . dp, k18
Pyu(t) = —Rpyp, (im)ky ' 210 [ (12— gz, m)),
£=0

- 5p. . 8p, k18
where g, (11, m) are the ky8p, roots of Q(im)/(RDlDzle1 k2D2 7 21y with respect to 1, i.e.

1Q(im)| > iy

5py , 8
Rp. p, (im) |k, k.2 |7y 1901
1Da 1 5

qe(Ty,m) = < exp(x/—_ng(tl,m)),

forevery0 < ¢ < IQSDZ — 1. Here, Hy(t1, m) stands for

Hy(ty, m) := arg( Qo) 15D1> _ sk

+ .
x = .
Rp, p, (im)t; kydp,  kadp,

We assume that the polynomials Q and Rp, p, satisfy

Q(im)

- SQRp. b, (18)
RDlDz(lm) @ D102

where Sqr), 5, stands for an unbounded sector

SQ,RDlDZ = {Z €C:lzl = PQRp, Dy’ arg(z) - dQ'Rlez | = 1QRp,p, }’

for some small norp, ,, >0, large pory, p,»> 0, and some dqpr,, ;,, € R to be determined.
Let X be a real number which satisfies

O<Ac<

. 19
Ko, (19)

Let &€ be a sector with vertex at the origin which is contained in the disc D(0, ¢;) and for
every € € £ we define

1
, k3 1
hy(€) = <—p QRDlDZ) 1 (20)

Spy . 8p e ’
1 2
ki
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and the quantities

1
PQR ST 1 1
ri(e) = (22l ) P and  ra(e) = ~le|'2, (21)
3py 19D, le|m 1 2
ki tk,y

with ri = )Lkngz, and Iy = )L/(l(SDl .
The next result summarizes the main properties of the geometric construction above,

which will be used to state the asymptotic behavior of the solutions of the main problem.

Lemma 3 Let m € R and € € £. The following statements hold:
e {1 eC?:P,(1) =0} N (D(0,r1(€)) x D(0,2ry(€))) = ?.
« Provided that A > 0 is small enough, for any couple of directions (61, d,) which satisfy

1 2l

— + -,
k28D2 kQCSDZ

d2 # (d - k15D1 ()»kzgpz arg(e) - 91))

fOl’ all0<{ < k25D2 — 1, whered € (dQ’RDlDZ — nQ’RDlDZ’dQ’RDlDZ + nQ’RDlDz)' alle € &,
there exist an unbounded sector Sy, with bisecting direction dy and small opening, and
a sector Sy, ¢, with

Saye = {z € C*:0<|z| <kry(e), |arg(z) —d1| < 51},

where dy = d (€) = Mkadp, arg(e) — 6y such that
[t eC*:Py(r) =0} N (Saye x Sap) = 9,

foralle € €.
o Let Sg,c and Sy, be as above. We put

£21(€):=Sae, and $§2:(€):= D(O, rz(e)) USa,. (22)
Then, there exists Cp > 0 which does not depend on € € £ such that
|Po(@)] = Co|Rp,p, (irm)| (1 + 711701 [ 2002), (23)
foreverymeR, T € 21(6) x £25(¢).
Proof Let T = (11, T2) € C? such that P,,(t) = 0. One has 7, = q¢(71,m), for some 0 < £ <

kngz — 1. In the case that |q,(t1, m)| < 2ry(€), from the definition of P,, and (18) we derive
that

1

IOQRD D kl‘SDl 1

e )

T1| > = = =r1\€).

lnl = —— P 1(€)
k le Dy D)

1 2

(2ra(€)) %P1

The first statements follows from this.

Page 10 of 31
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The second statement is a direct consequence of the fact that for all ; € C* and m € R
one has

1 2l
) - ki8p, arg(tl)] 5 +

28D2 kZSDz ’

Q(im)
Rp, p, (im)

arg(q(r1,m)) = [arg< (24)

forevery0 < ¢ < /QSD2 — 1. Regarding the construction of S;, , for all 7; € Sy,  we have
81 + AkZSDZ arg(e) + 0y < arg(ty) < 5 + )Lkzg,;)2 arg(e) + 0.

The pair (61,d,) can be chosen accordingly, provided that 2, NQ.Rp, D2,§1 > 0 are small
enough.

In order to give proof to the third item, we first give estimates on |72/q,(71, m)| for any
0<t< kngz — 1 and m € R. First, assume that 7; € D(0,r;(¢)) and 7 € D(0,7,(¢)). Then
we have

, 8p, ,op 1
|RD1D2(lm)|k1 lkz z |'L'1|k16D1 ) k38py

L‘ < 1|€|Ak15D1(
qe(Ti,m) |~ 2 |Q(im)|
1

5Dl SDZ k18p =
§1|€|)¥k15D1(k1 ky “ri(e) 1)’9502

PQRp; p,

=<

. (25)

N =

The previous estimates yield dist(q,(z1,m)/13,1) > % Moreover, the choice made for Sy,
can be made in order to guarantee the existence of a positive constant M, such that the
distance dist(g¢(t1, m)/12,1) > M, for every t; € 2i(e), 1 € Sa4, and m € R. One gets from
the previous argument that |g¢(t1,m)/72 — 1| > min{My, 1/2}, for every m € R and 7 €

(£21(€) x £2,(¢€)). This entails the existence of a constant ¢; > 0 such that

C
lae(m) —n| zalnl g m) - n| = algln,m| = —-,
ARE
PQR T
where ¢, = cl(%)kmz kl+k2 The previous estimates yield
ky 2
C1 Cy 1
_ > £
|qe(t1,m) — 1| > 5 <|T2| t
71|22
and from the factorization of P,,,
< kZSD
. 3py ;9D ks 4] (%) 1 2
|Pu(T)| = |Rp,p, (i) |k, hey 2 1] 1%P1 (§(|Tz| + P . (26)
2] 202

From (26), we conclude to the existence of ¢ > 0 such that

klfol ¢ k25D2
|Pu(T)| = a!RDIDZ(imM(mﬁZ‘*Dz 72| + C—) ,
1

forall m € R and 7 € (£21(€) x $25(€)).
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It only remains to prove that

k1p, ) kabp, ~
ko k16, ka6
(Inl 2D2|Tz|+c—) > Cp(1+ |1 [1%P1 |1y 2P2), (27)
1

for some constant Cp >0, all m € R and t € (£21(€) x §2,(¢)).
Usual estimates guarantee that

leDl kZSD kZSD kl‘SDl N
X9 C2 2 C2 2 P kadp
(|n| 205 |7, + Z) = (—) (c31T1 |22 |7y + 1)"2°P2

1 C1
k1dpy
ko3,
> C4(|T1| D2 7o + 1)

kadp,
)

with ¢3 = ¢1/¢3, and some ¢4 > 0. Taking into account that

1 +x)" o @)™
— = lim ———
x—0t 1+a™ x—>00 1+x7

we get the existence of ¢5 > 0 such that

ki3, ~
° o .
(171222 |7y ] + 1) 22 > (1 + 7|19 | 1 [©20P2 ),

which concludes the proof. O

4 Banach spaces of functions with exponential growth

In this section, we recall the definition and main properties of certain Banach spaces pre-
viously used by the authors in [6], and adapted to the several variable case in [8, 11]. The
dependence of the domains of definition involved in the norm with respect to the values
of the perturbation parameter has previously been consider in [7].

Let &€ be a sector of finite radius in the complex plane. For every € € £ we consider the
following two domains: a finite sector £2;(¢) with vertex at the origin, bisecting direction
dy which depends on €, and radius 1 (€); and the union of an infinite sector S;, with vertex
at the origin, fixed bisecting direction d, and positive opening which do not depend on €
together with the disc D(0, 5 (¢)) for some ry(€) > 0, say §£25(€), i.e. £25(€) = Sz, UD(0, r5(€)).

In the following we write d = (d;, d>).

Definition 2 Let vy, vy, B, 1 > 0and let ky, k, be positive integers. We write k = (k, k») and
v = (v, vy). For every € € &, F(‘i ) stands for the vector space of continuous functions

(t,m) — h(t,m) defined on £2;(€) x £2;5(¢) x R which are holomorphic with respect to
the first two variables on £2;(€) x §2;(€), and satisfy the requirement that

1+]2%0 1+ 2%k

h(t,m) = sup 1+ |m|)"
” ” :fupie) re.Ql(e)x.Qz(e)( ) | Te_l | | 2_2 |
meR
ko
71 Ty
X exp(ﬂ|m| -1 ?’ ) - )|h(‘t,m)| (28)

is finite. The pair (Fg:,ﬂ.u,k,s)’ Il - llw,8,1,k¢)) is @ complex Banach space.

Page 12 of 31
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In the rest of this section, we fix the values of v, v,, 8, 4 > 0 and the positive integers
k1, ky. We write v = (v1, v2), and k = (ky, ko).

The first result follows directly from the definition of the norm of the Banach space in
Definition 2.

Lemma 4 Let € € &, and let (t,m) +— a(r,m) be a bounded continuous function on
21(€) x §2,5(€). Then we have

e, e, )] e < MelBCE )

(v,8,1.k€) —

for every h(t,m) € ‘iﬂﬂke), where M, = SUD, (0, (e)x2,(e) |4(T m)|. Moreover, if T —
a(t,m) is a holomorphic function, then a(t,m)h(t, m) belongs to F (v,s koe)

Some parts of the proof of the following result can be adapted from that of Proposition 2
in [6]. We decided to include it completely for the sake of completeness and for making
this work self-contained.

Lemma5 Lete € £. Leto = (01,07) € (0,00)2, 61 < 01, and let aq x be a holomorphic func-

tion in $21(€) X §25(€), continuous up to §21(€) X §2,(€), such that

|ax(T)| < 1
' T 1+ ke gy|ko

for T € (£21(€) x $22(€)). Assume that 03,04 > 0 with

0201

1
03:1—1, and —1>04+—, (29)
2 o1 k2

for some positive integer x. Then, there exists C; > 0, depending on k, v,, 65, 0, such that

ko
T
ko1 _k 2k
g k(T) T Zf (1% =) P55 (1, s m m) ds;
0 v,8,11,k,€)
kzzr ~
< Crlel o max{le 5 e 14 (e, m) |y (30)
d
forevery f € F(v,ﬂ,u,k,e)'
ProofLethFvﬁ“k6 We have
ko
T
ko1 _k 2k
g k(7)1 2/ (1,2 =) ?s5tf (1 ,sik2 i m) dsy
0 (v,8,1.k.€)
+|2 Pk
"
= sup (1+|ml) —
7€821(€)x 29()meR [ 2]
k
T2 2 ki1 _ko
x exp| Blm| — v, - as k(7)1 T,
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3 Is212

o’ PR 5

X (1+ |m|) |z_1| Isa /K2
0 ¢ ]

k1

7 [s2] 1k
XeXp(ﬁlml—vl — _v2|e|’<2 (1,8, %, m)

k
Iy "—sal
ky 1+ 2
ITy° = s 2k x/k
X {exp(—vz le (122 —32) 2B(t2, S, m, €) } | dsy,

|e|k2 |t§2_s2‘1/k2

le]

with

k &
ITy” —Sz|> Iso| VK2 |7)% — 5| VK2

1
B(ty,s5,mye)=e P —— exp(v
(72,52 ) 1+ [m])" pl| V2 e

l€] l€]

k -1
x [ (1+ 52| 1+—|T22_s2|2 ’tk -5 ‘ S5k
|€|2k2 |€|2k2 2 2 :

Therefore, one has

ko

aqs k(T )lem szz ( ko _ ) f(r 32 2 m )dsz
0

(v,8,11,k,€)
S C2A2(€)C2.3(6)“\f(1"m) ||("'n3vllvvk’5), (31)
with
1+ -2
_ X lel2k2 o /ky
Caale) = igg (exp <_U2 |6|k2> Ak X
€]
and
1+ |T_2|2/<2 1 [K161 | ¢, k2
Cos(€)=  sup I 71 kcl 2| -
rei@Oxe el 1+ |nla e
y /k 1" (fral> - )%
0 €] le]
h3 (I7al*2 = hp)? o
) <<1 ' |e|22k2>(1 F )Rl ) B dh. (32)

The classical estimates

myp\"
supx™ exp(—mipx) = (m—l) exp(—my),
2

x>0

for m; > 0 and m;, > 0, yield

X — 1 Xk_;l X - 1 2+ xX-1 2+ﬁ Y - 1
Coale) <lel* exp| - + k exp( -2 - .
kovy ko vy ks
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At this point, we provide upper bounds for Cy3(€). Let g(y) = 1:?; 5, for some a,c¢ > 0 and
b > 1. The function g attains its maximum at y, = (c(b — 1))"V/2. We apply this result to the

case a = |15)*2, b = 01/61 and ¢ = |1,]*2%2 to arrive at
|'L'1|k1&1|72|k2 C(01,01)

e (33)

1+ |y [kaor|gy|keo2 =
for some C(o1,61) > 0. We plug the bound (33) into (32) and make the change of variable

h = |e|*2l at the integral in Cy3(€) to arrive at

1+ |2 %
Cas(€) < Cos sup <

T9€29(€) |1:€_2|

S
X/ (h/) 2(
0

ko

1

|€|k2(%_1) | 3 |k2(%_1)
€

T2

ko ) 1/ky 1 1
€ L+ ()2 1+ (2 -n)?

-1
- h’) le k274 (') dH,

T2

<2

(34)

for some Cy4 > 0 only depending on 61, 07.

Let xo > 0. The previous sup particularized for those 7, € £25(€) such that x := |1o/€[*2 >
xo reads

/Q(l_@ﬂm) 1+ x2 1
Cosle] o1 sup —— ————
xlky 0201 4

x>X0 x o1

X
1/k 1/k 1 1
x [ )"
0

TP Te G ) "

) 2
sup(1 + %) CT
x>x0 x or

X ]x 1 1 1 (/’1/)(74 dn'.
0 (x— h’)l_% 1+ )21+ (x—H)2

090

1- 2291
< Cylelor *

(35)
Let

Aw) = (1+4%) ! f ! ! ! (W)™ di
x%—l 0 (x—h/)lié 1+(W)2 1+ (x-H)2 ’

For x > xy, one can perform the change of variable /' = xu in the integral of A(x), in order
to get

1, 920
AW) = (L+a%)x™" R H o F, (%),
where
1 o7}
Fy, (%) :f “ du.
0

1+ 2202)(1 + 21— )?)(1 - )" %2
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A partial fraction decomposition allows one to write F, (x) = Fy k, (%) + Fa, (%), where

! 2u + 1)u’™
1:1,,(2(@:4 2/ Qu+1u — du,
TR (L) (1) R
1 (3 = 2u)u’s

du.

1
F -
20) 4+ /0 1 +xz(1—l/t)2)(1—bl)l_é

‘We observe that

]:2,/(2
4+ 52’

]:1,/(2
4+ 5%

FL/Q (x) = FZ,/Q (x) =
for some positive constants JF x,, Fax,, valid for all ¥ > x. Under the second assumption
in (29), we find that sup,_, A(x) is upper bounded by a constant. We conclude that the
expression in (35) is upper bounded by

_0201
Cosle[@ o1 ™), (36)

for some Cys > 0.
It only rests to provide upper bounds for C, 3(¢) regarding the set of 7, € £25(¢) such that
0 < x < xy. We observe that

|71 [f1%1 | 7o 2

k161 ko
— <t To|™2. 37
1+|T1|k101|1'2|k202 _| 1| | 2| ( )

We plug this last expression into (32) to arrive at

1+|2)%k .
k k:
sup ——ul ™
(mm)ei@©xe) ¢l
[a/elk2 <xg
|22 k2 7, |F

<[

9} 1/ko 1 1
_W
€ ) L+ ()2 1+ (|2 -n)?

ko -1
T2
x ( 2 _h/> |€|k2174(h/)04 an’
€
; L+|2P% @
< Cygle| 1R sup - lel*2| =
ned@lnlde<y ]
2 1k k 1/k:
xflel e (2] w) 2 !
0 € L+ ()2 1+ (22 - W)

k
Ty 2

«(|

-1
- h/> le %27 (') di’

1+ 2

S C27|€|—V11/<10'1+/<2(1+(74) Sup xl/k2 X

0<x<xq

* 1 1 1
h/ 1/ky h/ 04 dh/
X /(; ( ) 1+ (h/)z 1+ (x_h/)z (x—h/)l_é ( )

< C28|€|—V11k1&1+k2(1+04) sup (1 +x2)x
0<x<xq
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* 1 1 1
X W) di’
‘/(; 1+(H)2 1+ (x-H)? (x - h/)l‘é

< C29|6|*V11k151+k2(1+04), (38)

for some Cyg, Cy7, Cag, Co9 > 0. We conclude that the left-hand side in (38) is upper
bounded by

C29|6|—r11k1&1+k2(1+04). (39)
In view of (36) and (39), we derive that
Casle) < SUP{C25|€ |k2(1_%m4), Cole|11kid1+ha(l+04) },

which concludes the result. O

The proof of the following result can be reproduced under minor adjustments from that

of Proposition 2, [9].

Lemma 6 Let Py, P, € C[X] such that
deg(P;) > deg(Py), Pi(im)#0 forallmeR,

and let v > deg(Py) + 1. For every f € Eg ) and g € F(‘f,,ﬁ,ﬂ,k‘e), then one finds that the func-

tion

1
Py (im)

(7, m) = / F(m = )P (i )g (x, my) dm,

d

belongs to F(; 4y . and we have

”cp(t,m) H(v,ﬁ,p_,k,e) =G Hf(m) H B.) ”g(T’m)H(v,ﬁ,ﬂ,k,e)’

for some constant Cy > 0.

5 Solution of an auxiliary problem
In this section, we preserve the elements and assumptions made on the main prob-
lem under study described in Sect. 2.2. More precisely, we assume the conditions (5),
(6), (7) are satisfied by the parameters and elements involved. The coefficients c;,¢,(z, €)
and the forcing term f(t,z,€) are constructed accordingly. We also assume the geome-
try of the problem is set in accordance with the assumptions made in Sect. 3 (see con-
dition (18)), and preserve the values of r1(€), r5(¢) for each € € £ and A > 0 (see (19) and
(21)).

We provide a solution of the auxiliary problem (17) by means of a fixed point method

in the Banach spaces introduced in Sect. 4.
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Let € € D(0,¢€) \ {0} and let d;, d, be chosen as described in Sect. 3. We define the

operator
He (a)(r,m))
Dty —kidy —dy, +5ey (ky t{ﬂ )851 1 S ’
= Z Ceye,(m — my, €)Ry, g, (imm1)
Py (1) (2m)172
1<€,<D;-1 m -
1<lp<Dp-1
ko o2 dyyk
T 2 Yok 4 = ds;
X [#/ (rfz —32) 5 (kzsz)‘slza)(tl,sélkz,ml,e)—dm1
() Jo 2
k kg 5
As, Ty 7 dyky hary=r2) |
+ Z . S R— (15(2 ) 5 (kyso)P2
~ gy k2805 -p2) \ Jo
15[’256[2_1 F(i)
1/k2 dSZ 1
X w(t1,8, 2,my,€)— dmy | + —— (T, m, €). 40
( 1,99 171, ) S5 1] Pm('l')l[j( ) T, ) ( )

We consider the Banach space of Definition 2, when fixing the domains described in

(22), in accordance with the geometric analysis of the problem, in Sect. 3.

Proposition 2 Under the assumptions adopted in this section, for every w > 0 there exist
&y, €0 > 0 such that if

[ @ m ) pne =&

then the operator H. admits a unique fixed point a),‘:(t, m,€) € Fg, s ke) Which satisfies

”wg(t’ m, E)||(|,',/3,u_,k,e) <w.

Proof Letw € Fg;,ﬁ,u,k,s)‘ Forevery 0 < ¢; <D; —1and 0 < {3 <D, — 1 we define

kidey TIQ 00

1 2 )
Lige, = ) Crye,(m — my, €)Ry, g, (i)
m —00
2 ko 51,1 Uk
x/ (1:22—52) kg, ? a)(rl,s2 z,ml,e)dszdml. 41)
0

Taking into account the assumptions in (6) and (19), one can apply Lemmas 4—6 to arrive

at
- kydp, sy
d@ k- +k25g —%
ILrees lopiker < C1CallCarllguolel 222 21 Jo(e,me)] g pe (42)
We put
kidey ky oo 2 dyo ko k2 (8¢ —p2)
) . 2k LA R |
Lare, = —— | Cuyey(m —my, €)Ry, 4, (i) (1, - 52) © s’
Pm(r) —00 0

X w(tl,sé/kz, my, €) dsy dm;. (43)
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An analogous argument as before leads to

d( ke +k2(§[ 7—hk23D282
L2615 lwpukee < CLC2A Cergpllpulel 2272 Pt o(m,me)| g (44)
Finally, the definition of the forcing term and Lemma 4 lead to
H Y(t,m,e) Sisup ;.HW(T””'E)”(»;; ki)
P, (1) ,B8.1.k.€) Cp mer |RD1D2(”’”)| Pttt
A 1 (45)
< —sup ——&y.
Cp mew [Rpyp, (im)| "
In view of (42), (44) and (45) we get
KOGl Cun [ ke
AR 1221118 11(B,u 2
| He (w(z,m)) ”(v,ﬁ,u,k,e) = Z l€l (277)1/2 |: iy,
1<€;<Dj-1 F(T)
1<{p<Dy-1
|A532P2 |k§2
+ Z dl2k2+k2((§(2_p2) i| ||a)(r,m,e) ||(v,/3,u,k,e)
1<pp <y, -1 (T)
1
+ E—w sup ——, (46)
Cp mer |Rp, D, (im)|
k28p., 8
where A = Ay, — ki8¢, — % > 0, in view of (6). Let @ > 0, and assume that w(t,m) €
1
F("",’ﬂ%k’e) with [|o(z,m,€)|lw,g,ke) < @. Any choice of small enough &, € > 0 which sat-
isfies
d¢ 3
T kI GCICus [ K
0 1/2 d
1<¢1<D1-1 (27[) 1"(%2](2)
1<lp<Dp-1
|As,,, 1K5? 1
+ Z #}w+s—wsup%§w (47)
~ F(dlsz +k2(5[2—p2)) CP meR |RD1D2 (lm)l
1<pa<éy,-1 k>
leads to
”Hf (‘“(T’m)) ”(v,ﬂ,u,k,e) =w. (48)

Let w >0 and w;,w, € Fg:,ﬁ,u,k,e) with |lw;j(z,m,€)|(v,,uke) < @ for j =1,2. Then, analo-

gous arguments to above entail

” Hs (Cl)l(T, Vl’l)) - He ((1)2('[, m)) ” (v,B,10,k€)

8¢ g{/,
< ¥ |€|Ak11C1C2||Celez||(ﬂ,m[ k*
r

1/2 dyok
1<¢1=<D;-1 (27[) (%)
1<¢p<Dp-1
|As,,,, 1Ky
+ Z — - T,m,€) —wy(T,m, e . 49
-~ dpyky +k2(50y—p2) ”wl( 71, €) = (T, )”(v,ﬁ,u,k,e) (49)
1<p3=<dy,-1 (?)

Page 19 of 31
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Let €y > 0 be such that

8¢ g{/,
) GA/ﬁ1C1C2||Celzz||(ﬂ,m[ k*

0 1/2 doo ke
1<¢1<Di1-1 I
(2m) I( ](222)
1<lp<Dp-1
|As,., 1k? 1
R S L N ) (50)
~ gy +h2(8ey=p2) 2
1<pp<by, -1 F(?)

In view of the choice of €y > 0 in (50), applied to (49), one has

” HE (Cl)l('[, Vl’l)) - He ((1)2('[, m)) ” (v,B,10,k€)

(51)

1
=< 5 “Cl)l('[, m,E) - wZ(Tr m;E) ”(v,ﬁ,u,k,e)'

In view of (48) and (51), we find that the operator H,, restricted to B(0, ) C F(‘i, Bke)

turns out to be a contractive map in the complete metric space B(0,) C Fg:,ﬂ,u,k,e)

for the distance d(x,y) = || - |(w,8,,ke)- The classical contractive mapping theorem guar-
. . . d d . d

antees the existence of a unique fixed point, say wg(t,m,¢€) € F(v,ﬁ'ﬂ'k,e) with ||wg (T, m,

Ol g uke) <. O

As a result, and regarding the proof of the previous result, one attains the following
statement.

Corollary 1 Under the assumptions made in Proposition 2, the function a),‘(’(t, m,€) is a
solution of the auxiliary equation (17). Moreover, for every € € &, it satisfies

a l<c 1 |2 | 2]
joktem )| = Cof ol T 120 T 20
€ €
K ko
T T
x eXp<—/3IVn| Fui| =] 4|2 ) (52)
€ €

forevery T € £21(€) x §25(¢) and m € R. The constant C,, > 0 can be chosen uniformly for
alle € &.

6 Analytic solutions of the main problem

The main aim in this section is to provide analytic solutions of (8) for each of the elements
of a family of sectors with respect to the perturbation parameter in the form of a trun-
cated Laplace, Laplace and Fourier transforms. We first fix the geometric elements in this

construction.

Definition 3 Let ¢ be an integer number, ¢ > 2. Let £ := (£,)0<p<.-1, where &, stands for
a finite open sector with vertex at the origin, radius smaller than €¢y. We assume the in-
tersection of three different elements in £ is empty, and UOspst—l &, =U\ {0}, for some
neighborhood of the origin ¢/ C C. For the sake of simplicity, we arrange the sectors in
order that nonempty intersections of sectors in £ correspond to consecutive indices in
the ring of integers modulo ¢. Under this configuration, we say that £ describes a good
covering in C*.
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Definition 4 Let ¢ be an integer number, ¢ > 2, and let £ := (€,)o<p<,-1 be a good covering
in C*. Let 7; be an open sector with vertex at the origin in C and finite radius r7; > 0, for
j=1,2.Forall 0 < p < -1 we consider two bounded sectors ng’p of bisecting direction
0;, and small opening.

In the following statements, we identify the indices p = ¢ and p = 0.

We say that the set

{71;7‘2;§) (Sblyp)ospfl—l)(szyp)ospfl—l} (53)

is admissible if there exists § > 0 such that for j = 1,2 one has

kj(éj - arg(etj)) € (—% + 8,% - 5), (54)
forevery0 <p <i1-1, € €, t; € T; and & € R (which may depend on ¢; and €) such that
eVl e So;p- The directions 9;, are given by 0, := d € R and 9, := d; according to the

choice made on the directions d, and d; = d;(¢) in Lemma 3.

Let ¢ > 2 be an integer number. Let £ = (£,)o<p<—1 be a good covering and consider
an admissible set {71, 73, &, (So;,)o<p<i-1, (Soy,)o<p<i-1}, which is associated to the good
covering £. We briefly discuss the feasibility of such a construction. Indeed, let0 <p < (-1
be fixed. We can first choose the direction v;, (related to a fixed direction #; depending
on p) such that (54) holds for j = 1. Then, select the direction v,, = d> in order that (54)
holds for j = 2 together with the condition stated in the second item of Lemma 3.

Let 0 <p <¢-1.For each 0 < p <1 -1, we consider the main problem under study
(8) under the assumptions (5)—(7), and departing from the coefficients c;,¢,(z, €) and the
forcing term f(t,z,¢) defined in Sect. 2.2. In virtue of the geometry of the problem de-
scribed in Sect. 3 and Corollary 1, in particular the assumption of condition (18) and the
choice of A and r;(€) for j = 1,2 in (19) and (21) resp., one finds that for every € € £, there
exist a vector of directions d, = (d,,1(€),d,>), a bounded sector with vertex at the origin
Sdpyl,E and bisecting direction d,,;, with % C D(0,71(¢)) and an infinite sector Sdpyz of
bisecting direction d,,» such that the problem (17) admits a solution, say a)zp (t,m,e).

Let us write £2,,1(¢) := Sd, e and §25(€) :=D(0,r5(€)) U Sdyy-

In view of Corollary 1, one finds that, for every € € £,, the function (z, m) — pr (t,m,¢)
is continuous on m X m x R, holomorphic with respect to the first two variables

on £2,1(€) x £2,(¢) which satisfies

d 1 |2 |2
/4 € €
w(t,me)| <C 4
0O = Cop G oy 130 T 25

Ty ka
), (55)

€

k1
+ Vy

X exp(—ﬁ|m| +

for every T € §2,1(€) x §2,2(¢) and m € R. The constant Cw:p can be uniformly chosen for
alle € &,.

The application of Fourier, Laplace and truncated Laplace transforms to the function
pr (t,m, €) leads to a solution of the main problem under study: for every 0 <p <:-1
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and € € £, we define the function u,(t, z, €) by

? (u,m, €
271”2/ ./Ldle/L‘ ")

dyo
k du, d
« exp<_<ﬂ) . (1) ) mdt diy (56)
(351 €Ly Uy up

The integration path La, e stands for the segment [O,/chl(e)e“/’_wl] (see Lemma 3 and

(20)), and Ly, stands for a usual Laplace transform along the half line [0, o0)eV 142,
We observe that the choice of the admissible set, compatible with the good covering,
together with the bounds in (55) guarantee that (t,z) = u,(t, z, €) is holomorphic on the

domain (7, N.D(0, /') x (T, ND(0, 1)) x Hg, for 0 < B’ < B and some /' > 0. We recall that
Hy stands for the horizontal strip

Hg ={zeC:|Im(2)| < B}.

. d, e .
Indeed, the construction of w,” (t, m, €) and the definition of u,(t, z, €) in (56) allow one to
affirm that the function

(t,z,€) = uy(t, z,€) (57)

is holomorphic on the domain (7; N D(0,4')) x (T, N D(0, /")) x Hg x &,, for every 0 <
p=<it-1.

The properties of Fourier transform (see Sect. 2.1) and Laplace transform (see Lemma 2),
together with the definition of the elements involved in the main equation guarantee that
(57) represents a solution of the main problem (8).

From now on, we refer to consecutive solutions of (8) to solutions associated to consec-
utive sectors in the corresponding good covering, which have nonempty intersection.

The next property on the difference of two consecutive solutions will be crucial in order
to provide the asymptotic behavior of the solution at 0 regarding the perturbation param-
eter.

Theorem 1 Let £ = (&,)o<p<i1 be a good covering and consider an admissible set (53)
associated to £. For every 0 < p <1 — 1, the function u,(t,z,€) in (56) is a holomorphic
solution of (8) defined in (T, N.D(0, /")) x (T, ND(0,1')) x Hgr x &, for some h' >0 and all
0< B <B.

Moreover, there exist K, M > 0 such that, for every 0 < p <1 -1, one has

M
sup |up+1(t,z, ) — up(t, z,e)| <Kexp| —— (58)
te(TiNDOK)) x(TaND(OJ)) z€Hyy lelo

Jorevery € € E,N Eyu, with
o= min{l<2(1 —Mki8p,), k(1 + )\kngz)}. (59)

Proof The first part of the proof is guaranteed from the construction of the function
uy(t,z,¢€) forevery0 <p <:-1.
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Let 0 < p <:—1. For every € € £, N &,,1 we distinguish different situations depending
on the relative position of the directions d,,1, dp.1,1, and d,, 2, dp.1,2.

Let € € £, N &p,1 and assume that L4, e can be transformed into Liyype by a path
deformation and the same holds for L;,, and Lg,,, without meeting any (71, 72) €
D(0,71(€)) x (C\ D(0,ry(€))) with P, (t1,72) = 0 for m € R, i.e. the movable singulari-
ties in D(0, r1(€)) x (C\ D(0, r5(¢))) fall apart from the arguments between d,,; and dp.1,1
with respect to the first component, nor between d,» and dp,12 with respect to the
second component. Whenever this configuration holds, Cauchy theorem ensures that
uy(t,z,€) = up,1(t,z,€) for all (t,z) € (T, ND(0, 1)) x (T, N.D(0, 1)) x Hg'. The same argu-
ment can be applied to all € € £, N &,,1 concluding that the sectors £, and &,,; can merge
in the configuration of the good covering.

It is worth mentioning that the following cases state three equivalence classes regarding
each element in the good covering. A continuity argument shows that, forall0 <p <:-1,
if there exists € € £, N £,,1 such that one of the following mutually excluded cases holds
for such ¢, then the same case holds for every element in £, N &,.1.

Case 1: Assume that Laye =Ly, e and La,, differs from Layy- This situation occurs
in the case that the first component of every singularity in the Borel plane does not fall
between the directions d,; and d,,1,; but at least the second component of one singular
point in the Borel plane occurs within angles between d,» and d,,,1,.

Then, one has
Upe1(t,z,€) —uy(t,z,€) =1y — 1o,

where

I ! / N / / 0 (u,m, )
1= 7/~ u,m,e
(27.[)1/2 —00 Ldp,l’é Ly

‘p+1,2
() () )
xexpl-| — ) -|— " ——dm,
€l €Ly U up
1 o0 d
112 Z:—/ / / a)P(u,m,E)
@m)? J La, e IL «

dp,Z
1Z51 k U duz du1
xexpl-| — ) -[— " ———dm,
€L €Ly Uy Ux

for every € € £, N &,,1. Taking into account the first statement in Lemma 3, the functions

?*!(z,m,€) define a common function, say wk(t,m, €) in D(0,r1(€)) x

d
o, (t,m,€) and o,
D(0,2r,(€)) with respect to the first two variables. This entails that a deformation of the
integration path in the second time variable can be performed in the previous difference in

order to obtain after the application of Cauchy theorem that for all 7; € Ly, and m € R

ko d
[, tomon( (2)")2
Ly €ty Uy

‘p+1,2

/(2 d
dy U U
- o, (u,m,e)exp| —| — —_—
k
L €ty Uy
dp,2
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can be expressed in the form

k2 duz Nk duZ
/ ”” (u, m, €)e~#2/€22)) +/ kU, m, €)e”#2/(€12)
Ldp+1,2,}’2(€) U Cp,p+1,r2( ) Uz
_ Y2 du;
—/ wkp(",m €)e Wl = — 113 4 Iy — I, (60)
L, 5,ra() )

where La,amte) = [ra(€), oo)e“/’_ldp’z, Layr9mie) = [r2(€), oo)e‘/_dlf’+12 and Cp,p1,r,(c) Stands
for the arc of circle centered at 0 and radius r,(e) which connects the points rg(e)e“/’_ldl”2
and ;"2(6)6‘/‘_1“'1“1'2 . Taking into account (55) and by construction of the solutions, the direc-
tion dy.1,» (depending on €t;) is such that there exists §; > 0 with cos(ka(dp.1,2 —arg(ets))) >
81> 0 for every € € £, N E,,1 and every t € (71 N.D(0, ') N (T, N D(0,/')). This entails

1Z51 ka
€
© 52\ coslka(dpi1 —arg(ets)) ) ) ds
X — o x| | = Vg — - 2
ra(€) 1+ (|€‘) 2 |6| |t2| 2 82
u k1
€
oo S S k2 81 dSz
X / —exp((—) (Vg——k))—. (61)
ra(e) €l €] |ta]"2 52
We choose 0 < /' < (8,/v2)/%2, to find that the previous expression is upper bounded by

k1
u Co
o )erl-gmi ) @

for some Cy; > 0. The expression I;5 is upper estimated following analogous arguments.
We consider 14, and apply (55) to an analogous argument to above arriving at

IZ5% ka
€

1 |2
i3 <C exp(—B|lm exp| v
3] < w:p+1 p(-Bl |)(1 ) L+ [ P( 1

1 =
<C -
= w:p+1 exp( ﬁ|m|) (1 |m|)ﬂ 1+ |u1 |2k1 2.8 p(VI

1 ||
c dp1 exp(—ﬁ|m|) exXp\ V1
“k

1+ |ml)= 1+ |22k

1 il
|Il4| = Ca)k exp(_ﬁ|m|) (1 T |I’Vl|)l’“ 1+ |u1 |2k1 ex p<V1

ra(€)

d ka
2 Ipi1,2 r5(€) cos(ky (0 — arg(et,)))
X 1+(’2€>)2k2/dz exP(( ] ) (”2_ BE ))dg

€| 2

IZ5% k
€

Co
X eXp(_7|€|k2(1—xklle)>’ (63)

for some C,, 2 > 0.
In view of (62) and (63), and regarding (54) we get

1 %]
= ka,Z exp(_ﬁlml) (1 I |VV[|)V‘ 1+ |u1 |2kl ex p(‘)l

’upﬂ(t,z,e) — uy(t, z,e)‘

1 * 1
S Cw:Pﬁ (277)1/2 (/:oo exp((|lm(z)| _ﬁ)|m|) (1 + |Wl|)” dm)
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/Krl(e) |s€_1| S1 k 51 dSl
X — _ex — v-—— || —
o 1+ TP\e) T iam ) )
Co
X eXp<_7|€|k2(1-xklle)>’ (64)

for some C 4, 5> 0. This is valid for all € € £, N €1, t € (T1 N D(0, 1)) x (T, N D(0, ')
[Cha
and z € Hg. We point out that

/:Oo exp((|Im(2)| —ﬁ)|m|)mdm<oo, zZ€Hyg. (65)

Finally, observe that the change of variable s; = |€|s and usual estimates yield

/‘K"l(é) || S_l ky by — 81 @
o ey TP\ g Yk )) s

o0 1
< ————exp —As*) ds < oo, (66)
1 2k
0 + S

for some A > 0. We conclude that
Co
|up+1(trz’6) - ”p(t;Z, E)i =< Cw:p,4 eXp(-w),
foralle € £, N Eyir, t € (TLND(O, 1)) x (T, ND(0, /') and z € Hy.

Case 2: Assume that Li,, =La,,,, and La,, e differs from Layry.e- We only provide de-
tails of the steps which differ from the proof of Case 1. We have

Uy (t,z,€) —uy(t,z,€) = by — Iy,

where

1 [o¢]
]21 = —/ / / p+ u,m 6)
(27T)1/2 —00 Ldp+1,l c Ld
( (u1>k1 <u2> ) L duy du,
xexpl-| — ) -|— ——dm
€l €Ly Uy up
1 o d
122 = / / / wkp (u7 l’l’l,E)
@m)? ) o Layye gy,
( <u1>k1 <u2> ) duy du,
xexpl-| — ) -[— ——dm
€l €Ly Uy Ux
for every € € £, N Epr.
We split the integration path on the second time variable into L, 0,700 = [0,75(€)] x

e¥ 12 and L, 2,[ry(e),00) 1= [12(€), oo)e*/‘_ldp:z. The first statement of Lemma 3 and Cauchy
theorem allow one to write

Iy — Iy = I3 — Iy + Ips,
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where

[ee]
I3 := / / / Api1(us €, t) duy duy dm,
—00 JLg lp+1,1:€ Lq 'p,2,[r (€),00)

D o= / / / A, ¢, ) duts duy dm,
Lay,,

p,2, [y (€),00)
Iys := / /

where Cp .1, (e) is the arc of circle centered at the origin, radius «r(€) connecting the

points kr; (e)e‘ﬁ‘ip'1 and Krl(e)eﬁd!’*l’l. Here, we have used the notation

A= me) )" ()N L)
= ———w, (U, m,e)expl - — -\ — e —, ewptliy
T ()12 Tk " P €ty €ty Uiy J p

and A = A, = A,,; whenever both functions coincide. In practice, this last consideration

/ A(u, €, t) duy duq dm,

pp+1 Kkry(€) 0,ry(€)]

holds if |t1] < r1(€) and |13| < 215 (€) as it follows from the first statement in Lemma 3.
The estimates for I3 coincide with those for I3, together with the bounds provided after
(64) to get

| < C _ Cu
B1= Sl P\ 7 g el=hatny) )

foralle € £, N Eyir, t € (T1ND(0, 1)) x (T, ND(0, /') and z € Hy.
The expression 4 can be handled analogously. We finally provide upper bounds for

|I25], which can be estimated via (55) and the choice made in (54) by
o 1
I <C I - ——d
s < C (foo exp((|m(@)| = B)lml) m)
( fd e ( (Krl(é))k1< cos(ky (6 - arg(em)))) )
X T exp v — k de
dpy 1+ (2L 1 ))2ky €] 1]
([ el () () 2)
e 22 —— ) )=
0 1+(|€‘)2k2 |6| |t2|k2 $2

=C a4y Drelorlzs, (67)
o

for some C 4, s 0. I (resp. Ig) is upper bounded by a constant, see (65) (resp. a sym-
Wy

k
metric situation to that in (66)). We also have

k
x kri(€)\™ 81
Iyg| < (dp, 152k -
27| < Ay = pl)(iggl )GXP« €] ) (“l |t1|k1)>

x Cn
< (o1 = dpy) (sgp W) P <_W> (68)

Page 26 of 31



Chen et al. Advances in Difference Equations (2020) 2020:307

for 0 < 1 < (8;/v1)Y%1, and some Cy, > 0. This entails the existence of dep o Cy3 > 0 such
e

that

C
|tp1(t,2,€) — up(t,2,€)| < C g, eXp(— 23>,
[2n 5 |€|01
foralle € £,NEyi1, t € (T1ND(0, 1)) x (T,ND(0, 1)) and z € Hyr, with & defined in (59).

Case 3: Assume that La,, does not coincide with L;

o2 and Ly, o differs from L, | .

For a more compact writing, we will only display the integration paths in which the inte-
grals involved are subdivided. Each of them can be reduced to the situation in case 1 or
case 2 above. In the following steps, we preserve the notation for A, A, and A,,;, and

consider
Up1(t,z,€) — uy(t,z,€) = I31 — Iy,

where

o0
I3 1=/ /
—o0 J Ly

'p+1,1-€

o dlxlz dlxll
bz = A
—00 Ldp,l:f Ldp'2 2 1

for every € € £, N &y.1. We deform and split the integration paths to find that I3; — I3

du, d
/ L.
Ly

'p+1,2

equals
o0
/ / / A dusy duy dm
-0 Ldp“,lv Ld 1,200 (e
oo
+ / / / Api1 duy duy dm
=00 ILgy, 1, 1€ Ldy, 1 20 ()

/ / / Aduy duy dm — / / / A du, duy dm
Lay, 1€ Y Lay,0,10,r ()] Lay, 1€ Y Ly, (e)

= / / / A duz du1 dm
—00 Ldp+1,l € JLg

Lp+1,2:[0,r2(€)]
o0
+ / / / p+1 duz dlll dm
=00 ILgy, 1, 1€ Ldy, 1 20r ()
o0
- / f / A duy duy dm + / / / A dus duy dm
=00 JLgy, 1€ Ly, 1 20050 Lay 1€ Y Cppitry(e)

/ / / Ay duy duy dm
Ld 1€ JL ,00)

dp,2,[ry(€)
= / / / A du, duy dm
pp+1 kry(e Ldp+1,2,[0,r2(€)]
o0
+/ / / Api1 duy duy dm
—00 Y Lg, 1,16 Y Ldy 20
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C[}.p+1,r'z(() T2

Figure 1 Deformation of the paths involved in the proof of Theorem 1

00
—00 Ldp,l’f C,

‘pp+1,r9

Adu, duldm—/ / / A, dus duy dm
(€) —00 Ldp,l,e L

dp,2,[ry(€),00)

=I33 + I34 + I35 — I3.

In the previous expression, we have extended in a natural manner the notation adopted
for the integration paths in Case 1 and Case 2. Analogous bounds as those stated for the
integral I5 (resp. Ip3) are also valid for I35 (resp. 34), in Case 2. For the expression I35
(resp. I36) one can consider the estimates used to study I14 (resp. I13), involved in Case 1.

We conclude to the existence of C,, 6, C24 > 0 such that

C
|up+1(t»z; 6) - up(t; z, 6)‘ = Ca)k,6 exXp <_ﬁ>;
foralle € £,NEpi1, t € (T1ND(0, 1)) x (T,ND(0, 1)) and z € Hyr, with & defined in (59).

Figure 1 illustrates the deformation of the paths involved in the procedure. d

7 Parametric Gevrey asymptotic expansions of the analytic solutions
In this section, we analyze the asymptotic behavior of the analytic solutions of the main
problem (8) obtained in the previous section, regarding the perturbation parameter ap-
proaching the origin. The classical criterion for k-summability of formal power series with
coefficients in a Banach space, known as the Ramis—Sibuya theorem (see [2], p.121, or
Lemma XI-2-6 in [4]) will be used to describe the Gevrey asymptotic approximation of
the solution.

The assumptions made in Sect. 2.2 and construction of the elements related to the main
problem under study (8) are maintained in this section.

We first give some words on this classical summability theory for the sake of complete-

ness.

7.1 k-summable formal power series and Ramis-Sibuya theorem
Let (E, | - ||g) be a complex Banach space.

Definition 5 Let k > 1 be an integer number. A formal power series f (€)= ,=0fuc" €
E[[e]] is k-summable with respect to € along direction d € R if there exists a bounded
holomorphic function f defined in a finite sector V;; of bisecting direction d and opening
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larger than m/k, and with values in E, which admits f as its Gevrey asymptotic expansion
of order 1/k on Vy, i.e. for every proper subsector V; of V;, there exist K, M > 0 such that

N-1
o
n=0

for every integer N > 1 and € € V. Watson’s lemma guarantees the uniqueness of such a

N
SKMNF(I + 1>|e|N,
E

function, known as the k-sum of the formal power series.

Theorem 2 (RS) Let 1 > 2 and let (E,)o<p<.—1 be a good covering in C*. For every 0 < p <
t — 1 we consider a holomorphic function G, : £, — E, and define the function ©,(¢€) =
Gp+1(€) — Gy(€) holomorphic in Z), := £, N E,,1. We assume the following statements hold.:

o Gy is a bounded function for € € Z,, € — 0 forall0 <p <1-1.

+ O, is an exponentially flat function of order k in Z,, for all 0 < p <1 -1, i.e. there exist
K, M > 0 such that ||©Opy(€)|lg < Kexp(—%), valid for all € € Z,, and each
O<p<:-1.

Then, each of the functions Gy(¢€), for 0 < p <1 — 1 admits a common formal power series
G(e) € E[[€]] as Gevrey asymptotic expansion of order 1/k on &y In addition to this, if the
opening of &, is larger than m [k for some 0 < py <1 — 1, then G, (€) is unique, being the
k-sum of@(e) on Ep,.

7.2 Asymptotic behavior of the solutions of (8) in the perturbation parameter
We are in conditions to describe the asymptotic behavior of the analytic solutions of the
main problem under study (8) with respect to the perturbation parameter, at the origin.

For this purpose, we consider a good covering £ = (£,)o<p<.-1, for some integer number
¢ > 2. We also fix an admissible set {71, 72, £, (So, , Jo<p<i-1, (So,,,Jo<p<i-1}, which is associ-
ated to the good covering £, in accordance with the geometry of the problem (see Sect. 3)
for each 0 < p <1 -1, as described in Sect. 6.

Let (#45)0<p<i-1 be the set of analytic solutions of (8), determined in Theorem 1. We recall
that, for every 0 < p < (-1, the function (t,z,€) = u,(t, z, €) is a holomorphic function in
Tix Ta x Hy x &y, forall0< B’ < B.

Let IE be the Banach space of holomorphic and bounded functions on the domain (71 N
D(0,/)) x (T, N D(0, 1)) x Hg, endowed with the norm of the supremum.

Theorem 3 There exists a_formal power series

it z,€) = ZHm(t,z)% e E[[€]], (69)

m=>0

solution of (8), such that, for every 0 < p < - 1, the function € — u,(t,z,€) constructed in
(56) admits € — u(t, z,€) as its Gevrey asymptotic expansion of order 1/a, as € — 0 with
€ € &, regarding them as functions and formal power series with coefficients in E. Here, o
is defined by (59). More precisely, there exist C,M > 0 such that

N-1 e
sup up(t, z,€) - ZHm(t,z)—'
te((TiND(OH)x(T2ND(O')) zeHg =0 .

N
< CMNF<1 + —)IGIN, (70)
o
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for every integer N > 0,0 < p <1—1and all € € £,. In case the opening of £, is larger than
/o for some 0 < pg <1 — 1, then u(t, z, €) turns out to be the o-sum of i(t, z,€) in E,;.

Proof Forevery 0 <p <i-1,let G, be the function € = u,(t,z,¢€). It holds that G, : £, —
E is a holomorphic function in £, and moreover, in view of (58), we have

[Gyerte) - Gy(@)], < 1<exp<—%),

for some K, M >0, and all € € £, N &,,1. Regarding the Ramis—Sibuya theorem (RS), this
entails the existence of a formal power series in the form (69), such that € = u,(t,z,¢) ad-
mits € — #(t, z, €) as its Gevrey asymptotic expansion of order 1/a. The function u,,(t, z, €)
is the a-sum of #(t, z, €) if the opening of £, is larger than 7 /e, for some 0 < po < (- 1.

It is straight to check that the formal power series (69) is a formal solution of (8) by
plugging it into (8) and taking into account that, in accordance to the existence of the
asymptotic expansion in (70), we have

lim |Bf’up(t, z,€)—H,(t, z)| =0, m=>0.
e—>0,e€8y
(f,z)e(TlﬂD(O,h/))><(7'2ﬂD(0,h’))><Hg/

We refer to Theorem 2 [8] for further details of this last part of the proof, which follows
the usual reasonings. O

Remark An example of an equation which can be considered in this study is the following:

(0% + M)u(t,z,€) = 612(t§8t1)2(t§8t2)3(83 +1)u(t,z,€)

+ 67(ti‘3t1)tgat2011(z, e)Rll(az)u(t! Z,G) +f(t’ Z,E), (71)

for some large M > 0, Ry1(X) € C[X] with deg(R;;) <4, and for some c;1(z, €) and f(t,z, €)
constructed as in Sect. 2.2.
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