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Abstract
In this paper, we introduce the r-central factorial numbers with even indices of the
first and second kind as extended versions of the central factorial numbers with even
indices of both kinds. We obtain several fundamental properties and identities related
to these numbers. The connections between the new numbers and the Stirling
numbers are presented. In addition, we give the probability distribution of the
unsigned r-central factorial numbers with even indices. Finally, we consider the
r-central factorial matrices and study some of their properties.
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1 Introduction
The Stirling numbers of the first kind s(n, k) and of the second kind S(n, k), which are
the coefficients of the expansions of factorials into powers and of powers into factorials,
respectively, were introduced by J. Stirling [29]:

(x)n =
n∑

k=0

s(n, k)xk , n = 0, 1, . . . , (1)

xn =
n∑

k=0

S(n, k)(x)k , n = 0, 1, . . . , (2)

where (x)n is the falling factorial, i.e., (x)n =
∏n–1

i=0 (x – i) and (x)0 = 1. The central factorial
x[n] is defined by

x[n] = x
(

x +
n
2

– 1
)

n–1
, n ≥ 1, with x[0] = 1.

Riordan [26, pp. 213–217] introduced the central factorial numbers of the first kind t(n, k)
and of the second kind T(n, k) as transition coefficients between monomials xn and central
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factorials x[n]:

x[n] =
n∑

k=0

t(n, k)xk , (3)

xn =
n∑

k=0

T(n, k)x[k], (4)

with t(n, 0) = T(n, 0) = δn,0, where δn,k is the Kronecker delta: δn,n = 1, δn,k = 0 for n �= k.
Note that if n and k have opposite parity (one is odd, the other is even), then t(n, k) =
T(n, k) = 0; and if n and k are both odd, then t(n, k) and T(n, k) are not integers.

Kim and Kim [16] considered the central Bell polynomials B(c)
n (x) and the central Bell

numbers B(c)
n associated with the central factorial numbers of the second kind:

B(c)
n (x) =

n∑

k=o

xkT(n, k) (n ≥ 0),

B(c)
n = B(c)

n (1) =
n∑

k=o

T(n, k) (n ≥ 0).

The central Bell polynomials and the central factorial numbers of the second kind were
extended to the central complete and incomplete Bell polynomials. For more details, see
[19].

In recent years, many mathematicians introduced and studied various degenerate and
extended versions of a lot of old and new special numbers and polynomials, namely
Bernoulli numbers and polynomials, Eulerian numbers and polynomials, Daehee num-
bers, Bell polynomials, and type 2 Bernoulli polynomials of the second kind, to name a
few (see [1, 2, 11, 15, 17, 28] and the references therein). Here, we are interested in ex-
tended versions of the central factorial numbers.

For any nonnegative integer r, Kim et al. [20] defined the extended central factorial num-
bers of the second kind T (r)(n, k):

1
k!

(
e

t
2 – e

–t
2 + rt

)k =
∞∑

n=k

T (r)(n, k)
tn

n!
.

Kim et al. [12] introduced the extended r-central factorial numbers of the second kind
Tr(n + r, k + r) and the extended r-central Bell polynomials B(c,r)

n (x) as extended versions
of T(n, k) and B(c)

n (x), respectively. The numbers Tr(n + r, k + r) are either given by

1
k!

ert(e
t
2 – e

–t
2
)k =

∞∑

n=k

Tr(n + r, k + r)
tn

n!
,

or given by

(x + r)n =
n∑

k=0

Tr(n + r, k + r)x[k]



Shiha Advances in Difference Equations        (2020) 2020:298 Page 3 of 16

and

B(c,r)
n (x) =

n∑

k=0

xkTr(n + r, k + r).

For more details and further properties and identities related to these numbers and poly-
nomials using umbral calculus techniques, see [10].

Degenerate versions, incomplete and complete versions, and degenerate complete and
incomplete versions of Tr(n + r, k + r) and B(c,r)

n (x) were introduced and studied in [13, 14,
18], and [21], respectively.

Recall that the central factorial numbers with even indices of the first and second kind,
respectively, are denoted by

u(n, k) = t(2n, 2k) and U(n, k) = T(2n, 2k) (see [8]). (5)

They satisfy the recurrence relations

u(n, k) = u(n – 1, k – 1) – (n – 1)2u(n – 1, k), n ≥ k ≥ 1, (6)

U(n, k) = U(n – 1, k – 1) + k2U(n – 1, k), n ≥ k ≥ 1. (7)

The explicit formula of U(n, k) is given by

U(n, k) =
2

(2k)!

k∑

j=1

(–1)k+j
(

2k
k – j

)
j2n (see [4]). (8)

The combinatorial interpretations of u(n, k) and U(n, k) can be found in [8]. See [24] for
the connections between these numbers and Bernoulli polynomials.

In this paper, we consider the r-central factorial numbers with even indices of the first
and second kind, which we will denote by ur(n, k) and Ur(n, k), respectively. We study var-
ious properties and identities related to these numbers. In addition, we give some explicit
formulas for these numbers. Finally, we represent ur(n, k) and Ur(n, k) in terms of s(n, k)
and S(n, k), respectively.

2 The r-central factorial numbers with even indices
Definition 1 The arrays ur(n, k) and Ur(n, k) for nonnegative integers r, n, and k with
n ≥ k ≥ 0 are determined by the recurrences

ur(n, k) = ur(n – 1, k – 1) –
(
(n – 1)2 + r

)
ur(n – 1, k), n, k ≥ 1, (9)

Ur(n, k) = Ur(n – 1, k – 1) +
(
k2 + r

)
Ur(n – 1, k), n, k ≥ 1, (10)

with initial values ur(n, 0) = (–1)n ∏n–1
i=0 (i2 + r), Ur(n, 0) = rn, and ur(0, k) = Ur(0, k) = δk,0

for all n, k ≥ 0.

Note that at r = 0, these numbers are reduced to the central factorial numbers with even
indices, i.e., u0(n, k) = u(n, k) and U0(n, k) = U(n, k). From (9) and (10), it is easy to observe
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that

ur(n, 1) = (–1)n–1
n–1∏

�=0

(
�2 + r

) n–1∑

i=0

1
r + i2 , Ur(n, 1) = (r + 1)n – rn,

ur(n, n – 1) = –
n–1∑

�=0

(
r + �2), Ur(n, n – 1) =

n–1∑

�=0

(
r + �2),

ur(n, n) = 1, Ur(n, n) = 1.

We next show that ur(n, k) and Ur(n, k) can be defined as connection coefficients between
some special polynomials.

Theorem 1 For n ≥ 0, then

n–1∏

i=0

(
x – i2) =

n∑

k=0

ur(n, k)(x + r)k , (11)

(x + r)n =
n∑

k=0

Ur(n, k)
k–1∏

i=0

(
x – i2). (12)

Proof We prove (11) by induction on n and (12) is proven similarly, the initial case of
n = 0, 1 being obvious. Suppose that the statement is true for n, we prove it for n + 1:

n+1∑

k=0

ur(n + 1, k)(x + r)k

=
n∑

k=0

ur(n + 1, k)(x + r)k + (x + r)n+1

=
n∑

k=0

ur(n, k – 1)(x + r)k –
(
n2 + r

) n∑

k=0

ur(n, k)(x + r)k + (x + r)n+1

=
n–1∑

k=0

ur(n, k)(x + r)k+1 –
(
n2 + r

) n–1∏

i=0

(
x – i2) + (x + r)n+1

=
n∑

k=0

ur(n, k)(x + r)k+1 – (x + r)n+1 –
(
n2 + r

) n–1∏

i=0

(
x – i2) + (x + r)n+1

= (x + r)
n–1∏

i=0

(
x – i2) –

(
n2 + r

) n–1∏

i=0

(
x – i2)

=
n–1∏

i=0

(
x – i2)(x – n2) =

n∏

i=0

(
x – i2),

which completes the induction. �

Remark 1 From (11) and (12), we get the following orthogonal relation:

n∑

k=i

ur(n, k)Ur(k, i) =
n∑

k=i

Ur(n, k)ur(k, i) = δn,i. (13)
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In the following theorem, we derive an explicit formula for the array Ur(n, k) from the
Newton interpolation formula.

Theorem 2 For any integer 0 ≤ k ≤ n,

Ur(n, k) =
2

(2k)!

k∑

j=0

(–1)k+j
(

2k
k – j

)(
j2 + r

)n. (14)

Proof Using the Newton interpolation formula, we have

xn =
n∑

k=0

( k∑

j=0

xn
j

∏k
i=0,i�=j(xj – xi)

) k–1∏

i=0

(x – xi). (15)

Then replacing x by x + r and xi by i2 + r, we get

(x + r)n =
n∑

k=0

( k∑

j=0

(j2 + r)n

∏k
i=0,i�=j(j2 – i2)

) k–1∏

i=0

(
x – i2). (16)

Then

Ur(n, k) =
k∑

j=0

∏n–1
i=0 (j2 + r)

∏k
i=0,i�=j(j2 – i2)

=
k∑

j=0

2(–1)k+j(j2 + r)n

(k – j)!(k + j)!

=
2

(2k)!

k∑

j=0

(–1)k+j
(

2k
k – j

)(
j2 + r

)n.
�

Multiplying both sides of (14) by tn

n! and summing over n ≥ k gives the exponential gen-
erating function of Ur(n, k):

∞∑

n=k

Ur(n, k)
tn

n!
=

2
(2k)!

k∑

j=0

(–1)k+j
(

2k
k – j

)
e(j2+r)t . (17)

In particular, at r = 0, we get the exponential generating function of U(n, k):

∞∑

n=k

U(n, k)
tn

n!
=

2
(2k)!

k∑

j=0

(–1)k+j
(

2k
k – j

)
ej2t . (18)

3 Log-concavity and distribution of |ur(n, k)|
A sequence {ai}n

i=0 of real numbers is said to be log-concave (strict log-concave) if (ak)2 ≥
ak–1ak+1 ((ak)2 > ak–1ak+1) for any k ≥ 1; it is said to be unimodal if there exists an index
0 ≤ j ≤ n such that ci ≤ ci+1 for i = 0, . . . , j – 1 and ci ≥ ci+1 for i = j, . . . , n – 1. Clearly, a
log-concave sequence of positive terms is unimodal (see [3]).

Proposition 1 (Wilf [30]) Let
∑n

i=0 aixi be a polynomial with positive coefficients and with
only real and negative zeros. Then the sequence {ai}n

i=0 is strictly log-concave and it is also
unimodal.
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The unsigned r-central factorial numbers of even indices of the first kind are defined by

ur(n, k) = (–1)n–kur(n, k) =
∣∣ur(n, k)

∣∣.

Theorem 3 For any fixed positive integer n, the sequence {ur(n, k)}n
k=0 is strictly log-concave

(and thus unimodal).

Proof Replacing x by –x – r in (11), we get the polynomial

n∑

k=0

ur(n, k)xk =
n–1∏

j=0

(
x + r + j2) = (x + r)

(
x + r + 12) · · · (x + r + (n – 1)2),

whose zeros are real and negative. Proposition 1 implies that the sequence {ur(n, k)}n
k=0 is

strictly log-concave. �

As consequences of Theorem 3, the sequence {ur(n, k)}n
k=0 satisfies the inequalities

(
ur(n, k)

)2 > ur(n, k – 1)ur(n, k + 1), k = 1, . . . , n – 1. (19)

Theorem 4 The array ur(n, k) is Poisson-binomially distributed.

Proof Let us define random variables Yn, n = 1, 2, . . . , such that

P(Yn = k) =
ur(n, k)∑n
k=0 ur(n, k)

=
ur(n, k)

∏n–1
i=0 (1 + r + i2)

, k = 0, 1, . . . n. (20)

The probability generating function of Yn is given by

E
(
sYn

)
=

n∑

k=0

skP(Yn = k) =
n–1∏

i=0

s + r + i2

1 + r + i2

=
n–1∏

i=0

(
1 –

1
1 + r + i2 +

s
1 + r + i2

)
. (21)

Then Yn can be represented as a sum of independent zero-one Bernoulli random variables
X0, X1, . . . , Xn–1 with probabilities pi of success on the ith trial:

pi = P(Xi = 1) = 1 – P(Xi = 0) =
1

1 + r + i2 , (22)

and then the random variable Yn =
∑n–1

i=0 Xi has a Poisson-binomial distribution (which is
a generalization of the binomial distribution) with mean and variance given by

E(Yn) =
n–1∑

i=0

pi =
n–1∑

i=0

1
1 + r + i2 , (23)

Var(Yn) =
n–1∑

i=0

pi(1 – pi) =
n–1∑

i=0

r + i2

(1 + r + i2)2 . (24)
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Note from (20) that P(Yn = k) differs from the array ur(n, k) only by a normalizing constant,
and thus completely characterizes the distribution of ur(n, k). �

Using the same previous assumption, one can get an alternative proof of Theorem 3 as
follows:

Let fn(k) = P(Yn = k) be the probability distribution function of Yn defined in (20), equa-
tion (21) can be rewritten in the form

n∑

k=0

fn(k)sk =
n–1∏

i=0

(1 – pi + pis).

An inequality of Newton found in [9, p. 104] and [27] states that if {ai}n–1
i=0 are any nonzero

real numbers (positive or negative) and if {bi}n
i=0 are defined by

n∑

k=0

(
n
k

)
bksk =

n–1∏

i=0

(1 + ais),

then

b2
k > bk–1bk+1 for k = 1, 2, . . . , n. (25)

Setting bk = fn(k)
(n

k)
, we obtain

(
fn(k)(n

k
)

)2

>
(

fn(k – 1)( n
k–1

)
)(

fn(k + 1)( n
k+1

)
)

. (26)

So, we have the inequality

(
fn(k)

)2 > fn(k – 1)fn(k + 1),

that is, fn(k) is strictly long-concave. Since fn(k) = ur(n, k)
∏n–1

i=0 pi, and
∏n–1

i=0 pi is clearly
strict log-concave, then ur(n, k) also.

4 Identities of the r-central factorial numbers with even indices
Theorem 5 For fixed n ≥ 0, the generating functions of the arrays ur(n, k) and Ur(n, k) are
given, respectively, by

n∑

k=0

ur(n, n – k)xk =
n–1∏

k=0

(
1 –

(
k2 + r

)
x
)
, (27)

∞∑

n=k

Ur(n, k)tn =
tk

∏k
j=0(1 – (j2 + r)t)

, k ≥ 0. (28)
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Proof We prove (27) by induction on n. The equality holds for n = 0. Assume that the
equality holds for n, and we prove it for n + 1. From recurrence (9), we have

n+1∑

k=0

ur(n + 1, n + 1 – k)xk

=
n∑

k=0

ur(n, n – k)xk –
(
n2 + r

) n+1∑

k=0

ur(n, n + 1 – k)xk

=
n–1∏

k=0

(
1 –

(
k2 + r

)
x
)

–
(
n2 + r

) n∑

k=0

ur(n, n – k)xk+1

=
n–1∏

k=0

(
1 –

(
k2 + r

)
x
)

–
(
n2 + r

)
x

n–1∏

k=0

(
1 –

(
k2 + r

)
x
)

=
n–1∏

k=0

(
1 –

(
k2 + r

)
x
)(

1 –
(
n2 + r

)
x
)

=
n∏

k=0

(
1 –

(
k2 + r

)
x
)
,

which completes the induction. For (28), let U (k)
r (t) =

∑
n≥k Ur(n, k)tn, then the initial con-

dition is given by

U (0)
r (t) =

∑

n≥0

Ur(n, 0)tn =
∑

n≥0

(rt)n =
1

1 – rt
. (29)

Multiplying both sides of (10) by tn and summing over n ≥ k gives

U (k)
r (t) = tU (k–1)

r (t) +
(
k2 + r

)
tU (k)

r (t).

Then

U (k)
r (t) =

t
1 – (k2 + r)t

U (k–1)
r (t), k ≥ 1. (30)

Iterating this recurrence gives

U (k)
r (t) = U (0)

r (t)
t

1 – (1 + r)t
t

1 – (22 + r)t
· · · t

1 – (k2 + r)t
,

and according to initial condition (29), we deduce (28). �

Given a set of variables z1, z2, . . . , zn, the kth elementary symmetric function σk(z1, z2, . . . ,
zn) is the sum of all possible products of k of these n variables, chosen without replace-
ment, i.e.,

σk(z1, z2, . . . , zn) =
∑

1≤j1<j2<···<jk≤n

zj1 zj2 · · · zjk , 1 ≤ k ≤ n.

If the choice is with replacement, then we have the kth complete homogeneous symmetric
function hk(z1, z2, . . . , zn):

hk(z1, z2, . . . , zn) =
∑

1≤j1≤j2≤···≤jk≤n

zj1 zj2 · · · zjk , k ≥ 1,
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with initial conditions σ0(z1, z2, . . . , zn) = h0(z1, z2, . . . , zn) = 1. Note that σk(z1, z2, . . . , zn) = 0
for k > n and hk(z1, z2, . . . , zn) �= 0 for k > n, for example h3(z1, z2) = z3

1 + z2
1z2 + z1z2

2 + z3
2. The

generating functions for σk and hk are given by

n∑

k=0

σk(z1, z2, . . . , zn)tk =
n∏

i=1

(1 + zit), (31)

∑

k≥0

hk(z1, z2, . . . , zn)tk =
n∏

i=1

(1 – zit)–1. (32)

From (27) and (28), we deduce that the numbers ur(n, k) and Ur(n, k) are the specializations
of the elementary and complete symmetric functions given by

ur(n, n – k) = (–1)kσk
(
r, 12 + r, 22 + r, . . . , (n – 1)2 + r

)
, (33)

Ur(n + k, n) = hk
(
r, 12 + r, 22 + r, . . . , n2 + r

)
. (34)

Recall that the central factorial numbers with even indices of both kinds satisfy

u(n, n – k) = (–1)kσk
(
12, 22, . . . , (n – 1)2), (35)

U(n + k, n) = hk
(
12, 22, . . . , n2). (36)

And the Stirling numbers of both kinds satisfy

s(n, n – k) = (–1)kσk(1, 2, . . . , n – 1), (37)

S(n + k, n) = hk(1, 2, . . . , n). (38)

Proposition 2 (Merca [23]) Let k and n be two positive integers, then

gk(z1 + t, z2 + t, . . . , zn + t) =
k∑

i=0

(
n – ci

k – i

)
gi(z1, z2, . . . , zn)tk–i, (39)

where t, z1, z2, . . . , zn are variables, gi is any of these complete or elementary symmetric func-
tions and

ci =

⎧
⎨

⎩
i, if gi = σi,

1 – k, if gi = hi.

In the next theorem, we show that the array ur(n, k) (Ur(n, k)) can be expressed in terms
of u(n, k) (U(n, k)) and vice versa.

Theorem 6 If n, k, r ≥ 0, then

ur(n, k) =
n∑

i=k

(
i
k

)
u(n, i)(–r)i–k , (40)

u(n, k) =
n∑

i=k

(
i
k

)
ur(n, i)ri–k , (41)
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Ur(n, k) =
n∑

i=k

(
n
i

)
U(i, k)rn–i, (42)

U(n, k) =
n∑

i=k

(
n
i

)
Ur(i, k)(–r)n–i. (43)

Proof To show (40), note that

ur(n, n – k) = (–1)kσk
(
r, 12 + r, 22 + r, . . . , (n – 1)2 + r

)

= (–1)k
k∑

i=0

(
n – i
k – i

)
σi

(
0, 12, . . . , (n – 1)2)rk–i

=
k∑

i=0

(
n – i
k – i

)
(–1)iσi

(
0, 12, . . . , (n – 1)2)(–r)k–i

=
k∑

i=0

(
n – i
k – i

)
u(n, n – i)(–r)k–i.

Then

ur(n, k) =
n–k∑

i=0

(
n – i

n – k – i

)
u(n, n – i)(–r)n–k–i

=
n∑

i=k

(
i

i – k

)
u(n, i)(–r)i–k .

For (42), note that

Ur(n + k, n) = hk
(
r, 12 + r, . . . , n2 + r

)

=
k∑

i=0

(
n + k
k – i

)
hi

(
02, 12, . . . , n2)rk–i

=
k∑

i=0

(
n + k
k – i

)
U(n + i, n)rk–i.

Thus

Ur(n, n – k) =
k∑

i=0

(
n

k – i

)
U(n – k + i, n – k)rk–i,

then we obtain

Ur(n, k) =
n–k∑

i=0

(
n

n – k – i

)
U(k + i, k)rn–k–i =

n∑

i=k

(
n

n – i

)
U(i, k)rn–i.

The proofs of (41) and (43) are similar. �
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Merca [22] showed that

σk
(
z2

1, z2
2, . . . , z2

n
)

=
k∑

i=–k

(–1)iσk–i(z1, z2, . . . , zn)σk+i(z1, z2, . . . , zn). (44)

Similarly, we can deduce combinatorial identity for hk(z2
1, z2

2, . . . , z2
n).

Theorem 7 Let k and n be positive integers. Then

hk
(
z2

1, z2
2, . . . , z2

n
)

=
k∑

i=–k

(–1)k–ihk–i(z1, z2, . . . , zn)hk+i(z1, z2, . . . , zn). (45)

Proof It is clear that hk(–z1, –z2, . . . , –zn) = (–1)khk(z1, z2, . . . , zn), hence

∞∑

k=0

(–1)khk(z1, z2, . . . , zn)tk =
n∏

i=1

(1 + zit)–1.

Replacing zi by z2
i and t by t2 in (32), we get

∞∑

k=0

hk
(
z2

1, z2
2, . . . , z2

n
)
t2k =

n∏

i=1

(
1 – z2

i t2)–1, (46)

and we can write

n∏

i=1

(
1 – z2

i t2)–1 =
n∏

i=1

(1 + zit)–1
n∏

i=1

(1 – zit)–1

=
∞∑

k=0

(–1)khk(z1, z2, . . . , zn)tk
∞∑

k=0

hk(z1, z2, . . . , zn)tk

=
∞∑

k=0

k∑

i=0

(–1)ihi(z1, z2, . . . , zn)hk–i(z1, z2, . . . , zn)tk

=
∞∑

k=0

( 2k∑

i=0

(–1)ihi(z1, z2, . . . , zn)h2k–i(z1, z2, . . . , zn)

)
t2k .

By (46), we obtain

hk
(
z2

1, z2
2, . . . , z2

n
)

=
2k∑

i=0

(–1)ihi(z1, z2, . . . , zn)h2k–i(z1, z2, . . . , zn)

=
k∑

i=–k

(–1)k–ihk–i(z1, z2, . . . , zn)hk+i(z1, z2, . . . , zn). �

Using the prior identities, we show in the next theorem the connection between the
r-central factorial numbers with even indices of both kinds and the Stirling numbers.
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Theorem 8 If n, k, r ≥ 0, then

ur(n, n – k) =
k∑

i=0

i∑

j=–i

(–1)k+j
(

n – i
k – i

)
s(n, n – i + j)s(n, n – i – j)rk–i, (47)

Ur(n + k, n) =
k∑

i=0

i∑

j=–i

(–1)i–j
(

n + k
k – i

)
S(n + i + j, n)S(n + i – j, n)rk–i. (48)

Proof From (44), (33), and (39), we get

ur(n, n – k) = (–1)kσk
(
r, 12 + r, 22 + r, . . . , (n – 1)2 + r

)

= (–1)k
k∑

i=0

(
n – i
k – i

)
σi

(
0, 12, . . . , (n – 1)2)rk–i

=
k∑

i=0

i∑

j=–i

(–1)k+j
(

n – i
k – i

)
σi+j(0, 1, . . . , n – 1)σi–j(0, 1, . . . , n – 1)rk–i

=
k∑

i=0

i∑

j=–i

(–1)k+j
(

n – i
k – i

)
s(n, n – i + j)s(n, n – i – j)rk–i.

From (45), (34), and (39),

Ur(n + k, n) = hk
(
r, 12 + r, 22 + r, . . . , n2 + r

)

=
k∑

i=0

(
n + k
k – i

)
hi

(
0, 12, . . . , n2)rk–i

=
k∑

i=0

i∑

j=–i

(–1)i–j
(

n + k
k – i

)
hi+j(0, 1, . . . , n)hi–j(0, 1, . . . , n)rk–i

=
k∑

i=0

i∑

j=–i

(–1)i–j
(

n + k
k – i

)
S(n + i + j, n)S(n + i – j, n)rk–i.

�

For example,

ur(6, 5) =
1∑

i=0

i∑

j=–i

(–1)1+j
(

6 – i
1 – i

)
s(6, 6 – i + j)s(6, 6 – i – j)r1–i = –6r – 55,

Ur(5, 3) =
2∑

i=0

i∑

j=–i

(–1)i–j
(

5
2 – i

)
S(3 + i + j, 3)S(3 + i – j, 3)r2–i

= 10r2 + 70r + 147.

Remark 2 The term at i = k in (47) gives the following identity, which was shown previ-
ously in [22]:

u(n, n – k) =
k∑

j=–k

(–1)k+js(n, n – k + j)s(n, n – k – j). (49)
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And the term at i = k in (48) shows a new connection between U(n, k) and S(n, k):

U(n + k, n) =
k∑

j=–k

(–1)k–jS(n + k + j, n)S(n + k – j, n). (50)

5 The r-central factorial matrices
In the following, we consider the r-central factorial matrices with even indices of both
kinds, then we obtain factorization of these matrices.

Definition 2 The r-central factorial matrices with even indices of the first kind U1(n) and
of the second kind U2(n) are the n × n matrices defined by

U1(n) := U (r)
1 (n) =

[
ur(i, j)

]
0≤i,j≤n–1

and

U2(n) := U (r)
2 (n) =

[
Ur(i, j)

]
0≤i,j≤n–1.

For example, U1(5) is given by

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
–r 1 0 0 0

r2 + r –2r – 1 1 0 0
–r3 – 5r2 – 4r 3r2 + 10r + 4 –3r – 5 1 0

r4 + 14r3 + 49r2 + 36r –4r3 – 42r2 – 98r – 36 6r2 + 42r + 49 –4r – 14 1

⎤

⎥⎥⎥⎥⎥⎥⎦
,

and U2(5) is given by

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
r 1 0 0 0
r2 2r + 1 1 0 0
r3 3r2 + 3r + 1 3r + 5 1 0
r4 4r3 + 6r2 + 4r + 1 6r2 + 20r + 21 4r + 14 1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

In particular, if r = 0, we obtain the central factorial matrices with even indices of both
kinds:

A1(n) =
[
u(i, j)

]
0≤i,j≤n–1 and A2(n) =

[
U(i, j)

]
0≤i,j≤n–1.

Note that the orthogonality property (13) is equivalent to the matrix equation

U1(n)U2(n) = U2(n)U1(n) = I,

with I being the n × n unit matrix. Hence, we have the identity

(
U1(n)

)–1 = U2(n), n ≥ 1.
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In fact, inverse relations are known for practically all special numbers, such as Whitney
numbers and Stirling numbers (see [6, 7, 25, 26]).

Recall that the generalized n × n Pascal matrix Pn[z] is defined as follows (see [5]):

Pn[z] =
[(

i
j

)
zi–j

]

0≤i,j≤n–1
, (51)

with Pn = Pn[1], the Pascal matrix of order n. For example,

P5[z] =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
z 1 0 0 0
z2 2z 1 0 0
z3 3z2 3z 1 0
z4 4z3 6z2 4z 1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Moreover,

P–1
n [z] = Pn[–z] =

[
(–1)i–j

(
i
j

)
zi–j

]

0≤i,j≤n–1
.

From (40) and (42), we have the following factorization:

U1(n) = A1(n)Pn[–r], n ≥ 1, (52)

and

U2(n) = Pn[r]A2(n), n ≥ 1. (53)

For example,

U1(5) =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 –1 1 0 0
0 4 –5 1 0
0 –36 49 –14 1

⎤

⎥⎥⎥⎥⎥⎥⎦
×

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
–r 1 0 0 0
r2 –2r 1 0 0

–r3 3r2 –3r 1 0
r4 –4r3 6r2 –4r 1

⎤

⎥⎥⎥⎥⎥⎥⎦

= A1(5)P5[–r]

and

U2(5) =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
r 1 0 0 0
r2 2r 1 0 0
r3 3r2 3r 1 0
r4 4r3 6r2 4r 1

⎤

⎥⎥⎥⎥⎥⎥⎦
×

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 1 5 1 0
0 1 21 14 1

⎤

⎥⎥⎥⎥⎥⎥⎦

= P5[r]A2(5).
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6 Conclusions
In this paper, we introduced the r-central factorial numbers with even indices of both
kinds as extended versions of the central factorial numbers with even indices of both
kinds. We derived the generating functions, some explicit expressions, and orthogonal-
ity relations for such special numbers. In addition, we showed the relations between such
numbers and the central factorial numbers with even indices which were also interpreted
in matrix forms involving Pascal matrices. Also, we showed the relations between such
numbers and the Stirling numbers. Finally, as an application to probability, we gave the
probability distribution of the unsigned r-central factorial numbers with even indices of
the first kind.
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