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Abstract
We investigate a delayed epidemic model for the propagation of worm in wireless
sensor network with two latent periods. We derive sufficient conditions for local
stability of the worm-induced equilibrium of the system and the existence of Hopf
bifurcation by regarding different combination of two latent time delays as the
bifurcation parameter and analyzing the distribution of roots of the associated
characteristic equation. In particular, we investigate the direction and stability of the
Hopf bifurcation by means of the normal form theory and center manifold theorem.
To verify analytical results, we present numerical simulations. Also, the effect of some
influential parameters of sensor network is properly executed so that the oscillations
can be reduced and removed from the network.
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1 Introduction
Coupled with the progress of the digital era and increasing development of various net-
work applications, networks have become more and more popular in our daily life [1–3].
Among the popular networks, the wireless sensor network is one of the most vulnerable
to attacks of malicious codes due to its special structure, such as limited capacity and de-
fense capability constraints. Wireless sensor networks are usually made up of hundreds,
even thousands, of sensor nodes placed in a hostile or dangerous environment and or-
ganized in ad hoc paradigm to monitor the environment where they are not physically
safe [4, 5]. Hence, for upgrading the security in wireless sensor networks, the test on bet-
ter investigation of malicious codes spreading dynamics is a very crucial subject. For this
reason, one of the imperious topics is to formulate reliable mathematical models that are
applicable to effectively provide some insights into the characteristics of malicious codes
spreading dynamics [6, 7] due to the compelling analogies between malicious codes and
their biological counterparts. In recent years, some scholars at home and abroad formu-
lated and investigated various mathematical models to study the spread of malicious codes
in wireless sensor networks.

Tang and Mark [8] proposed a modified Susceptible–Infected–Recovered (SIR) model
by introducing a maintenance mechanism in the sleep mode of wireless sensor networks
to characterize the dynamics of the virus spreading process from a single node to the en-
tire network. Unfortunately, Tang and Mark [8] assume that the recovered nodes have
permanent immunity, which is not consistent with reality in networks. Because that the
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recovered nodes may be infected again by newly emerging viruses. To overcome this defect
of the modified SIR model, Feng et al. [9] formulated an improved Susceptible–Infected–
Recovered–Susceptible (SIRS) worm propagation model in a wireless sensor network and
considered the model communication radius and distributed density of nodes. Zhu et al.
[10] developed a delayed SIRS reaction–diffusion model with a state feedback controller
to describe the process of malware propagation in mobile wireless sensor networks and
studied the Hopf bifurcation of the model. Considering the latent characteristic of mali-
cious codes, Keshri and Mishra [4] proposed a delayed Susceptible–Exposed–Infectious–
Recovered (SEIR) to describe the transmission dynamics of malicious signals in wireless
sensor network. Vaccination and quarantine are well-known countermeasures in epidemi-
ology. Thus it is interesting and important to extend epidemic models with quarantine and
vaccination to study the malicious codes propagation in wireless sensor networks. Mishra
and Keshri et al. [11–15] proposed different epidemic models with vaccination to study
the attacking behavior of malicious codes in wireless sensor networks. Ojha et al. [16–
18] formulated different models with quarantine to depict worm propagation behavior
in wireless sensor network. There are also some dynamical models with both vaccina-
tion and quarantine [19, 20] and other models [21–24] to model the dynamics of mali-
cious codes in wireless sensor networks. It should be pointed out that most of the mod-
els considering the latent state above assume that all the malicious codes in the wireless
sensor network have the same latent period. However, different types of malicious codes
are available in the digital environment, and they require no any human intervention or
infrastructure network for transmission. Based on this consideration, Ojha et al. [25] pro-
posed the following model for the transmission of worm in wireless sensor with two latent
periods:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = b – βS(t)I(t) – σS(t),

dE1(t)
dt = pβS(t)I(t) – (α1 + σ )E1(t),

dE2(t)
dt = qβS(t)I(t) – (α2 + σ )E2(t),

dI(t)
dt = α1E1(t) + α2E2(t) – (γ + σ )I(t),

dR(t)
dt = γ I(t) – σR(t),

(1)

where S(t), E1(t), E2(t), and I(t) denote the numbers of the susceptible infected class of
short latent period, the infected class of long latent period, the infectious, and the recov-
ered nodes at time t, respectively. More parameters are listed in Table 1. Ojha et al. [25]
studied the stability of system (1).

Table 1 Parameters and their meanings

Parameter Description

b The constant recruitment to susceptible nodes
β Rate at which susceptible nodes become infected
p The amount from susceptible nodes to the first category exposed nodes
q The amount from susceptible nodes to the second category exposed nodes
α1 The rate the first exposed category of nodes become infectious
α2 The rate the second exposed category of nodes become infectious
γ Recovery rate of the infectious nodes
σ Per capita death rate
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However, as stated in [26], one of the typical features for the malicious codes in networks
is their latency. There is usually a delay from the time the E1 and E2 nodes are infected to
the time they become infectious due to the intrinsic latent period of worms. On the other
hand, delay differential equations exhibit much more complicated dynamics than ordinary
differential equations since a time delay can cause the Hopf bifurcation phenomenon and
changes the behavior of a dynamical system from stable focus to limit cycle [27–32]. Hence
the study of the complex dynamical behaviors of system (2) with time delay, especially the
Hopf bifurcation, also is very important for the transmission and controlling of the worms.
Thus we incorporate the latent delay of the two categories of worms into system (1) and
investigate the following delayed system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = b – βS(t)I(t) – σS(t),

dE1(t)
dt = pβS(t)I(t) – σE1(t) – α1E1(t – τ1),

dE2(t)
dt = qβS(t)I(t) – σE2(t) – α2E2(t – τ2),

dI(t)
dt = α1E1(t – τ1) + α2E2(t – τ2) – (γ + σ )I(t),

dR(t)
dt = γ I(t) – σR(t),

(2)

where τ1 is the latent period of the first category of worm transmit in the wireless sensor
network, and τ2 is the latent period of the second category of worm transmit in the wireless
sensor network. We may see that the first four equations in system (2) are independent of
the fifth equation, and therefore the fifth equation can be omitted. So we will discuss the
following reduced system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = b – βS(t)I(t) – σS(t),

dE1(t)
dt = pβS(t)I(t) – σE1(t) – α1E1(t – τ1),

dE2(t)
dt = qβS(t)I(t) – σE2(t) – α2E2(t – τ2),

dI(t)
dt = α1E1(t – τ1) + α2E2(t – τ2) – (γ + σ )I(t).

(3)

The structure of this paper is as follows. The local stability of the worm induced equilib-
rium and existence of Hopf bifurcation are discussed by choosing different combination
of τ1 and τ2 as the bifurcation parameter in Sect. 2. We investigate the direction and stabil-
ity of the Hopf bifurcation at the worm-induced equilibrium when τ2 > 0 and τ1 ∈ (0, τ10)
by using the normal form theory and center manifold theorem. To verify the obtained re-
sults and some important parameter effects, we accomplish some numerical simulations
in Sect. 4. We conclude the paper in Sect. 5.

2 Local stability and existence of Hopf bifurcation
According to the analysis in [25], we can conclude that system (3) has a worm-induced
equilibrium E∗(S∗, E1∗, E2∗, I∗), where

S∗ =
b

σR0
, E1∗ =

pb
α1 + σ

(
R0 – 1

R0

)

,

E2∗ =
(1 – p)b
α2 + σ

(
R0 – 1

R0

)

, I∗ =
σ

β
(R0 – 1),
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where

R0 =
βb

σ (γ + σ )

[
pα1

α1 + σ
+

qα2

α2 + σ

]

, p + q = 1.

The Jacobian matrix of system (3) evaluated at E∗ is

JE∗ =

⎛

⎜
⎜
⎜
⎝

α11 0 0 α14

α21 α22 + β22e–τ1 0 α24

α31 0 α33 + γ33e–λτ2 α34

0 β42e–τ1 γ43e–λτ2 α44

⎞

⎟
⎟
⎟
⎠

,

where

α11 = –(βI∗ + σ ), α14 = –βS∗,

α21 = pβI∗, α22 = –σ , α24 = pβS∗,

α31 = qβI∗, α33 = –σ , α34 = qβS∗, α44 = –(γ + σ ),

β22 = –α1, β42 = α1, γ33 = –α2, γ43 = α2.

The characteristic equation associated with system (3) at the worm-induced equilibrium
E∗ is

λ4 + m3λ
3 + m2λ

2 + m1λ + m0

+
(
n3λ

3 + n2λ
2 + n1λ + n0

)
e–λτ1

+
(
p3λ

3 + p2λ
2 + p1λ + p0

)
e–λτ2

+
(
q2λ

2 + q1λ + q0
)
e–λ(τ1+τ2) = 0, (4)

where

m0 = α11α22α33α44,

m1 = –
[
α11α22(α33 + α44) + α33α44(α11 + α22)

]
,

m2 = α11α22 + α33α44 + (α11 + α22)(α33 + α44),

m3 = –(α11 + α22 + α33 + α44),

n0 = α11α33(α44β22 – α24β42) + α14α21α33β42,

n1 = α24β42(α11 + α33) – α14α21β42

– β22(α11α33 + α11α44 + α33α44),

n2 = β22(α11 + α33 + α44) – α24β42, n3 = –β22,

p0 = α22γ43(α14α31 – α11α34) + α11α22α44γ33,

p1 = α34γ43(α11 + α22) – α14α31γ43

– γ33(α11α22 + α11α44 + α22α44),
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p2 = γ33(α11 + α22 + α44) – α34γ43, p3 = –γ33,

q0 = β22γ43(α14α31 – α11α34) + β42γ33(α14α21 – α11α24)

+ α11α44β22γ33,

q1 = α24β42γ33 + α34β22γ43 – β22γ33(α11 + α44), q2 = β22γ33.

Case 1 τ = 0. Equation (4) becomes

λ4 + m13λ
3 + m12λ

2 + m11λ + m10 = 0, (5)

where

m10 = m0 + n0 + p0 + q0, m11 = m1 + n1 + p1 + q1,

m12 = m2 + n2 + p2 + q2, m13 = m3 + n3 + p3.

Obviously, m13 = α1 + α2 + βI∗ + γ + 4σ > 0. Based on the Hurwitz criterion, we have the
following results.

Lemma 1 If condition (H1) holds, that is, m10 > 0, m12m13 > m11, and m11m12m13 > m2
12 +

m10m2
13, then system (3) is locally asymptotically stable when τ = 0.

Case 2 τ1 > 0, τ2 = 0. Equation (4) reduces to

λ4 + m23λ
3 + m22λ

2 + m21λ + m20 +
(
n23λ

3 + n22λ
2 + n21λ + n20

)
e–λτ1 = 0 (6)

with

m20 = m0 + p0, m21 = m1 + p1, m22 = m2 + p2, m23 = m3 + p3,

n20 = n0 + q0, n21 = n1 + q1, n22 = n2 + q2, n23 = n3.

Let λ = iω1 (ω1 > 0) be a root of Eq. (6). Substituting it into Eq. (6) and separating the real
and imaginary parts, we get

⎧
⎨

⎩

(n21ω1 – n23ω
3
1) sin τ1ω1 + (n20 – n22ω

2
1) cos τ1ω1 = m22ω

2
1 – ω4

1 – m20,

(n21ω1 – n23ω
3
1) cos τ1ω1 – (n20 – n22ω

2
1) sin τ1ω1 = m23ω

3
1 – m21ω1,

which implies

ω8
1 + h23ω

6
1 + h22ω

4
1 + h21ω

2
1 + h20 = 0, (7)

where

h20 = m2
20 – n2

20,

h21 = m2
21 – 2m20m22 – n2

21 + 2n20n22,
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h22 = m2
22 + 2m20 – 2m21m23 + 2n21n23 – n2

22,

h23 = m2
23 – 2m22 – n2

23.

Let ω2
1 = v1. Then Eq. (7) becomes

v4
1 + h23v3

1 + h22v2
1 + h21v1 + h20 = 0. (8)

Define

g21(v1) = v4
1 + h23v3

1 + h22v2
1 + h21v1 + h20,

ζ20 =
1
2

h22 –
3

16
h2

23, η20 =
1

32
h2

23 –
1
8

h22h23 + h21,

α20 =
(

η20

2

)2

+
(

ζ20

3

)

, β20 = –
1
2

+
√

3
2

i,

x21 =
√

–
η20

2
+ 3√α20 + 3

√

–
η20

2
–

√
α20,

x22 = β20

√

–
η20

2
+ 3√α20 + β2

20
3

√

–
η20

2
–

√
α20,

x23 = β2
20

√

–
η20

2
+ 3√α20 + β20

3

√

–
η20

2
–

√
α20,

v1i = y2i –
3h23

4
, i = 1, 2, 3.

(9)

Based on the distribution of the roots of Eq. (8) in [33], we have the following results.

Lemma 2 For Eq. (8), we have:
(i) if h20 < 0, then Eq. (8) has at least one positive root;

(ii) if h20 ≥ 0 and α20 ≥ 0, then Eq. (8) has positive roots if only if v11 > 0 and g21(v11) < 0;
(iii) if h20 ≥ 0 and α20 < 0, then Eq. (8) has positive roots if only if there exists at least one

v1∗ ∈ {v11, v12, v13} such that v1∗ > 0 and g21(v1∗) > 0.

We further suppose that
(H21): the coefficients h20, h21, h22, and h23 in g21(v1) satisfy one of the conditions

(a) h20 < 0,
(b) h20 ≥ 0, α20 ≥ 0, v11 > 0, and g1(v11) < 0,
(c) h20 ≥ 0, and there exists at least one v1∗ ∈ {v11, v12, v13} such that v1∗ > 0

and g21(v1∗) > 0, α20 < 0.
Thus we can conclude that there exists a positive root ω10 of Eq. (7) such that Eq. (6) has
a pair of purely imaginary roots ±iω10. For ω10, we have

τ10 =
1

ω10
× arccos

{
P21(ω10)
Q21(ω10)

}

, (10)

where

P21(ω10) = (n22 – m23n23)ω6
10 + (m23n21 + m21n23 – n20 – m22n22)ω4

10

+ (m22n20 + m20n22 – m21n21)ω2
10 – m20n20,

Q21(ω10) = n2
23ω

6
10 +

(
n2

22 – 2n21n23
)
ω4

10 +
(
n2

21 – 2n20n22
)
ω2

10 + n2
20.
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Differentiating both sides of Eq. (4) with respect to τ1 yields

[
dλ

dτ1

]–1

= –
4λ3 + 3m23λ

2 + 2m22λ + m21

λ(λ4 + m23λ3 + m22λ2 + m21λ + m20)
+

3n23λ
2 + 2n22λ + n21

λ(n23λ3 + n22λ2 + n21λ + n20)
–

τ

λ
.

Hence we obtain

Re

[
dλ

dτ1

]–1

τ1=τ10

=
g ′

21(v10)
Q21(ω10)

,

where g21(v1) = v4
1 + h23v3

1 + h22v2
1 + h21v1 + h20.

Clearly, if condition
(H22): g ′

21(v10) �= 0
is satisfied, then Re[ dλ

dτ1
]–1
τ1=τ10 �= 0. Based on the previous discussion and the Hopf bifurca-

tion theorem in [34], we can obtain the following results.

Theorem 1 For system (3), if conditions (H1), (H21), and (H22) hold, then system (3) is
locally asymptotically stable when τ1 ∈ [0, τ10); system (3) undergoes a Hopf bifurcation at
the worm-induced equilibrium E∗ when τ1 = τ10, and a family of periodic solutions bifurcate
from the worm-induced equilibrium E∗; τ10 is defined as in Eq. (10).

Case 3 τ1 = 0, τ2 > 0. Equation (4) becomes

λ4 + m33λ
3 + m32λ

2 + m31λ + m30 +
(
p33λ

3 + p32λ
2 + p31λ + p30

)
e–λτ2 = 0 (11)

with

m30 = m0 + n0, m31 = m1 + n1, m32 = m2 + n2, m33 = m3 + n3,

p30 = p0 + q0, p31 = p1 + q1, p32 = p2 + q2, p33 = p3.

Let λ = iω2 (ω2 > 0) be a root of Eq. (11). Substituting it into Eq. (11) and separating the
real and imaginary parts, we get

⎧
⎨

⎩

(p31ω2 – p33ω
3
2) sin τ2ω2 + (p30 – p32ω

2
2) cos τ2ω2 = m32ω

2
2 – ω4

2 – m30,

(p31ω2 – p33ω
3
2) cos τ2ω2 – (p30 – p32ω

2
2) sin τ2ω2 = m33ω

3
2 – m31ω2,

which leads to

ω8
2 + h33ω

6
2 + h32ω

4
2 + h31ω

2
2 + h20 = 0, (12)

where

h30 = m2
30 – p2

30,

h31 = m2
31 – 2m30m32 – p2

31 + 2p30p32,

h32 = m2
32 + 2m30 – 2m31m33 + 2p31p33 – p2

32,

h33 = m2
33 – 2m32 – p2

33.
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Let ω2
2 = v1. Then Eq. (12) becomes

v4
2 + h33v3

2 + h32v2
2 + h31v2 + h30 = 0. (13)

Define

g31(v2) = v4
2 + h33v3

2 + h32v2
2 + h31v2 + h30,

ζ30 =
1
2

h32 –
3

16
h2

33, η30 =
1

32
h2

33 –
1
8

h32h33 + h31,

α30 =
(

η30

2

)2

+
(

ζ30

3

)

, β30 = –
1
2

+
√

3
2

i,

x31 =
√

–
η30

2
+ 3√α30 + 3

√

–
η30

2
–

√
α30,

x32 = β30

√

–
η30

2
+ 3√α30 + β2

30
3

√

–
η30

2
–

√
α30,

x33 = β2
30

√

–
η30

2
+ 3√α30 + β30

3

√

–
η30

2
–

√
α30,

v2i = x3i –
3h33

4
, i = 1, 2, 3.

(14)

Based on the distribution of the roots of Eq. (13), we have the following results.

Lemma 3 For Eq. (13), we have:
(i) if h30 < 0, then Eq. (13) has at least one positive root;

(ii) if h30 ≥ 0 and α30 ≥ 0, then Eq. (13) has positive roots if only if v21 > 0 and
g22(v21) < 0;

(iii) if h30 ≥ 0 and α30 < 0, then Eq. (13) has positive roots if only if there exists at least
one v2∗ ∈ {v21, v22, v23} such that v2∗ > 0 and g22(v2∗) > 0.

We further suppose that
(H31): the coefficients h30, h31, h32, and h33 in g22(v2) satisfy one of the conditions

(a′) h30 < 0,
(b′) h30 ≥ 0, α30 ≥ 0, v21 > 0, and g22(v21) < 0,
(c′) h30 ≥ 0,

and there exists at least one v2∗ ∈ {v21, v22, v23} such that v2∗ > 0 and g22(v2∗) > 0,
α30 < 0.

Then we know that there exists a positive root ω20 of Eq. (12) such that Eq. (11) has a
pair of purely imaginary roots ±iω20. For ω20, we have

τ20 =
1

ω20
× arccos

{
P31(ω20)
Q31(ω20)

}

, (15)

where

P31(ω10) = (p32 – m33p33)ω6
20 + (m33p31 + m31p33 – p30 – m32p32)ω4

20

+ (m32p30 + m30p32 – m31p31)ω2
20 – m30p30,

Q31(ω10) = p2
33ω

6
20 +

(
p2

32 – 2p31p33
)
ω4

20 +
(
p2

31 – 2p30p32
)
ω2

20 + p2
30.
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Similarly as in Case 2, we can obtain

Re

[
dλ

dτ2

]–1

τ2=τ20

=
g ′

22(v20)
Q31(ω20)

,

where g22(v2) = v4
2 + h33v3

2 + h32v2
2 + h31v2 + h30.

Thus, if condition
(H32): g ′

22(v20) �= 0
holds, then Re[ dλ

dτ2
]–1
τ1=τ20 �= 0. In conclusion, we have the following results.

Theorem 2 For system (3), if conditions (H1), (H31), and (H32) hold, then system (3) is
locally asymptotically stable when τ2 ∈ [0, τ20); system (3) undergoes a Hopf bifurcation at
the worm-induced equilibrium E∗ when τ2 = τ20, and a family of periodic solutions bifurcate
from the worm-induced equilibrium E∗; τ20 is defined as in Eq. (15).

Case 4 τ1 > 0, τ2 ∈ (0, τ20). Let λ = iω11 (ω11 > 0) be the root of Eq. (4). Then ω11 must
satisfy the following form:

⎧
⎨

⎩

M41(ω11) sin τ1ω11 + M42(ω11) cos τ1ω11 = M43(ω11),

M41(ω11) cos τ1ω11 – M42(ω11) sin τ1ω11 = M44(ω11),

where

M41(ω11) = n1ω11 – n3ω
3
11 + q1ω11 cos τ2ω11 –

(
q0 – q2ω

2
11

)
sin τ2ω11,

M42(ω11) = n0 – n2ω
2
11 + q1ω11 sin τ2ω11 +

(
q0 – q2ω

2
11

)
cos τ2ω11,

M43(ω11) = m2ω
2
11 – ω4

11 – m0 –
(
p1ω11 – p3ω

3
11

)
sin τ2ω11

–
(
p0 – p2ω

2
11

)
cos τ2ω11,

M44(ω11) = m3ω
3
11 – m1ω11 –

(
p1ω11 – p3ω

3
11

)
cos τ2ω11

+
(
p0 – p2ω

2
11

)
sin τ2ω11.

Thus we obtain the following equation with respect to ω11:

M2
43(ω11) + M2

44(ω11) – M2
41(ω11) – M2

42(ω11) = 0. (16)

Next, we suppose that condition (H41) holds, that is, Eq. (16) has at least one positive root
ω∗

1 . Thus Eq. (4) has a pair of purely imaginary roots ±iω∗
1 . For ω∗

1 , we have:

τ ∗
1 =

1
ω∗

1
× arccos

{
M41(ω∗

1) × M44(ω∗
1) + M42(ω∗

1) × M43(ω∗
1)

M2
41(ω∗

1) + M2
42(ω∗

1)

}

. (17)

Differentiating both sides of Eq. (4) with respect to τ1, we obtain

[
dλ

dτ1

]–1

=
P41(λ)
Q41(λ)

–
τ1

λ
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with

P41(λ) = 4λ3 + 3m3λ
2 + 2m2λ + m1 +

(
3n3λ

2 + 2n2λ + n1
)
e–λτ1

–
[
τ2p3λ

3 – (3p3 – τ2p2)λ2 – (2p2 – τ2p1)λ – p1 + τ2p0
]
e–λτ2

–
[
τ2q2λ

2 – (2q2 – τ2q1)λ – q1 + τ2q0
]
e–λ(τ1+τ2),

Q41(λ) = λ
(
n3λ

3 + n2λ
2 + n1λ + n0

)
e–λτ1 + λ

(
q2λ

2 + q1λ + q0
)
e–λ(τ1+τ2).

Further, we have

Re

[
dλ

dτ1

]–1

τ1=τ∗
1

=
U41V41 + U42V42

V 2
41 + V 2

42
,

where

U41 =
[
2n2ω

∗
1 + (2q2 – τ2q1)ω∗

1 cos τ2ω
∗
1

–
(
τ2q2

(
ω∗

1
)2 + q1 – τ2q0

)
sin τ2ω

∗
1
]

sin τ ∗
1 ω∗

1

+
[
n1 – 3n3

(
ω∗

1
)2 + (2q2 – τ2q1)ω∗

1 sin τ2ω
∗
1

+
(
τ2q2

(
ω∗

1
)2 + q1 – τ2q0

)
cos τ2ω

∗
1
]

cos τ ∗
1 ω∗

1

+
[
(2p2 – τ2p1)ω∗

1 + τ2p3
(
ω∗

1
)3]

sin τ2ω
∗
1

+
[
p1 – τ2p0 – (3p3 – τ2p2)

(
ω∗

1
)2]

cos τ2ω
∗
1

+ m1 – 3m3
(
ω∗

1
)2,

U42 =
[
2n2ω

∗
1 + (2q2 – τ2q1)ω∗

1 cos τ2ω
∗
1

–
(
τ2q2

(
ω∗

1
)2 + q1 – τ2q0

)
sin τ2ω

∗
1
]

cos τ ∗
1 ω∗

1

–
[
n1 – 3n3

(
ω∗

1
)2 + (2q2 – τ2q1)ω∗

1 sin τ2ω
∗
1

+
(
τ2q2

(
ω∗

1
)2 + q1 – τ2q0

)
cos τ2ω

∗
1
]

sin τ ∗
1 ω∗

1

+
[
(2p2 – τ2p1)ω∗

1 + τ2p3
(
ω∗

1
)3]

cos τ2ω
∗
1

–
[
p1 – τ2p0 – (3p3 – τ2p2)

(
ω∗

1
)2]

sin τ2ω
∗
1

+ 2m2ω
∗
1 – 4

(
ω∗

1
)3,

V41 =
[
n0ω

∗
1 – n2

(
ω∗

1
)3 +

(
q0ω

∗
1 – q2

(
ω∗

1
)3)

cos τ2ω
∗
1

+ q1
(
ω∗

1
)2

sin τ2ω
∗
1
]

sin τ ∗
1 ω∗

1

+
[
n3

(
ω∗

1
)4 – n1

(
ω∗

1
)2 +

(
q0ω

∗
1 – q2

(
ω∗

1
)3)

sin τ2ω
∗
1

– q1
(
ω∗

1
)2

cos τ2ω
∗
1
]

cos τ ∗
1 ω∗

1,

V42 =
[
n0ω

∗
1 – n2

(
ω∗

1
)3 +

(
q0ω

∗
1 – q2

(
ω∗

1
)3)

cos τ2ω
∗
1

+ q1
(
ω∗

1
)2

sin τ2ω
∗
1
]

cos τ ∗
1 ω∗

1

–
[
n3

(
ω∗

1
)4 – n1

(
ω∗

1
)2 +

(
q0ω

∗
1 – q2

(
ω∗

1
)3)

sin τ2ω
∗
1

– q1
(
ω∗

1
)2

cos τ2ω
∗
1
]

sin τ ∗
1 ω∗

1.
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Thus, if condition (H42): U41V41 + U42V42 �= 0 holds, then Re[ dλ
dτ1

]–1
τ1=τ∗

1
�= 0. In conclusion,

we have the following results.

Theorem 3 For system (3), suppose that conditions (H1), (H41), and (H42) hold and τ2 ∈
(0, τ20). Then system (3) is locally asymptotically stable when τ1 ∈ [0, τ ∗

1 ); system (3) under-
goes a Hopf bifurcation at the worm-induced equilibrium E∗ when τ1 = τ ∗

1 , and a family
of periodic solutions bifurcate from the worm-induced equilibrium E∗; τ ∗

1 is defined as in
Eq. (17).

Case 5 τ2 > 0, τ1 ∈ (0, τ10). Let λ = iω22 (ω22 > 0) be the root of Eq. (4). Then we can obtain

⎧
⎨

⎩

M51(ω22) sin τ2ω22 + M52(ω22) cos τ2ω22 = M53(ω22),

M51(ω22) cos τ2ω22 – M52(ω22) sin τ2ω22 = M54(ω22),

where

M51(ω22) = p1ω22 – p3ω
3
22 + q1ω22 cos τ1ω22 –

(
q0 – q2ω

2
22

)
sin τ1ω22,

M52(ω22) = p0 – p2ω
2
22 + q1ω22 sin τ1ω22 +

(
q0 – q2ω

2
22

)
cos τ1ω22,

M53(ω22) = m2ω
2
11 – ω4

11 – m0 –
(
n1ω22 – n3ω

3
22

)
sin τ1ω22

–
(
p0 – p2ω

2
11

)
cos τ2ω11,

M54(ω11) = m3ω
3
22 – m1ω22 –

(
n1ω22 – n3ω

3
22

)
cos τ1ω22

+
(
n0 – n2ω

2
22

)
sin τ1ω22.

Thus we obtain the following equation with respect to ω22:

M2
53(ω22) + M2

54(ω22) – M2
51(ω22) – M2

52(ω22) = 0. (18)

Next, we assume that (H51) holds, that is, Eq. (18) has at least one positive root ω∗
2 . Thus

Eq. (4) has a pair of purely imaginary roots ±iω∗
2 . For ω∗

2 , we have:

τ ∗
2 =

1
ω∗

2
× arccos

{
M51(ω∗

1) × M54(ω∗
1) + M52(ω∗

1) × M53(ω∗
1)

M2
51(ω∗

1) + M2
52(ω∗

1)

}

. (19)

Similarly as in Case 4, we have

[
dλ

dτ2

]–1

=
P51(λ)
Q51(λ)

–
τ2

λ

with

P51(λ) = 4λ3 + 3m3λ
2 + 2m2λ + m1 +

(
3p3λ

2 + 2p2λ + p1
)
e–λτ2

–
[
τ1n3λ

3 – (3n3 – τ1n2)λ2 – (2n2 – τ1n1)λ – n1 + τ1n0
]
e–λτ1

–
[
τ1q2λ

2 – (2q2 – τ1q1)λ – q1 + τ1q0
]
e–λ(τ1+τ2),

Q51(λ) = λ
(
p3λ

3 + p2λ
2 + p1λ + p0

)
e–λτ2 + λ

(
q2λ

2 + q1λ + q0
)
e–λ(τ1+τ2).
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Similarly as in Case 4, we can obtain

Re

[
dλ

dτ2

]–1

τ2=τ∗
2

=
U51V51 + U52V52

V 2
51 + V 2

52
,

where

U51 =
[
2p2ω

∗
2 + (2q2 – τ1q1)ω∗

2 cos τ1ω
∗
2 –

(
τ1q2

(
ω∗

2
)2 + q1 – τ1q0

)
sin τ1ω

∗
2
]

sin τ ∗
2 ω∗

2

+
[
p1 – 3p3

(
ω∗

2
)2 + (2q2 – τ1q1)ω∗

2 sin τ1ω
∗
2

+
(
τ1q2

(
ω∗

2
)2 + q1 – τ2q0

)
cos τ1ω

∗
2
]

cos τ ∗
2 ω∗

2

+
[
(2n2 – τ1n1)ω∗

2 + τ1n3
(
ω∗

2
)3]

sin τ1ω
∗
2

+
[
n1 – τ1n0 – (3n3 – τ1n2)

(
ω∗

2
)2]

cos τ2ω
∗
2,

U52 =
[
2p2ω

∗
2 + (2q2 – τ1q1)ω∗

2 cos τ1ω
∗
2 –

(
τ1q2

(
ω∗

2
)2 + q1 – τ1q0

)
sin τ1ω

∗
2
]

cos τ ∗
2 ω∗

2

–
[
p1 – 3p3

(
ω∗

2
)2 + (2q2 – τ1q1)ω∗

2 sin τ1ω
∗
2

+
(
τ1q2

(
ω∗

2
)2 + q1 – τ1q0

)
cos τ1ω

∗
2
]

sin τ ∗
2 ω∗

2

+
[
(2n2 – τ1n1)ω∗

2 + τ1n3
(
ω∗

2
)3]

cos τ1ω
∗
2

–
[
n1 – τ1n0 – (3n3 – τ1n2)

(
ω∗

2
)2]

sin τ1ω
∗
2,

V51 =
[
p0ω

∗
2 – p2

(
ω∗

2
)3 +

(
q0ω

∗
2 – q2

(
ω∗

2
)3)

cos τ1ω
∗
2 + q1

(
ω∗

2
)2

sin τ1ω
∗
2
]

sin τ ∗
2 ω∗

2

+
[
p3

(
ω∗

2
)4 – p1

(
ω∗

2
)2 +

(
q0ω

∗
2 – q2

(
ω∗

2
)3)

sin τ1ω
∗
2 – q1

(
ω∗

2
)2

cos τ1ω
∗
2
]

cos τ ∗
2 ω∗

2,

V52 =
[
p0ω

∗
2 – p2

(
ω∗

2
)3 +

(
q0ω

∗
2 – q2

(
ω∗

2
)3)

cos τ1ω
∗
2 + q1

(
ω∗

2
)2

sin τ1ω
∗
2
]

cos τ ∗
2 ω∗

2

–
[
p3

(
ω∗

2
)4 – p1

(
ω∗

2
)2 +

(
q0ω

∗
2 – q2

(
ω∗

2
)3)

sin τ1ω
∗
2 – q1

(
ω∗

2
)2

cos τ1ω
∗
2
]

sin τ ∗
2 ω∗

2.

Thus, if condition
(H52): U51V51 + U52V52 �= 0

holds, then Re[ dλ
dτ2

]–1
τ2=τ∗

2
�= 0. In conclusion, we have the following results.

Theorem 4 For system (3), suppose that conditions (H1), (H51), and (H52) hold and τ1 ∈
(0, τ10). Then system (3) is locally asymptotically stable when τ2 ∈ [0, τ ∗

2 ); system (3) under-
goes a Hopf bifurcation at the worm-induced equilibrium E∗ when τ2 = τ ∗

2 , and a family
of periodic solutions bifurcate from the worm-induced equilibrium E∗; τ ∗

2 is defined as in
Eq. (19).

3 Direction and stability of Hopf bifurcation
Following the idea of Hassard [34], in this section, we investigate the direction and stabil-
ity of the Hopf bifurcation at the critical value τ ∗

2 by using the normal form theory and
the center manifold theorem. Throughout this section, we assume that τ1∗ < τ ∗

1 , where
τ1∗ ∈ (0, τ10). Let τ2 = τ ∗

2 + μ (μ ∈ R), u1 = S(τ2t), u2 = E1(τ2t), u3 = E2(τ2t), and u4 = I(τ2t).
System (3) becomes

u̇(t) = Lμ(ut) + F(μ, ut), (20)
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where u(t) = (u1, u2, u3, u4)T ∈ C = C([–1, 0], R4), and Lμ: C → R4 and F : R × C → R4 are
defined as

Lμφ =
(
τ ∗

2 + μ
)
(

Amaxφ(0) + Bmaxφ

(

–
τ1∗
τ ∗

2

)

+ Cmaxφ(–1)
)

and

F(μ,φ) =
(
τ ∗

2 + μ
)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

–βφ1(0)φ4(0)

pβφ1(0)φ4(0)

qβφ1(0)φ4(0)

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

with

Amax =

⎛

⎜
⎜
⎜
⎝

α11 0 0 α14

α21 α22 0 α24

α31 0 α33 α34

0 0 0 α44

⎞

⎟
⎟
⎟
⎠

, Bmax =

⎛

⎜
⎜
⎜
⎝

0 0 0 0
0 β22 0 0
0 0 0 0
0 β42 0 0

⎞

⎟
⎟
⎟
⎠

,

Cmax =

⎛

⎜
⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 γ33 0
0 0 γ43 0

⎞

⎟
⎟
⎟
⎠

.

Thus by the Reisz representation theorem there exists η(θ ,μ) such that

Lμφ =
∫ 0

–1
dη(θ ,μ)φ(θ ), for φ ∈ C. (21)

In fact, we can choose

η(θ ,μ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(τ ∗
2 + μ)(Amax + Bmax + Cmax), θ = 0,

(τ ∗
2 + μ)(Bmax + Cmax), θ ∈ [– τ1∗

τ∗
2

, 0),

(τ ∗
2 + μ)Cmax, θ ∈ (–1, – τ1∗

τ∗
2

),

0, θ = –1,

(22)

where δ(θ ) is the Dirac delta function.
For φ ∈ C([–1, 0], R4), define

A(μ)φ =

⎧
⎨

⎩

dφ(θ )
dθ

, –1 ≤ θ < 0,
∫ 0

–1 dη(θ ,μ)φ(θ ), θ = 0,

and

R(μ)φ =

⎧
⎨

⎩

0, –1 ≤ θ < 0,

F(μ,φ), θ = 0.
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Figure 1 The bifurcation diagram with respect to τ1 when τ2 = 0

Then system (20) is equivalent to

u̇(t) = A(μ)ut + R(μ)ut . (23)

For ϕ ∈ C1([0, 1], (R4)∗), define

A∗(ϕ) =

⎧
⎨

⎩

– dϕ(s)
ds , 0 < s ≤ 1,

∫ 0
–1 dηT (s, 0)ϕ(–s), s = 0,

and the bilinear inner form for A and A∗

〈
ϕ(s),φ(θ )

〉
= ϕ̄(0)φ(0) –

∫ 0

θ=–1

∫ θ

ξ=0
ϕ̄(ξ – θ ) dη(θ )φ(ξ ) dξ , (24)

where η(θ ) = η(θ , 0).
Let ρ(θ ) = (1,ρ2,ρ3,ρ4)T eiτ∗

2 ω∗
2θ be the eigenvector of A(0) corresponding to +iτ ∗

2 ω∗
2 , and

let ρ∗(s) = D(1,ρ∗
2 ,ρ∗

3 ,ρ∗
4 )T eiτ∗

2 ω∗
2s be the eigenvector of A∗(0) corresponding to –iτ ∗

2 ω∗
2 . By

the definition of A(0) and A∗ we get

ρ2 =
α21 + α24ρ4

iω∗
2 – α22 – β22e–iτ1∗ω∗

2
,
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Figure 2 The bifurcation diagram with respect to τ2 when τ1 = 0

ρ3 =
(iω∗

2 – α44)ρ4 – β42e–iτ1∗ω∗
2 ρ2

γ43e–iτ∗
2 ω∗

2
,

ρ4 =
iω∗

2 – α11

α14
,

ρ∗
2 = ρ∗

41ρ
∗
4 , ρ∗

3 = ρ∗
42ρ

∗
4 ,

ρ∗
4 =

α14

ρ∗
41 + ρ∗

42 – iω∗
2

,

ρ∗
41 = –

β42eiτ1∗ω∗
2

iω∗
2 + α22 + β22eiτ1∗ω∗

2
,

ρ∗
42 = –

γ43eiτ∗
2 ω∗

2

iω∗
2 + α33 + γ33eiτ∗

2 ω∗
2

.

From Eq. (24) the expression of Q can be obtained as follows:

D̄ =
[
1 + ρ2ρ̄

∗
2 + ρ3ρ̄

∗
3 + ρ4ρ̄

∗
4 + τ1∗e–iτ1∗ω∗

2 ρ2
(
β22ρ̄

∗
2 + β42ρ̄

∗
4
)

+ τ ∗
2 e–iτ∗

2 ω∗
2 ρ3

(
γ33ρ̄

∗
3 + γ43ρ̄

∗
4
)]–1,

where 〈ρ∗,ρ〉 = 1 and 〈ρ∗, ρ̄〉 = 0.
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Figure 3 The bifurcation diagram with respect to τ1 when τ2 = 4.25 ∈ (0,τ20)

In what follows, we can obtain g20, g11, g02, and g21 by using the algorithms in [34] and a
similar computation process as that in [29, 35, 36]:

g20 = 2τ ∗
2 D̄βρ4

(
pρ̄∗

2 + qρ̄∗
3 – 1

)
,

g11 = τ ∗
2 D̄β Re{ρ4}

(
pρ̄∗

2 + qρ̄∗
3 – 1

)
,

g02 = 2τ ∗
2 D̄βρ̄4

(
pρ̄∗

2 + qρ̄∗
3 – 1

)
,

g21 = 2τ ∗
2 D̄β

(
pρ̄∗

2 + qρ̄∗
3 – 1

)
(

W (1)
11 (0)ρ4

+
1
2

W (1)
20 (0)ρ̄4 + W (4)

11 (0) +
1
2

W (4)
20 (0)

)

,

with

W20(θ ) =
ig20ρ(0)
τ ∗

2 ω∗
2

eiτ∗
2 ω∗

2θ +
iḡ02ρ̄(0)
3τ ∗

2 ω∗
2

e–iτ∗
2 ω∗

2θ + E1e2iτ∗
2 ω∗

2θ ,

W11(θ ) = –
ig11ρ(0)
τ ∗

2 ω∗
2

eiτ∗
2 ω∗

2θ +
iḡ11ρ̄(0)
τ ∗

2 ω∗
2

e–iτ∗
2 ω∗

2θ + E2.
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Figure 4 The bifurcation diagram with respect to τ2 when τ1 = 2.25 ∈ (0,τ10)

E1 and E2 can be obtained by the following two equations:

E1 = 2

⎛

⎜
⎜
⎝

2iω∗
2 – α11 0 0 –α14

–α21 2iω0 – α22 – β22e–2iτ1∗ω∗
2 0 –α24

–α31 0 2iω∗
2 – α33 – γ33e–2iτ∗

2 ω∗
2 –α34

0 –β42e–2iτ1∗ω∗
2 –γ43e–2iτ∗

2 ω∗
2 2iω∗

2 – α44

⎞

⎟
⎟
⎠

–1

×

⎛

⎜
⎜
⎜
⎝

–βρ4

pβρ4

qβρ4

0

⎞

⎟
⎟
⎟
⎠

,

E2 = –

⎛

⎜
⎜
⎜
⎝

α11 0 0 –α14

α21 α22 + β22 0 α24

α31 0 α33 + γ33 α34

0 β42 γ43 α44

⎞

⎟
⎟
⎟
⎠

–1

×

⎛

⎜
⎜
⎜
⎝

–β Re{ρ4}
pβ Re{ρ4}
qβ Re{ρ4}

0

⎞

⎟
⎟
⎟
⎠

.
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Figure 5 Time plots of S, E1 E2 and I for different b at τ1 = 4.25 < τ10 when τ2 = 0. Rest of the parameters are
taken as given in the text

Figure 6 Dynamic behavior of system (26):
projection on S–E1–I with τ1 = 4.75 < τ10 when
τ2 = 0 for different b. Rest of the parameters are
taken as given in the text

Then we can obtain

C1(0) =
i

2τ ∗
2 ω∗

2

(

g11g20 – 2|g11|2 –
|g02|2

3

)

+
g21

2

μ2 = –
Re{C1(0)}
Re{λ′(τ ∗

2 )} ,

β2 = 2Re
{

C1(0)
}

,

T2 = –
Im{C1(0)} + μ2 Im{λ′(τ ∗

2 )}
τ ∗

2 ω∗
2

.

(25)
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Figure 7 Time plots of S, E1 E2 and I for different γ at τ1 = 4.25 when τ2 = 0. Rest of the parameters are taken
as given in the text

Figure 8 Dynamic behavior of system (26):
projection on S–E1–I with τ1 = 4.95 > τ10 when
τ2 = 0 for different γ . Rest of the parameters are
taken as given in the text

In conclusion, we have the following results.

Theorem 5 For system (2), if μ2 > 0 (μ2 < 0), then the Hopf bifurcation is supercritical
(subcritical); if β2 < 0 (β2 > 0), then the bifurcating periodic solutions are stable (unstable);
if T2 > 0 (T2 < 0), then the period of the bifurcating periodic solutions increase (decrease).

4 Numerical simulations
For verifying accuracy and correctness of the obtained theoretical results, in this section,
we execute some numerical simulations. For simulation, we choose the following set of
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Figure 9 Time plots of S, E1, E2 and I for different b at τ2 = 6.25 < τ20 when τ1 = 0. Rest of the parameters are
taken as given in the text

Figure 10 Dynamic behavior of system (26):
projection on S–E1–I with τ2 = 6.25 < τ20 when
τ1 = 0 for different b. Rest of the parameters are
taken as given in the text

parameters: b = 0.32, β = 0.1, σ = 0.004, p = 0.4, q = 0.6, α1 = 0.36, α2 = 0.26, γ = 0.1. Then
we obtain the following specific case of system (3):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t)
dt = 0.32 – 0.1S(t)I(t) – 0.004S(t),

dE1(t)
dt = 0.04S(t)I(t) – 0.004E1(t) – 0.36E1(t – τ1),

dE2(t)
dt = 0.06S(t)I(t) – 0.004E2(t) – 0.26E2(t – τ2),

dI(t)
dt = 0.36E1(t – τ1) + 0.26E2(t – τ2) – 0.104I(t).

(26)
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Figure 11 Time plots of S, E1, E2 and I for different γ at τ2 = 6.25 when τ1 = 0. Rest of the parameters are
taken as given in the text

Figure 12 Dynamic behavior of system (26):
projection on S–E1–I with τ2 = 7.55 > τ20 when
τ1 = 0 for different γ . Rest of the parameters are
taken as given in the text

With the help of Matlab package software we obtain R0 = 76.7543. Further, we obtain
the unique worm-induced equilibrium E∗(1.0542, 0.3470, 0.7177, 2.9954). Now we can val-
idate for the worm-induced equilibrium that m10 = 0.003 > 0, m12m13 = 0.3785 > m11 =
0.0377, and m11m12m13 = 0.1368 > m2

12 + m10m2
13 = 0.0143 by means of Matlab software

package. So system (26) is locally asymptotically stable in absence of delay.
Further, by some complex computations we can obtain ω10 = 0.2907 and τ10 = 4.7657

when τ2 = 0; ω20 = 0.7062 and τ20 = 7.2185 when τ1 = 0; ω∗
1 = 1.4981 and τ ∗

1 = 4.5750 when
τ2 = 4.25 ∈ (0, τ20); and ω∗

2 = 0.0067 and τ ∗
2 = 7.0505 when τ1 = 2.25 ∈ (0, τ10). It follows

from Theorems 1–4 that the worm-induced equilibrium E∗(1.0542, 0.3470, 0.7177, 2.9954)
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Figure 13 Time plots of S, E1, E2 and I for different b at τ1 = 4.05 when τ2 = 4.25 ∈ (0,τ20). Rest of the
parameters are taken as given in the text

Figure 14 Dynamic behavior of system (26):
projection on S–E1–I with τ1 = 4.75 > τ ∗

1 when
τ2 = 4.25 ∈ (0,τ20) for different b. Rest of the
parameters are taken as given in the text

is locally asymptotically stable when the value of the time delay is under the critical value,
and in this case the propagation of the worms can be controlled. However, the worm-
induced equilibrium E∗(1.0542, 0.3470, 0.7177, 2.9954) will lose its stability, and a Hopf
bifurcation will occur once the delay passes through the critical value, and in this case the
propagation of the worms will be out of control. This property can be illustrated by the
bifurcation diagrams shown in Figs. 1–4.

Figure 5(a–d) demonstrate the effect of the constant recruitment to susceptible nodes b
on system dynamics and show that the infected class of short latent period, the infected
class of long latent period, and the infectious class increases, whereas the susceptible class
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Figure 15 Time plots of S, E1, E2 and I for different γ at τ1 = 4.05 when τ2 = 4.25 ∈ (0,τ20). Rest of the
parameters are taken as given in the text

Figure 16 Dynamic behavior of system (26):
projection on S–E1–I with τ1 = 4.75 > τ ∗

1 when
τ2 = 4.25 ∈ (0,τ20) for different γ . Rest of the
parameters are taken as given in the text

keeps static along with the increment of b when τ1 > 0 and τ2 = 0. We can also observe that
oscillations and delay can be reduced and removed by decreasing the value of b, which is
illustrated by Fig. 6. Figure 7(a–d) describe the effect of the recovery rate of the infectious
nodes γ on system dynamics and show that the susceptible class increases, whereas the
infected class of short latent period, the infected class of long latent period, and the infec-
tious class decreases when τ1 > 0 and τ2 = 0. Also, oscillations and delay can be reduced
and removed by increasing the value of γ , which is illustrated by Fig. 8. The effects of b
and γ on system dynamics when τ1 = 0 and τ2 > 0, τ1 > 0 and τ2 ∈ (0, τ20), and τ2 > 0 and
τ1 ∈ (0, τ10) are the same as those in the case where τ1 > 0 and τ2 = 0. The simulations are
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Figure 17 Time plots of S, E1, E2 and I for different b at τ2 = 6.25 when τ1 = 2.25 ∈ (0,τ10). Rest of the
parameters are taken as given in the text

Figure 18 Dynamic behavior of system (26):
projection on S–E1–I with τ2 = 6.95 > τ ∗

2 when
τ1 = 2.25 ∈ (0,τ10) for different b. Rest of the
parameters are taken as given in the text

shown in Figs. 9–20. Thus we can conclude that the constant recruitment to susceptible
nodes b and the recovery rate of the infectious nodes γ have a tremendous effect on the
system dynamics.

5 Conclusions
In the present paper, we investigated a delayed epidemic model for the propagation of
worm in wireless sensor network with two latent periods by incorporating the latent delays
into the formulated model in the literature [25] considering the typical latent feature of
the malicious codes in networks. We mainly consider the effect of the latent delay on the
proposed model. In comparison with the other worm propagation models with time delay,
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Figure 19 Time plots of S, E1, E2 and I for different γ at τ2 = 6.25 when τ1 = 2.25 ∈ (0,τ10). Rest of the
parameters are taken as given in the text

Figure 20 Dynamic behavior of system (26):
projection on S–E1–I with τ2 = 7.55 > τ ∗

2 when
τ1 = 2.25 ∈ (0,τ10) for different γ . Rest of the
parameters are taken as given in the text

in the proposed model, we considered different types of worms in the wireless sensor
network. Thus we can conclude that the model investigated is more general and overcomes
the insufficiency of the existing worm models to a certain extent.

The local stability and existence of Hopf bifurcation at the worm-induced equilibrium
are investigated, and the threshold values of Hopf bifurcation are obtained by satisfying
transversality conditions for showing the delay dynamics of the work in [25]. We numer-
ically demonstrated that the propagation of the worms in the wireless sensor network
can be controlled when the values of the latent delays are below the threshold value.
However, the propagation of the worms is out of control when the values of the latent
delays pass through the threshold value. We can conclude that the time delay should
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be controlled below the threshold value, particularly, the direction and stability of the
Hopf bifurcation when τ2 > 0 and τ1 ∈ (0, τ10). By numerical simulations we have C1(0) =
–0.003182 – i0.000519, μ2 = 43.589041 > 0, β2 = –0.006364 < 0, and T2 = –0.034226 < 0
when τ2 > 0 and τ1∗ = 2.25 ∈ (0, τ10). Therefore by Theorem 5 we can deduce that the Hopf
bifurcation is supercritical and the bifurcating periodic solutions are stable with decreas-
ing period. Since the bifurcating periodic solutions are stable, the numbers of every class
of sensor nodes in system (26) may coexist in an oscillatory mode. This phenomenon is
not welcome in the wireless sensor networks. According to the numerical simulations, we
can see that the onset of the Hopf bifurcation and the oscillation can be delayed if the
values of the constant recruitment to susceptible nodes b and the recovery rate of the in-
fectious nodes γ change properly. Thus we strongly recommend that the managers of the
wireless sensor network should properly control the constant recruitment to susceptible
nodes and update the antivirus software timely to control the propagation of worms in the
wireless sensor network easily.
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