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Abstract
In this paper, we investigate the existence of entire solutions for a delayed lattice
competitive system. Here the entire solutions are the solutions that exist for all
(n, t) ∈ Z×R. In order to prove the existence, we firstly embed the delayed lattice
system into the corresponding larger system, of which the traveling front solutions
are identical to those of the delayed lattice system. Then based on the comparison
theorem and the sup–sub solutions method, we construct entire solutions which
behave as two opposite traveling front solutions moving towards each other from
both sides of x-axis and then annihilating. Moreover, our conclusions extend the
invading way, which the superior species invade the inferior ones from both sides of
x-axis and then the inferior ones extinct, into the lattice and delay case.
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1 Introduction
In this paper, we study the following delayed lattice competitive system:

⎧
⎨

⎩

dun
dt = [un+1(t) – 2un(t) + un–1(t)] + aun[1 – un(t) – kvn(t – τ1)],

dvn
dt = d[vn+1(t) – 2vn(t) + vn–1(t)] + bvn[1 – vn(t) – hun(t – τ2)],

(1.1)

where a, b, d, k, h are all positive numbers and τi > 0 (i = 1, 2) are the maturation time
for the species. Here un = un(t) and vn = vn(t), t ∈R, denote the population density of two
competitive species at time t and niches n, respectively. Hence we consider that both un(t)
and vn(t) are nonnegative. It is obvious that there are four equilibria of (1.1),

(0, 0), (0, 1), (1, 0),
(

1 – k
1 – hk

,
1 – h

1 – hk

)

:= (k̂1, k̂2).

When τ1 = τ2 = 0, as stated in [5], the solution of (1.1) has the following asymptotic be-
haviors depending on h and k as t → ∞:

(i) If 0 < h < 1 < k, then (un(t), vn(t)) → (0, 1) (vn wins).
(ii) If 0 < k < 1 < h, then (un(t), vn(t)) → (1, 0) (un wins).

(iii) If k, h > 1, then (un(t), vn(t)) → (1, 0) or (0, 1) depending on the initial condition.
(iv) If 0 < k, h < 1, then (un(t), vn(t)) → (k̂1, k̂2) (un and vn coexist).
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By exchanging the roles of u and v, (i) will become (ii). Thus in this paper, we only consider
the existence of entire solutions in case (i).

The theory of traveling wave solutions plays an important role in the study of lattice
equations and systems. For system (1.1), a traveling wave solution connecting (1, 0) and
(0, 1) is the solution with the form

(
un(t), vn(t)

)
=

(
φ(ξ ),ψ(ξ )

)
, ξ := n + ct,

satisfying

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cφ′(ξ ) = D[φ(ξ )] + aφ(ξ )[1 – φ(ξ ) – kψ(ξ – cτ1)],

cψ ′(ξ ) = dD[ψ(ξ )] + bψ(ξ )[1 – ψ(ξ ) – hφ(ξ – cτ2)],

(φ,ψ)(–∞) = (1, 0), (φ,ψ)(+∞) = (0, 1),

0 ≤ φ,ψ ≤ 1 on R,

(1.2)

where D[ω(ξ )] := ω(ξ + 1) + ω(ξ – 1) – 2ω(ξ ) for ω = φ,ψ . Moreover, if φ and ψ are mono-
tone, we call (φ(ξ ),ψ(ξ )) a traveling front solution. Very recently, in case (i), Li, Huang, Li
and He in [8] proved the existence, asymptotic behavior, strict monotonicity and unique-
ness of traveling front solutions of (1.1) with c ≥ c∗, where c∗ is the minimal speed.

Though the study of the traveling wave solutions is a significant topic for diffusive equa-
tions, see [1, 3, 8] and the references therein, it is not enough to consider the existence
of the traveling wave solutions to study the global attractor of the diffusion equations.
In order to understand the phenomenon of invasion between two species, the study of
the entire solutions becomes a very important subject. Here an entire solution of (1.1) is
a classical solution that exists for all (n, t) ∈ Z × R. Thus the aim of this paper is to in-
vestigate the existence of an entire solution for (1.1) which converges to two monotone
fronts with opposite speeds. In fact, Hamel and Nadirashvili [6] proved the existence of
entire solutions of the famous Fisher-KPP equation (monostable case) by the comparison
theorem, subsolution and super estimates. While for the bistable case, Yagisita [16] inves-
tigated that the annihilation process is approximated by a backward global solution, which
is an entire solution. Later, by using the comparison theorem and the explicit expression
of the traveling front solutions for the Allen–Cahn equation, Fukao, Morita and Ninomiya
in [2] improved the proof of the existence of entire solutions which was already showed
in [16]. In addition, Guo and Morita in [4] extended the conclusions in [6] and [16] to a
more general case including the Fisher-KPP equation with the discrete diffusion.

For systems, Morita and Tachibana in [12] firstly extended the existence of entire solu-
tions from scalar equations to the following Lotka–Volterra competition–diffusion system
on R:

⎧
⎨

⎩

ut(x, t) = uxx(x, t) + u(x, t)[1 – u(x, t) – kv(x, t)],

vt(x, t) = dvxx(x, t) + av(x, t)[1 – v(x, t) – hu(x, t)].
(1.3)

Based on the known results of traveling front solutions for (1.3) in [3, 7] and by using
the similar methods in [2] and [4], they have proved the existence of two-front entire so-
lutions to (1.3) for the cases (i) and (iii). This entire solution behave like two traveling
front solutions moving towards each other from both sides of x-axis at ξ ≈ –∞, and one
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component converges to 0 while the other converges to 1 as t → ∞. Moreover, there is a
technical condition that there is an η0 > 0 such that

ψ(ξ )
1 – φ(ξ )

≥ η0, ξ ≤ 0 (1.4)

in [12]. Then Wang and Li in [14] investigated this technical condition and gave some
sufficient conditions to ensure this technical condition. In addition, they used the exact
solutions, which do not satisfy the technical condition, to construct an entire solution
for (1.3). For the delayed Lotka–Volterra competition–diffusion system, Lv in [10] ob-
tained the existence of entire solutions by using the comparison principle and super–sub
solutions methods, which is similar to that of [12]. Later, for the nonlocal competition–
diffusion system, Li, Zhang and Zhang in [9] have proved the existence of entire solutions
to it, in which the asymptotic behavior of the entire solutions was similar to that of [10] and
[12]. Very recently, Wang, Liu and Li in [15] investigated the existence of an entire solution
for the nonlocal competitive Lokta–Volterra system with delays which extend the results
in [9, 10, 12]. While for a two-component competition system in a lattice, Guo and Wu [5]
obtained the existence of the entire solutions of (1.1) when τ1 = τ2 = 0. Others paper for
the existence of entire solutions for systems, one can refer to [11, 13] and the references
therein. As is well known, there is no result for the existence of entire solutions of (1.1).
Thus in this paper we will investigate the existence of entire solutions to the system (1.1).

In order to establish the two-front solutions for (1.1), we need to embed it into the fol-
lowing larger one:

⎧
⎨

⎩

ut(x, t) = D[u(x, t)] + au(x, t)[1 – u(x, t) – kv(x, t – τ1)],

vt(x, t) = dD[v(x, t)] + bv(x, t)[1 – v(x, t) – hu(x, t – τ2)],
(1.5)

where (x, t) ∈ R
2 and D[ω(x, t)] := ω(x + 1, t) + ω(x – 1, t) – 2ω(x, t) for ω = u, v. Obviously,

the traveling front solution of (1.1) is equivalent to that of (1.5). For simplification, setting
û(x, t) = 1 – u(x, t) and replacing û by u, then (1.5) turns to the following system:

⎧
⎨

⎩

ut(x, t) = D[u(x, t)] + a[1 – u(x, t)][kv(x, t – τ1) – u(x, t)],

vt(x, t) = dD[v(x, t)] + bv(x, t)[1 – h – v(x, t) + hu(x, t – τ2)].
(1.6)

Similarly, by letting φ̂ = 1 – φ and replacing φ̂ by φ, then (1.2) turns to
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cφ′(ξ ) = D[φ(ξ )] + a(1 – φ(ξ ))[kψ(ξ – cτ1) – φ(ξ )],

cψ ′(ξ ) = dD[ψ(ξ )] + bψ(ξ )[1 – h – ψ(ξ ) + hφ(ξ – cτ2)],

limξ→–∞(φ(ξ ),ψ(ξ )) = (0, 0), limξ→+∞(φ(ξ ),ψ(ξ )) = (1, 1),

φ′,ψ ′ > 0,

(1.7)

which is also a traveling front solution of (1.6). Similar to [5, 9–13, 15], in this paper, we
also assume that there exists a K > 0 such that for the solution (φ(ξ ),ψ(ξ )) of (1.7)

ψ(ξ )
φ(ξ )

≥ K , (1.8)

which is also a technical condition.
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The rest of the paper is arranged as follows. In Sect. 2, we show the existence and the
asymptotic behaviors of traveling front solutions of (1.1) and give some preparations that
will be used to construct the sup–sub solutions. In Sect. 3, we firstly give three lemmas
which are key steps for the construction of the supersolution. Then an entire solution to
(1.1) can be obtained based on the constructed sup–sub solutions.

2 Preliminaries
In this section, we introduce some known results which will be used in the following sec-
tion. Firstly, set

�1(λ, c) = d
(
eλ + e–λ – 2

)
– cλ + b(1 – h),

�2(λ, c) =
(
eλ + e–λ – 2

)
– cλ – a,

�3(λ, c) =
(
eλ + e–λ – 2

)
– cλ + a(1 – k),

�4(λ, c) = d
(
eλ + e–λ – 2

)
– cλ – b.

For �i(λ, c), i = 1, 2, 3, 4, from [8], we conclude the following results.

Lemma 1 ([8]) Assume that 0 < h < 1 < k holds. Then:
(i) There exist c∗ > 0 and λ∗ > 0 such that

�1
(
λ∗, c∗) = 0,

∂

∂λ
�1

(
λ∗, c∗) = 0.

In addition, when c ≥ c∗, the equation �1(λ, c) = 0 has two positive roots λ1, λ2 such
that 0 < λ1 < λ∗ < λ2 if c > c∗ while λ1 = λ∗ = λ2 if c = c∗ and

�1(λ, c)

⎧
⎪⎪⎨

⎪⎪⎩

> 0, λ < λ1,

< 0, λ1 < λ < λ2,

> 0, λ > λ2.

For 0 < c < c∗, �1(λ, c) > 0 for λ ∈R.
(ii) The equation �2(λ, c) = 0 has a unique positive root λ3 for c > 0 and �2(λ, c) < 0 for

λ ∈ (0,λ3).
(iii) For c > 0, the equation �3(λ, c) = 0 has a unique negative root λ4.
(iv) For c > 0, the equation �4(λ, c) = 0 has a unique negative root λ5 and �4(λ, c) < 0 for

λ ∈ (λ5, 0).

Also from [8], we can summarize the asymptotic behaviors of solutions for (1.7).

Lemma 2 Suppose that 0 < h < 1 < k holds. When c ≥ c∗, for the solution (φ(ξ ),ψ(ξ )) of
(1.7), then

(i) there are θi = θi(φ,ψ) (i = 1, 2) such that limξ→–∞ ψ(ξ+θ1)
eΛξ = 1 if c > c∗,

limξ→–∞ ψ(ξ+θ2)
|ξ |νeΛξ = 1 if c = c∗;

(ii) for c ≥ c∗, limξ→–∞ ψ ′(ξ )
ψ(ξ ) = Λ;

(iii) for c > c∗, there are θi = θi(φ,ψ) (i = 3, 4, 5) such that limξ→–∞ φ(ξ+θ3)
eΛξ = 1 if λ3 > Λ,

limξ→–∞ φ(ξ+θ4)
|ξ |eΛξ = 1 if λ3 = Λ, limξ→–∞ φ(ξ+θ5)

eλ3ξ = 1 if λ3 < Λ;
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(iv) for c = c∗, there are θi = θi(φ,ψ) (i = 6, 7, 8) such that limξ→–∞ φ(ξ+θ6)
|ξ |νeΛξ = 1 if λ3 > Λ,

limξ→–∞ φ(ξ+θ7)
|ξ |ν+1eΛξ = 1 if λ3 = Λ, limξ→–∞ φ(ξ+θ8)

eλ3ξ = 1 if λ3 < Λ;

(v) for c ≥ c∗, limξ→–∞ φ′(ξ )
φ(ξ ) = γ1;

where Λ ∈ {λ1,λ2}, γ1 = min{Λ,λ3}, ν = 1 if
∫ ∞

–∞ ψ(ξ )[–hφ(ξ –cτ2)+ψ(ξ )]e–Λξ dξ 
= 0, ν = 0
if

∫ ∞
–∞ ψ(ξ )[–hφ(ξ – cτ2) + ψ(ξ )]e–Λξ dξ = 0.

Lemma 3 Suppose that 0 < h < 1 < k holds. When c ≥ c∗, for the solution (φ(ξ ),ψ(ξ )) of
(1.7), then

(i) for c ≥ c∗, limξ→∞ φ′(ξ )
1–φ(ξ ) = –λ4 > 0;

(ii) there is a θ9 = θ9(φ,ψ) such that limξ→∞ 1–φ(ξ+θ9)
eλ4ξ = 1;

(iii) for b ≤ d, there are θi = θi(φ,ψ) (i = 10, 11, 12) such that limξ→∞ 1–ψ(ξ+θ10)
eλ5ξ = 1 if

λ5 > λ4, limξ→∞ 1–ψ(ξ+θ11)
ξeλ5ξ = 1 if λ5 = λ4, limξ→∞

1–ψ(ξ+θ12)
eλ4ξ = 1 if λ5 < λ4;

(iv) for c ≥ c∗, limξ→∞ ψ ′(ξ )
1–ψ(ξ ) = –γ2 > 0,

where γ2 = max{λ4,λ5} < 0.

Remark 2.1 From Lemma 2 (i) and (iii), when λ3 > Λ, then ψ

φ
has a positive low bound.

Thus under this case, the additional condition (1.8) holds.

As a result of Lemmas 2 and 3, we can get the following estimates, which will be needed
later for constructing the supersolutions and subsolutions.

Lemma 4 Suppose that 0 < h < 1 < k holds. Let (ci,φi,ψi) (i = 1, 2) be solutions of (1.7).
Then there are positive constants μ, m, M and Mρ such that

m ≤ φ′
i(ξ )

φi(ξ )
≤ M, for ξ ≤ 1, (2.1)

m ≤ ψ ′
i (ξ )

ψi(ξ )
≤ M, for ξ ≤ 1, (2.2)

0 < φi(ξ ) ≤ Meμξ , for ξ ≤ 1, (2.3)

0 < ψi(ξ ) ≤ Meμξ , for ξ ≤ 1, (2.4)

m ≤ φ′
i(ξ )

1 – φi(ξ )
≤ M, for ξ ≥ –1, (2.5)

m ≤ ψ ′
i (ξ )

1 – ψi(ξ )
≤ M, for ξ ≥ –1, (2.6)

1 – φi(ξ + θ )
1 – φi(ξ )

≤ M, ξ ∈R, θ ∈ [–1, 1], (2.7)

φi(ξ + θ )
φi(ξ )

≤ M, ξ ∈R, θ ∈ [–1, 1], (2.8)

1 – φi(ξ – ρ)
1 – ψi(ξ )

≤ Mρ , ξ ∈R, (2.9)

where Mρ is a constant depending on ρ > 0.
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Proof The proof of (2.1)–(2.6) and (2.9) follows from Lemmas 2 and 3 directly. Noting
that

1 – φ(ξ + θ )
1 – φ(ξ )

= exp

{

–
∫ ξ+θ

ξ

φ′(z)
1 – φ(z)

dz
}

and

φ(ξ + θ )
φ(ξ )

= exp

{∫ ξ+θ

ξ

φ′(z)
φ(z)

dz
}

,

then (2.7) and (2.8) can be proved. �

3 Existence of entire solutions
In this section, we will prove the existence of entire solutions. Firstly, we give the definition
of the supersolution and subsolution (1.1). Now let

⎧
⎨

⎩

F1(u, v) = ut – D[u] – f1(u, v),

F2(u, v) = vt – dD[v] – f2(u, v),
(3.1)

where

f1(u, v) = a
(
1 – u(x, t)

)[
kv(x, t – τ1) – u(x, t)

]
,

f2(u, v) = bv(x, t)
[
1 – h – v(x, t) + hu(x, t – τ2)

]
.

If there are two functions ū and v̄ satisfying F1(ū, v̄) ≥ 0 and F2(ū, v̄) ≥ 0 for all (x, t) ∈
R × [T1, T2], then we call (ū, v̄) a supersolution of (3.1) for (x, t) ∈ R × [T1, T2], where
T1 > T2. Similarly, we define a subsolution (u, v) by reversing the above inequalities. In
order to construct a supersolution of (3.1), we introduce the following ordinary differential
system:

⎧
⎪⎪⎨

⎪⎪⎩

p′
1(t) = c1 + Leμp1 , t < 0,

p′
2(t) = c2 + Leμp1 , t < 0,

p2(0) ≤ p1(0) ≤ 0,

(3.2)

where c2 ≥ c1 ≥ c∗, μ is defined in Lemma 4 and L will be determined later. From direct
calculation, for i = 1, 2,

pi(t) = pi(0) + cit –
1
μ

ln

(

1 +
L
c1

eμp1(0)(1 – ec1μt)
)

< 0, (3.3)

and p2(t) ≤ p1(t), for t ≤ 0, since p2(0) ≤ p1(0). Then let

ν1 = p1(0) –
1
μ

ln

(

1 +
L
c1

eμp1(0)
)

, ν2 = p2(0) –
1
μ

ln

(

1 +
L
c1

eμp1(0)
)

. (3.4)

For i = 1, 2, since

pi(t) – cit – νi = –
1
μ

ln

(

1 –
η

1 + η
ec1μt

)

, η =
L
c1

eμp1(0),
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there exists a constant R0 > 0 such that, for t ≤ 0,

0 < p1(t) – c1t – ν1 = p2(t) – c2t – ν2 ≤ R0ec1μt .

Next, we will prove three lemmas which are key steps for the construction of the super-
solution.

Lemma 5 Assume that 0 < h < 1 < k holds. Let (ci,φi,ψi) (i = 1, 2) be solutions of (1.7) with
c2 ≥ c1 ≥ c∗ and define

A(x, t) :=
[
φ1(x + 1 + p1) – φ1(x + p1)

][
φ2(–x + p2) – φ2(–x – 1 + p2)

]
,

B(x, t) :=
[
φ1(x + p1) – φ1(x – 1 + p1)

][
φ2(–x + 1 + p2) – φ2(–x + p2)

]
,

C(x, t) := φ′
1(x + p1)

[
1 – φ2(–x + p2)

]
+ φ′

2(–x + p2)
[
1 – φ1(x + p1)

]
,

then

A(x, t) ≤ N1eμp1 C(x, t), (3.5)

B(x, t) ≤ N1eμp1 C(x, t), (3.6)

where

N1 = max

{
M4

m(1 – φ2(0))
eμp1 ,

M4

m(1 – φ1(0))
eμp1 ,

M4eμ

m(1 – φ1(0))
eμp1 ,

M4eμ

m(1 – φ2(0))
eμp1

}

> 0.

Proof Firstly, we prove (3.5).
Case 1. For x ≥ –p1. In this case, x + p1 ≥ 0, –x + p2 ≤ 0. Then there exist ω1(x),ω2(x) ∈

(0, 1) and combining with (2.1), (2.3), (2.5), (2.7) such that

A(x, t)
C(x, t)

≤ φ′
1(x + ω1 + p1)φ′

2(–x – ω2 + p2)
φ′

1(x + p1)[1 – φ2(–x + p2)]

≤
[

φ′
1(x + ω1 + p1)

1 – φ1(x + ω1 + p1)
1 – φ1(x + ω1 + p1)

1 – φ1(x + p1)
1 – φ1(x + p1)

φ′
1(x + p1)

]

× φ′
2(–x – ω2 + p2)

1 – φ2(0)

≤ M4

m(1 – φ2(0))
eμ(–x–ω2+p2)

≤ M4

m(1 – φ2(0))
eμp1 .

Case 2. For 0 ≤ x ≤ –p1. In this case, x + p1 ≤ 0, –x + p2 ≤ 0. From (2.1), (2.3), (2.8), we
obtain

A(x, t)
C(x, t)

≤ φ′
1(x + ω1 + p1)φ′

2(–x – ω2 + p2)
φ′

1(x + p1)[1 – φ2(–x + p2)]
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≤
[

φ′
1(x + ω1 + p1)

φ1(x + ω1 + p1)
φ1(x + ω1 + p1)

φ1(x + p1)
φ1(x + p1)
φ′

1(x + p1)

]
φ′

2(–x – ω2 + p2)
1 – φ2(0)

≤ M4

m(1 – φ2(0))
eμp1 .

Case 3. For p2 ≤ x ≤ 0. In this case, x + p1 ≤ 0, –x + p2 ≤ 0. From (2.1), (2.3), (2.8), we
obtain

A(x, t)
C(x, t)

≤ φ′
1(x + ω1 + p1)φ′

2(–x – ω2 + p2)
φ′

2(–x + p2)[1 – φ1(x + p1)]

≤
[

φ′
2(–x – ω2 + p2)

φ2(–x – ω2 + p2)
φ2(–x – ω2 + p2)

φ2(–x + p2)
φ2(–x + p2)
φ′

2(–x + p2)

]
φ′

1(x + ω1 + p1)
1 – φ1(0)

≤ M4eμ

m(1 – φ1(0))
eμp1 .

Case 4. For x ≤ p2. In this case, x + p1 ≤ 0, –x + p2 ≥ 0. From (2.1), (2.3), (2.5) and (2.7),
we obtain

A(x, t)
C(x, t)

≤ φ′
1(x + ω1 + p1)φ′

2(–x – ω2 + p2)
φ′

2(–x + p2)[1 – φ1(x + p1)]

≤
[

φ′
2(–x – ω2 + p2)

1 – φ2(–x – ω2 + p2)
1 – φ2(–x – ω2 + p2)

1 – φ2(–x + p2)
1 – φ2(–x + p2)

φ′
2(–x + p2)

]

× φ′
1(x + ω1 + p1)

1 – φ1(0)

≤ M4eμ

m(1 – φ1(0))
eμp1 .

Thus (3.5) holds for all x ∈ R. By similar statements, we find that (3.6) holds for all
x ∈R. �

Lemma 6 Assume that 0 < h < 1 < k holds. Let (ci,φi,ψi) (i = 1, 2) be solutions of (1.7) with
c2 ≥ c1 ≥ c∗ and define

R(x, t) := a
(
1 – φ1(x + p1)

)(
1 – φ2(–x + p2)

)
φ1(x + p1)φ2(–x + p2),

then

R(x, t) ≤ aM
m

eμp1 C(x, t). (3.7)

Proof We prove (3.7) by dividing R to several cases.
Case 1. For x ≥ –p1, from (2.3), (2.5), it follows that

R(x, t)
C(x, t)

≤ a(1 – φ1(x + p1))φ1(x + p1)φ2(–x + p2)
φ′

1(x + p1)
≤ aM

m
eμp1 .

Case 2. For 0 ≤ x ≤ –p1, from (2.1), (2.3), it follows that

R(x, t)
C(x, t)

≤ a(1 – φ2(–x + p2))φ1(x + p1)φ2(–x + p2)
φ′

1(x + p1)
≤ aM

m
eμp1 .

We can obtain a similar result for x ≤ 0. �
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Lemma 7 Assume that 0 < h < 1 < k holds. Let (ci,φi,ψi) (i = 1, 2) be solutions of (1.7) with
c2 ≥ c1 ≥ c∗ and define

D(x, t) := bh(ψ1 + ψ2)
[
φ1

(
x + p1(t – τ2)

)
+ φ2

(
–x + p2(t – τ2)

)]

– bh(ψ1 + ψ2)
[
φ1

(
x + p1(t – τ2)

)
φ2

(
–x + p2(t – τ2)

)]

– 2bψ1ψ2 – bhψ1φ1
(
x + p1(t) – c1τ2

)
– bhψ2φ2

(
–x + p2(t) – c2τ2

)
,

E(x, t) := ψ ′
1
(
x + p1(t)

)
+ ψ ′

2
(
–x + p2(t)

)
,

where ψ1 = ψ1(x + p1(t)) and ψ2 = ψ2(–x + p2(t)). Then

D(x, t) ≤ N2eμp1 E(x, t), (3.8)

where

N2 = max

{
bhM(1 + K)

Km
,

bhM(1 + Mρ1 )
m

,
bhM(1 + Mρ2 )

m

}

> 0.

Proof Because of τ2 ≥ 0 and from (3.3), we have

pi(t – τ2) = pi(0) + ci(t – τ2) –
1
μ

ln

(

1 +
L
c1

eμp1(0)(1 – ec1μ(t–τ2))
)

= pi(t) – ciτ2 +
1
μ

ln

( 1 + L
c1

eμp1(0)(1 – ec1μt)

1 + L
c1

eμp1(0)(1 – ec1μ(t–τ2))

)

≤ pi(t) – ciτ2, (3.9)

then φ1(x + p1(t – τ2)) ≤ φ1(x + p1(t) – c1τ2) and φ2(–x + p2(t – τ2)) ≤ φ2(–x + p2(t) – c2τ2).
Hence,

D(x, t) ≤ –2bψ1ψ2 + bhψ1φ2
(
–x + p2(t – τ2)

)
+ bhψ2φ1

(
x + p1(t – τ2)

)

– bh(ψ1 + ψ2)φ1
(
x + p1(t – τ2)

)
φ2

(
–x + p2(t – τ2)

)
.

Moreover, by direct calculation we can see that, for t ∈ (–∞, –T] (T > 0),

1
μ

ln

( 1 + L
c1

eμp1(0)(1 – ec1μt)

1 + L
c1

eμp1(0)(1 – ec1μ(t–τ2))

)

=
1
μ

ln
1 + L

c1
eμp1(0)(1 – ec1μt)

1 + L
c1

eμp1(0)(1 – ec1μt) + L
c1

eμp1(0)ec1μt(1 – e–c1μτ2 )

:=
1
μ

ln
1

1 + ρ(t)
,

where

ρ(t) =
L
c1

ec1p1(0)ec1μt(1 – e–c1μτ2 )

1 + L
c1

ec1p1(0)(1 – ec1μt)
≤ e–c1μT (1 – e–c1μτ2 )

1 – e–c1μT := ρ0.
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Set

ρi = ciτ2 –
1
μ

ln

(
1

1 + ρ0

)

,

then, for t ∈ (–∞, –T], we have pi(t – τ2) ≥ pi(t) – ρi (i = 1, 2).
Next we prove (3.8) by dividing R into three parts.
Case 1. p2 ≤ x ≤ –p1.
For p2 ≤ x ≤ 0, from (1.8), (2.2)–(2.4), we have

D(x, t)
E(x, t)

≤ bhψ1(x + p1)φ2(–x + p2)
ψ ′

2(–x + p2)
+

bhψ2(–x + p2)φ1(x + p1)
ψ ′

2(–x + p2)

=
bhψ1(x + p1)φ2(–x + p2)

ψ2(–x + p2)
ψ2(–x + p2)
ψ ′

2(–x + p2)
+

bhψ2(–x + p2)φ1(x + p1)
ψ ′

2(–x + p2)

≤ bhM
Km

eμ(x+p1) +
bhM

m
eμ(x+p1)

≤ bhM(1 + K)
Km

eμp1 . (3.10)

We can obtain a similar result for 0 ≤ x ≤ –p1.
Case 2. x ≥ –p1.
Because of the increasing of pi, pi(t – τ2) ≥ pi(t) – ρi (i = 1, 2) and

–2bψ1ψ2 = –(2b – bh)ψ1ψ2 – bhψ1ψ2,

it follows that

D(x, t) ≤ bhψ1(x + p1)φ2
(
–x + p2(t – τ2)

)[
1 – φ1

(
x + p1(t – τ2)

)]

+ bhψ2(–x + p2)
[
φ1

(
x + p1(t – τ2)

)
– ψ1(x + p1)

]

≤ bhφ2
(
–x + p2(t – τ2)

)[
1 – φ1(x + p1 – ρ1)

]

+ bhψ2(–x + p2)
[
1 – ψ1(x + p1)

]
.

Hence, from (2.3), (2.4), (2.6), (2.9), we obtain

D(x, t)
E(x, t)

≤ bhφ2(–x + p2)[1 – φ1(x + p1 – ρ1)]
ψ ′

1(x + p1)

+
bhψ2(–x + p2)[1 – ψ1(x + p1)]

ψ ′
1(x + p1)

≤ bhMMρ1

m
eμ(–x+p2) +

bhM
m

eμ(–x+p2)

≤ bhM(1 + Mρ1 )
m

eμp1 . (3.11)

Case 3. x ≤ p2 < 0.
Similar to Case 2, we obtain

D(x, t) ≤ bhψ1(x + p1)
[
φ2

(
–x + p2(t – τ2)

)
– ψ2(–x + p2)

]
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+ bhψ2(–x + p2)φ1
(
x + p1(t – τ2)

)[
1 – φ2

(
–x + p2(t – τ2)

)]

≤ bhψ1(x + p1)
[
1 – ψ2(–x + p2)

]

+ bhφ1
(
x + p1(t – τ2)

)[
1 – φ2

(
–x + p2(t) – ρ2

)]
.

Hence, from (2.3), (2.4), (2.6), (2.9), we obtain

D(x, t)
E(x, t)

≤ bhψ1(x + p1)[1 – ψ2(–x + p2)]
ψ ′

2(–x + p2)

+
bhφ1(x + p1(t – τ2))[1 – φ2(–x + p2(t) – ρ2)]

ψ ′
2(–x + p2)

≤ bhM
m

eμ(x+p1) +
bhMMρ2

m
eμ(x+p1)

≤ bhM(1 + Mρ2 )
m

eμp1 . (3.12)

Therefore, combining with (3.10)–(3.12), (3.8) holds for all x ∈R. �

Lemma 8 Assume 0 < h < 1 < k holds. Let (ci,φi,ψi) (i = 1, 2) be solutions of (1.7) with
c2 ≥ c1 ≥ c∗. Let L in (3.2) be

L ≥ max

{

N1, N2,
aM
m

}

,

where Ni, i = 1, 2, are defined in Lemmas 5 and 7. Then

⎧
⎨

⎩

ū(x, t) = φ1(x + p1(t)) + φ2(–x + p2(t)) – φ1(x + p1(t))φ2(–x + p2(t)),

v̄(x, t) = min{1,ψ1(x + p1(t)) + ψ2(–x + p2(t))},

is a supersolution of (3.1) for (x, t) ∈R× (–∞, –T] with T > 0.

Proof Let

H+
1 =

{
(x, t) : ψ1

(
x + p1(t – τ1)

)
+ ψ2

(
–x + p2(t – τ1)

) ≥ 1
}

,

H–
1 = H–

11 ∪ H–
12,

H–
11 =

{
(x, t) : ψ1

(
x + p1(t – τ1)

)
+ ψ2

(
–x + p2(t – τ1)

)
< 1,

ψ1
(
x + p1(t)

)
+ ψ2

(
–x + p2(t)

) ≥ 1
}

,

H–
12 =

{
(x, t) : ψ1

(
x + p1(t)

)
+ ψ2

(
–x + p2(t)

)
< 1

}
.

Firstly, we show that F1(ū, v̄) ≥ 0 for (x, t) ∈ R × (–∞, –T] with T > 0. Noticing that
ū(x, t) = φ1 + φ2 – φ1φ2 and combining with (1.7), we have

F1(ū, v̄) =
[
φ′

1(1 – φ2) + φ′
2(1 – φ1)

]
Leμp1

–
[
φ1(x + 1 + p1) – φ1(x + p1)

][
φ2(–x + p2) – φ2(–x – 1 + p2)

]

–
[
φ1(x + p1) – φ1(x – 1 + p1)

][
φ2(–x + 1 + p2) – φ2(–x + p2)

]
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– f1(ū, v̄) + (1 – φ2)f1(φ1,ψ1) + (1 – φ1)f1(φ2,ψ2)

= C(x, t)Leμp1(t) – A(x, t) – B(x, t) – G(x, t),

where A(x, t), B(x, t), C(x, t) are defined in Lemma 5 and

G(x, t) = f1(ū, v̄) – (1 – φ2)f1(φ1,ψ1) – (1 – φ1)f1(φ2,ψ2).

Now we consider G(x, t). If (x, t) ∈ H+
1 , then v̄(x, t – τ1) ≡ 1. From (3.9), we have

ψ1(x + p1 – c1τ1) + ψ2(–x + p2 – c2τ1) ≥ ψ1
(
x + p1(t – τ1)

)
+ ψ2

(
–x + p2(t – τ1)

) ≥ 1.

Thus

G(x, t) = a(1 – φ1)(1 – φ2)
[
k + φ1φ2 – k

(
ψ1(x + p1 – c1τ1) + ψ2(–x + p2 – c2τ1)

)]

≤ a(1 – φ1)(1 – φ2)φ1φ2.

If (x, t) ∈ H–
1 , then v̄(x, t – τ1) = ψ1(x + p1(t – τ1)) + ψ2(–x + p2(t – τ1)). From (3.9), we have

ψ1(x + p1 – c1τ1) + ψ2(–x + p2 – c2τ1) ≥ ψ1
(
x + p1(t – τ1)

)
+ ψ2

(
–x + p2(t – τ1)

)
.

Thus

G(x, t) = a(1 – φ1)(1 – φ2)
{
φ1φ2 + k

[
ψ1

(
x + p1(t – τ1)

)
+ ψ2

(
–x + p2(t – τ1)

)

– ψ1(x + p1 – c1τ1) – ψ2(–x + p2 – c2τ1)
]}

≤ a(1 – φ1)(1 – φ2)φ1φ2.

Therefore, combining with (3.5)–(3.7), we can prove that F1(ū, v̄) ≥ 0 for (x, t) ∈ R ×
(–∞, –T].

Secondly we show that F2(ū, v̄) ≥ 0 for (x, t) ∈ R× (–∞, –T]. For (x, t) ∈ H+
1 , then v̄ ≡ 1

because of ψ1(x + p1(t – τ1)) + ψ2(–x + p2(t – τ1)) ≤ ψ1(x + p1(t)) + ψ2(–x + p2(t)). Thus
F2(ū, v̄) = bh[1 – ū(x, t – τ2)] ≥ 0. For (x, t) ∈ H–

11, then v̄ ≡ 1. Similarly, we have F2(ū, v̄) ≥ 0.
For (x, t) ∈ H–

12, then v̄ = ψ1(x + p1(t)) + ψ2(–x + p2(t)) and

F2(ū, v̄) =
(
p′

1 – c1
)(

ψ ′
1 + ψ ′

2
)

+ 2bψ1ψ2

+ bh
[
ψ1φ1

(
x + p1(t) – c1τ2

)
+ ψ2φ2

(
–x + p2(t) – c2τ2

)]

– bh(ψ1 + ψ2)
[
φ1

(
x + p1(t – τ2)

)
+ φ2

(
–x + p2(t – τ2)

)]

– bh
[
φ1

(
x + p1(t – τ2)

)
φ2

(
–x + p2(t – τ2)

)]

= E(x, t)Leμp1(t) – D(x, t),

where D(x, t) and E(x, t) are defined in Lemma 7. Therefore, from (3.8), it follows that
F2(ū, v̄) ≥ 0 for (x, t) ∈R× (–∞, –T]. This completes the proof. �

The following is easy to see.
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Lemma 9 (1, 1) is a supersolution to (3.1) for (x, t) ∈R× (–T , +∞).

Lemma 10 Assume that 0 < h < 1 < k holds. Let (ci,φi,ψi) (i = 1, 2) be solutions of (1.7)
with c2 ≥ c1 ≥ c∗. Then the pairing

⎧
⎨

⎩

u(x, t) = max{φ1(x + c1t + ν1),φ2(–x + c2t + ν2)},
v(x, t) = max{ψ1(x + c1t + ν1),ψ2(–x + c2t + ν2)},

is a subsolution of (3.1), where L is defined in Lemma 8, ν1 and ν2 are defined in (3.4).

Combining with Lemmas 8–10, similar to [5, 9–15], we can obtain the following main
result of this paper.

Theorem 1 Assume that 0 < h < 1 < k holds. Let (ci,φi,ψi) (i = 1, 2) be solutions of
(1.7) with c2 ≥ c1 ≥ c∗. Thus, for any given constants ι1, ι2, there is an entire solution
(u(x, t), v(x, t)) ∈ (0, 1) × (0, 1) of (1.6) such that

lim
t→–∞

{
sup
x≥0

∣
∣u(x, t) – φ1(x + c1t + ι1)

∣
∣ + sup

x≤0

∣
∣u(x, t) – φ2(–x + c2t + ι2)

∣
∣
}

= 0,

lim
t→–∞

{
sup
x≥0

∣
∣v(x, t) – ψ1(x + c1t + ι1)

∣
∣ + sup

x≤0

∣
∣v(x, t) – ψ2(–x + c2t + ι2)

∣
∣
}

= 0,

and

lim
t→+∞

{
sup
x∈R

∣
∣u(x, t) – 1

∣
∣ + sup

x∈R

∣
∣v(x, t) – 1

∣
∣
}

= 0.

In addition, this solution satisfies
(i) ∂u(x,t)

∂t > 0 and ∂v(x,t)
∂t > 0 for all (x, t) ∈ R×R;

(ii) limt→–∞{supx∈[α,β] |u(x, t)| + supx∈[α,β] |v(x, t)|} = 0 with α,β ∈R and α < β ;
(iii) lim|x|→∞{supt∈[S,∞) |u(x, t) – 1| + supt∈[S,∞) |v(x, t) – 1|} = 0 with S ∈R.
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